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THE ALGEBRAIC GEOMETRY OF MOTIONS OF
BAR-AND-BODY FRAMEWORKS*

NElL WHITE" AND WALTER WHITELEYt

Abstract. This paper generalizes and extends previous results on bar-and-joint frameworks to bar-and-
body frameworks: structures formed by rigid bodies in space linked by rigid bars and universal joints. For
a multi-graph which can form an isostatic (minimal infinitesimally rigid) bar-and-body framework, a single
polynomialmthe pure condition--is found which describes those bad positions of the bars for which
infinitesimal rigidity fails. (The proof is much shorter than the previous derivation for bar-and-joint
frameworks and the condition is linear in the variables.) The pure condition is used to describe the infinitesimal
motions of a 1-underbraced framework in terms of the screw centers of motion of the bodies. The factoring
of the polynomial condition is given by the lattice of isostatic blocks in the framework, with at most one
irreducible factor for each block. For frameworks realized at generic points of an irreducible factor the
infinitesimal motions and the static stresses are also given by the factoring and the lattice. (These results
are much sharper than the corresponding results for bar-and-joint frameworks.) The theorems are presented
in terms of k-frames--a simple generalization of bar-and-body frameworks which also has applications to
scene analysis and other types of frameworks.

Key words, bar-and-body frameworks, infinitesimal motions, static stress, polynomial conditions, irreduc-
ible factor, lattice of blocks
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Introduction. The traditional bar-and-joint frameworks have been generalized to
bar-and-body frameworks, in which large rigid bodies are tied together with rigid bars,
each attached to a pair of distinct bodies by universal joints. Several factors make
these structures important:

(i) a number of critical problems in 3-space are unsolved for bar-and-joint
frameworks in 3-space;

(ii) the analogous problems are solved in all dimensions for bar-and-body
frameworks;

(iii) the results for bar-and-body frameworks apply directly to hinged panel
structures which are commonly built in 3-space.

In particular, the problem of characterizing the graphs of isostatic (minimal
infinitesimally rigid) bar-and-joint frameworks is unsolved for n 3 [23], while the
characterization of the multi-graphs for isostatic bar-and-body frameworks has recently
been solved for all dimensions (see 2.4 and [21], [23], [29]).

In our first paper [25] we described the pure condition for the graph of an isostatic
bar-and-joint framework in n-space--a single polynomial in the coordinates of the
joints whose zeros identify the special realizations of the graph which are not
infinitesimally rigid. These conditions were used to investigate the static behavior of
overbraced frameworks, and preliminary work was done on the factoring of the
conditions.
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Here we present the much simpler pure condition for the multi-graph of an isostatic
bar-and-body framework--a single polynomial which is now linear in the variables
for each bar. These conditions are derived in 2, along with a technique for their
computation based on work of Rosenberg 16] and an application to the characteriz-
ation of the graphs of isostatic frameworks. In 3 the pure conditions are used to
describe the screw centers for the infinitesimal motions ofthe bodies in a 1-underbraced
bar-and-body framework. This work uses the projective algebra of screws which dates
back to the last century 11 but has also been revived for work in invariant theory
[1], [5] and in robotics [9], [13], [20].

For the multi-graph of an isostatic framework the isostatic subpieces (or blocks)
form a lattice and these blocks correspond precisely to the factoring of the pure
condition of the graph" each irreducible factor is associated with a unique such block,
and no block has more than one factor (Theorem 4.12). Each edge is associated with
the lowest block in which it occurs, and this partition describes which edges lie in the
static stress at any generic point of an irreducible factor (namely those edges in blocks
at or below the block of the factor (Proposition 4.6)) and which edges join bodies in
motion relative to each other at a generic point of the factor (those edges associated
with blocks at or above the block of the factor (Proposition 4.8)). We conjecture that
this same pattern of irreducible factors, edges and blocks applies to bar-and-joint
frameworks in the plane, although any proofs will have to be more complex. We do
know that the pattern must be modified for bar-and-joint frameworks in 3-space.

Bar-and-body frameworks are really special examples of a general matroid struc-
ture we call a k-frame [29]. Accordingly we present the results of the paper in terms
of these general structures. The k-frames first appeared in scene analysis--the study
of hyperplane scenes in Rk projected into pictures in Rk-1 [28]. In 5 we briefly
describe this interpretation for 3-frames to indicate how our results apply in this field.
In passing, we note that the k-frames can also be used to describe bar-and-joint
frameworks on the torus Tk (a quotient of Rk by the unit hypercube) [29]. As a
consequence, k-frames, and our work here, have potential applications to the study
of periodic sphere packings in Rk [3].

A number of the techniques we use are based on the form of the rigidity matrix
for the framework or k-frame. This form, in turn, reflects the underlying matroid
structure of the matroid union of k copies of the graphic matroid [29]. As a result,
these techniques also apply to many other represented matroids based on unions of
graphic and bicircular matroids of a graph [29]. More generally, we anticipate that
nany of the techniques will apply to a large class of matroids defined by counts on a
graph or hypergraph [26], [30].

1. Introduction to bar-and-body frameworks and frames. Let B be a rigid body in
R". Then any instantaneous motion of B may be expressed as a vector sum of rotations
and translations of B, as is well known. For example, in R2, any such motion is a
rotation or a translation, and in R3, such a motion is in general a screw, or a rotation
about a line L plus a translation in a direction parallel to L. In R4, there are motions
which cannot be expressed more simply than as a sum of two rotations. We must first
develop the algebra of such motions. We give an informal presentation of this algebra;
more details may be found in [4], [27].

1.1. Centers of motions in n-space. To any point p in R" we will assign the
homogeneous coordinates (Pl, P2,""", P,, 1). Thus we are regarding R as embedded
in projective space PG(R, n). Since rigidity properties are in general projectively
invariant [17], it is useful and sometimes necessary to work with arbitrary subspaces
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in PG(R, n). Such a subspace W of dimension d corresponds to a subspace of
dimension d + 1 in R"+1. We say that W has rank d + 1, and recall that it takes d + 1
points to determine such a subspace. Thus, for example, an arbitrary line in R" (plus
its point at infinity) is a subspace of rank 2, but so is any line at infinity in PG(R, n).

Now let the subspace W of rank r be determined by the points p l, p2,..., p
(i.e., p2, p2,..., pr is actually a basis of W in Rn+l). In the Cayley algebra on R"+1

(see [5], also referred to as Peano spaces on R"+1 in [1]), we may associate with W
the r-extensor p v p2v v pr. This r-extensor is, in the coordinatized version, really
just the vector of Pliicker coordinates of W, that is, the sequence of r x r minors of
the r x (n + 1) matrix whose rows are p 1, p2,..., p r.

Now we consider a rotation of B in R", or what is really equivalent, a rotation
of all of R" itself. Any such rotation has a center (or axis) which is a subspace W of
rank n-1. Let Z"=plvp2v vp"-1 be the associated (n-l) extensor. Then for
any point p not in W, Z" v p is an n-extensor associated with the hyperplane sp W+p).
Furthermore, Z" v p is an (n + 1)-vector whose entries are the coefficients ofthe equation
of the hyperplane sp (W+p) (assuming certain sign and order conventions). That is,
the first n coordinates are the vector v normal to sp W+p) (the (n + 1)st entry being
the constant term -v. (Pl,""", P,)). If p’ is another point in sp (W+p), then Z"v p
and Z"v p’ are scalar multiples of each other in the same ratio as the ratio of the
distances of p and p’ from W (with opposite signs if they are on opposite sides of W
in sp W+p)). Thus, for some constant scalar a, a (Z" v p) is (except for its last entry)
the velocity vector of the rotation at p, for every point p. We may regard a as the
angular velocity, appropriately normalized.

We will henceforth refer to the (n-1)-extensor Z’= aZ" as the center of the
rotation, and for any point p, M(p)= Z’v p as the motion at p.

Next we consider a translation in the fixed direction of the free vector v. Let U
be any hyperplane in the parallel family of hyperplanes normal to v. Then U intersects
the hyperplane at infinity (=points with (n + 1)st coordinate zero in PG(R, n)) in a
subspace W of rank n 1, where W is independent of the choice of U. Regarding W
as the center of a "rotation," we mimic the above development. If Z" is the
(n 1)-extensor corresponding to W and a the chosen scalar for our translation, then
Z’= aZ" is the center and M(p)= Z’v p is the motion at p. This also corresponds to
the equation of the hyperplane normal to the velocity, and for an appropriate scalar
a it is the velocity vector v (independent of p) together with one extra component,
-v’(pl, ,p,).

If we now take an arbitrary instantaneous motion of our rigid body, it is a vector
sum of rotations and translations. If Z, Z;, , Z’m are the centers of these rotations
and translations, then Z EZ is the center of our motion and M(p) EZ v p Z v p
is the motion at p for any point p ofthe rigid body. M(p) still represents the coordinates
of the hyperplane through p normal to the velocity vector.

Remark 1.1. The linear combination Z of (n- 1)-extensors is no longer an (n-
1)-extensor, unless the motion is again a rotation or translation. The center Z may
now be an arbitrary vector of length (,+1 (rt-I,_) ), whereas an (n 1)-extensor satisfies
the Grassmannian quadratic relations (see [8, pp. 309-315]). The study of screw motions
in R3 from this point of view has an extensive literature and is of current interest in
the study of robotics [9], [13], [20].

Example 1.2. Consider a rotation about the x-axis in R3. Taking the origin
(0, 0, 0, 1) and the point (1, 0, 0, 1) on the x-axis, we get as the center the Pliicker
coordinate vector Z (0, 0, -1, 0, 0, 0), here taken in the order P2, P3, P4, P3, P=4, P34,
where Po denotes the minor using columns and j. The motion vector Z v p, taken in
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the order P234,-P134, P124,-P123 for minors of
O 0 0 111 0 0 1

Pl P2 P3 1

is M(p) (0, --P3, P2, 0), where p (p, P2, P3, 1). We note that (0, --P3, P2) is correct
for the velocity vector of our rotation, up to a scalar. Clearly the fourth coordinate is
0 because the plane M(p) contains the origin.

Similarly, for a translation in the direction of the x-axis, v (1, 0, 0), U may be
taken as the hyperplane defined by x 0, and W is the line at infinity {(x, y, z, w)lx w
0}. This line is determined by the points at infinity (0, 1, 0, 0) and (0, 0, 1, 0), hence
Z (0, 0, 0, 1, 0, 0), and M(p) (1, 0, 0, -Pl).

1.2. Bar-and-body frameworks. Suppose now that two rigid bodies, B1 and
are connected by a rigid bar, which is attached flexibly at points a and b on B and
B2 (resp.). If B1 and B2 undergo instantaneous motions with centers Z and Z2 (resp.),
then the condition that the distance from a to b is instantaneously preserved is the
following:

If u and v are the velocity vectors at a and b,

then

or

M(a)=(u,-u.(a,. .,a,)), M(b)=(v,-v.(b,. ", bn));

O=(u-v).((a, an)-(b, b,))

u.(a,..., a,)-u’(bl,..., b,)-v.(a,..., a,)+v.(b,..., bn)

=-M(a)vb-M(b)va

Z v av b+Z2v bv a=Z1 v(av b)-Z2v(av b)=(Zl-Z2)v(av b)=0

(see [4]). Here a v b is a 2-extensor, a vector of length ("/)2 consisting of the 2x2
minors (Pliicker coordinates) of the 2 x (n + 1) matrix whose rows are a and b. We
will henceforth write a v b simply as ab.

If Z is an (n-1)-extensor pvp2v...vpn-1, let us take Z*=
(P2,-P3, (-1)i+J-P,, "), where P, is the (n-1)x (n-1) minor obtained by
omitting columns and j from the matrix whose rows are p, p2, pn-. Now if the
2-extensor ab is written in the standard order (Qx2, Q3," ", Qo,’" "), where Qol is
the minor with columns ij, then

Z v ab p v p v v p- v a v b det (pl, p2,... pn-, a, b)

+(E (-1)’+J-lPQo)= +Z*.ab

where a Laplace expansion was used on the last two rows of the determinant. We have
proved:

PROPOSIa’ION 1.3. If rigid bodies B1 and B2 undergo motions with centers Z and
Z2 (resp ), then the length of a bar ab is preserved if and only if

Z* ab Z*2 ab O.

DEFINITION 1.4. A bar-and-bodyframework in R" is a finite collection of disjoint
rigid bodies B, BE," ", Bm and of rigid bars (a, bl), (a2, bE)," ", (ae, be), where ai
and b are points on distinct bodies and the ith bar is attached flexibly to those two
points as its end points.
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We will assume that each body is full, that is, it spans an affine subspace of R
of at least rank n (i.e. dimension n- 1). Corresponding to any such framework is a
finite graph G with vertices corresponding to the bodies and edges to the bars. We
may have multiple edges in (3 but no loops. Any such graph (3 may be realized as a
framework by assigning an ordered pair of (n + 1)-tuples (with last entry equal to one)
to each edge, and providing that points on distinct bodies are assigned distinct
(n + 1)-tuples. We note that the size and shape of the bodies themselves are not relevant
to questions of instantaneous motions, provided each body contains the requisite end
points of bars. We also note that the various edges incident to the ith vertex of (3 may
be given distinct end points on the ith body Bi. We denote by (3(p) any such particular
realization of the graph G as a bar-and-body framework.

DEFINITION 1.5. The rigidity matrix M(G(p)) for the framework G(p) has one
row for each bar and (,+12 columns for each body, with the columns for B1 followed
by those for B2, etc. If (a, b) is a bar with end points a in body Bi and b in body Bj,
then the row corresponding to (a, b) in M(G(p)) has the 2-extensor ab in the (,/1:)
columns for Bi,-ab in the (,-1) columns for Bj, and 0 in all other columns. (Under
this definition, many frameworks are equivalent. Indeed, all that matters is the 2-
extensor, or line, ab, not the location of the two points a and b on that line.)

A motion of (3(p) is an assignment of a center Z to each body Bi, 1 _-< i_-< m, so
that the length of each bar (a, b) is instantaneously preserved, that is, Z*. ab ZT. ab
0. If we let Z* be the vector of length m("/1) consisting of Z* followed by Z2* followed
by Z3*, etc., then we require that Z*. R 0 for each row R of M((3,(p)).

PROPOSITION 1.6. Motions of the framework G(p) correspond (under *) to the
orthogonal subspace to the row-space ofM(G(p)), i.e., to solutions ofM(G(p)) x Z*’ O,
where denotes transpose.

Now the Euclidean motions of all of R ", obtained by setting all Z equal to each
other, are always motions of G(p). Since these motions form a subspace of dimension
k ("1), the maximum rank of M((3(p)) is (m 1) k. We say G(p) is isostatic (or
basic) if M(G(p)) has exactly (m-1)k rows which are linearly independent.

1.3. k-frames. For the remainder of this paper, we wish to adopt a more general
point of view, by working with k-frames rather than bar-and-body frameworks. The
concept of k-frame includes bar-and-body frameworks as a special case, but also
includes applications to scene analysis (see 5) and other types of frameworks [29],
[30].

DEFINITION 1.7. Let (3 be a graph with no loops but possibly with multiple edges.
A k-frame matrix for G consists of one row for each edge and k columns for each
vertex, where if e (u, v) is an edge of (3, then the row for e has a k-tuple Xe in the
columns for u,-Xe in the columns for v, and 0 in all other columns. This matrix, for
any particular choice of a vector Xe for each edge e, is denoted M((3(p)), and the
graph G together with such assignments of xe is called a k-frame (3(p). If (3(p) has
distinct algebraically independent indeterminates for all entries in the Xe’S, we call
G(p) a generic k-frame for (3, and denote the corresponding k-frame matrix M((3).

A motion of a k-frame G(p) is a vector Z* of length km which is orthogonal to
the row space of M((3(p)). The trivial motions, having the same k-tuple for each
vertex, are always motions of G(p). A k-frame is rigid if it has only the trivial motions.

We note that bar-and-body frameworks are the special case of k-frames in which
2 and the vectors Xe are all 2-extensors. It is possible to interpret more general

k-frames as situations similar to bar-and-body frameworks. For example, 2-frames
may be interpreted as bar-and-body frameworks on a cylinder or toms, where two
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independent directions of "translation" are allowed, one of which is rotation about
the axis of the cylinder, but no rotation of a body about a point of the body is allowed
[29]. We will not pursue this interpretation further.

2. The pure condition for a graph.
2.1. Tie-downs and the pure condition. We want an algebraic procedure to describe

which positions (if any) of the edges of the graph as a k-frame will give an independent,
or spanning set. The graphs which give the simplest formulae are those which at least
count to be a maximal independent set as a k-frame. Since any k-frame has a
k-dimensional space of trivial motions we give the following definition.

DEFINITION 2.1. A graph is k-counted if IEI-klVl-k.
Not all k-counted graphs will give the desired independent sets, but this is a

necessary condition for the algebra. In Theorem 2.18 we describe the necessary and
sufficient conditions on a graph.

It is a simple matter to check the independence, and the span, of the rows of a
square matrix by taking the determinant. However the k-frame matrix for a generic
k-frame on a k-counted graph is not square. We must add k simple rows which will
square up the matrix and be independent of the rows for any k-frame.

DEFINITION 2.2. The basic tie-down Tm is a set of k rows and km columns of the
form:

Tm [IkO 0].
For a framework in n space, (k n(n + 1)/2), we can think of these rows as bars

from the first body to the ground, designed to remove the trivial or Euclidean motions
of the entire framework.

LMMA 2.3. The rows of Tm are independent of the rows of M(G(p)) for any
k-frame on a graph with m vertices.

Proof Any k-frame matrix M(G(p)) has the k-dimensional space of trivial
solutions generated by eTthe vector formed by repeating the basic vector e=
(0,. , 0, 1,. , 0) m times. We claim that the k rows of Tm remove this k-space of
solutions. In particular, row removes e T’ from the solution space.

Since each row removes a new solution, these rows are independent of the rows
of M(G(p)) (and one another). [3

For any k-frame G(p) the matrix formed by adding the appropriate tie-down
rows T (with k rows and kl VI columns) to the bottom of the k-frame matrix is written
M(G(d), T).

DEFINITION 2.4. A k-frame G(p) is k-isostatic if every allowed k-motion is trivial
and deleting any edge introduces a nontrivial k-motion.

PROPOSITION 2.5. IfG is k-counted then any k-frame G(p) is k-isostatic ifand only
if det (M(G(p), T) # O.

Proof. If det (M(G(p), T)) # 0 then the rows of the matrix are of rank kl vI, and
the rows of M(G(p)) are of rank k(IVI- 1). Since the trivial k-motions form a space
of dimension k, we conclude that the space of allowed motions is the space of trivial
motions.

If G(p) is k-isostatic then the rows of M(G(p)) are of rank k(] V]- 1) (since the
nullity is k). When we add T, we obtain a square matrix with rank k V[ (by Lemma
2.3), so we conclude that det (M(G(p), T)) O. If any edge is deleted, we have less
than k V -1 rows and there must be a nontrivial motion. [J

We can describe the algebraic form of det (M(G, T)).
PROPOSITION 2.6. For any k-counted graph G

det (M(G, T))= C(G)
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where
(i) C G) is a polynomial in the algebra of k-brackets of edges of G.
(ii) C G) is homogeneous of degree IV -1 in the brackets.
(iii) C G) is linear in the variables of each edge vector.

Proof. We start with a Laplace expansion on the first k columns of the matrix.
Because the last k rows for T are zero outside these columns, we have a single term

det (M(G, T))=det[Ik]oC(G) C(G).

We now expand this minor C(G) by a Laplace expansion on the k columns of
the second vertex. This gives a sum of terms

+[b,,... b,k] oC,,... ,k(G)

where the first factor is a k-bracket (or k x k determinant) with rows for k edges of
the graph.

We repeat this decomposition, working through all columns k at a time, to obtain
the required polynomial in the brackets. Each term is degree IVI- 1 in the brackets.

Since each row can only be used once in each term of such a Laplace expansion,
each term has exactly one entry +bi for each edge vector bi--which is the desired
linearity.

COROLLARY 2.7. For any k-frame G(p) of a k-counted graph:

C(G(p)) 0 if and only if G(p) is k-isostatic.

It appears that the polynomial C(G)mthe pure condition of the graph in k-space--
depends on the choice of k rows for T. Surprisingly any similar set of k rows would
give the same critical factor C(G).

PROPOSITION 2.8. For any k-isostatic graph G with r vertices, and any set S of k
rows of length k. r

det (M( G, S)) f(S)o C( G)

where f(S) is a polynomial in the entries of S and f(S) 0 if the rows of S block the
trivial motions.

Proof. Consider any assignment P of complex numbers p to the variables for
edges in M(G). The rows of M(G(p)) are dependent if C(G(p))-0. Therefore,

C(G(p))=Odet (M(G(p), S)) 0.

Since we have two polynomials, and the implication holds for all complex numbers,
Hilbert’s Nullstellensatz [7, p. 165] guarantees that

(det (M(G, S)))" A’o C(G).

However, C(G) is of first degree in all variables so

C(C)[Q implies C(G)IQ or det (M(G, S)) Ao C(G).

Since det (M(G, S)) has only one entry for each variable from G, we know that
A is a polynomial only containing variables in S. We define f(S)= A.

If the rows of $ block all trivial motions, then as in Proposition 2.5, M(G, S) is
invertible. Therefore

0 det (M(G, S)) f(S) C(G) and f(S) 0.

If the rows of S do not block all trivial motions, then M(G, S)x X =0 has a
nontrivial solution. Therefore 0=det (M(G, S))=f(S)oC(G). Since C(G) SO, we
find f(S)= 0.
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Remark 2.9. For a natural class of sets S we can describe f(S). A generic tie-down
of G is a set of k rows rl," ", rk such that for all but one vertex Vki) all k entries of
ri are zero and the Vki) entries are Zi (zl,..., zk). It is not difficult to check that
f(S) +[Z, ., Zk] for any generic tie-down.

If our k-frame is a bar-and-body framework, then each (z,. , zk) is a 2-extensor
of a line (or bar) andf(S) is a determinant of 2-extensors. This determinant is examined
in more detail in [24].

Remark 2.10. The proof of the analogous theorem for bar-and-joint frameworks
was far more complex [24, Prop. 3.12]. The simplicity of the current proof illustrates
the advantages of the present type of structure.

2.2. A combinatorial formula for the pure condition. If we reexamine the basic
Laplace decomposition which generated C(G), we can give a precise graph theoretic
description of which partitions of the edges in G give terms in the polynomial, as well
as the signs of the terms. An analogous (but, naturally, more complex) description for
bar-and-joint frameworks was given by Ivo Rosenberg [ 16]. For convenience we assume
that all edges of the graph have been oriented in some arbitrary fashion.

DEFINITION 2.11. A k-fan for the graph G is a partition of the edges into disjoint
ordered sets f, 2 _-< _-< v, such that each f is an ordered set of k edges all adjacent to
the vertex v.

Two k-fans 7r and r’ are distinct if f includes an edge not in f for some i.

Otherwise the two k-fans are permutation equivalent.
The sign ofa k-fan 7r, written tr(Tr), is the sign of the permutation from the ordered

set E to the order (f2, f3," ", fo) times (--1)r where r is the number of directed edges
in E which are in the f of their second vertex.

As a matter of shorthand we write [f] for the bracket [c, , c,] where cj is the
k-vector assigned to the jth edge in f.

PROPOSITION 2.12. The pure condition of a k-counted graph G is

C(G) tr(,/r)[f2]""" [f.] (sum over all distinct k-fans 7r of G).
Proof. It is a simple matter to see that each nonzero term ofthe Laplace decomposi-

tion corresponds to such a k-fan. The actual bracket [f] is, up to permutation, precisely
the piece of the Laplace expansion term corresponding to the columns of vertex v.
For those brackets, and the sign of the term in the Laplace expansion, we have the
precise discrepancy (-1) (to account for occurrences of-bj, in the matrix when the
edge enters v) and the permutation sign for the usual Laplace expansion rule. I-]

There is a simple and suggestive way to visually record a k-fan (or rather a
permutation equivalence class of k-fans).

DEFINITION 2.13. The k-fan diagram, D(Tr), is a directed graph with the vertices
of G, but with all edges reoriented so that ei is directed out of v if e is in f.

In Fig. 2.1A, B, C we illustrate the distinct 3-fans of a sample graph. As shown
in Fig. 2.1D, we can move from k-fan diagram A to diagram B or C by reversing all
edges of a directed polygon in the diagram. (A directed polygon is a cycle of edges
and vertices such that all edges are directed around the cycle in the directed graph.)

Given a general k-fan r and a set of edge-disjoint simple directed polygons in
the k-fan diagram D(r), each polygon is reversed by replacing each edge (vk, Vk+)
in a polygon, which was in f, by the edge (Vk, Vki-1). This creates a new set f for
each vertex, and creates a new k-fan 7r’ called the polygon reversal of

PROPOSITION 2.14. Given any two distinct k-fans r and r’, there is a set of
edge-disjoint, simple, directed polygons in the k-fan diagram D(Tr) such that the polygon
reversal of 7r on this set is a k-fan r" which is permutation equivalent to r’.
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Proof Since the two k-fans are distinct, there is an f using an edge not in f. This
is the first edge in the path. This edge must be in f (for its other end), and since f
and f are the same size, there is an edge in f not in f. This is the second edge of the
path. We repeat this process until the path repeats on a vertex. The loop between
repetitions forms our first polygon.

We reverse this polygon, creating a new k-fan zr", which is closer to zr’ in the
sense that D(r") and D(r’) have more edges with the same orientation.

If r" and zr’ are still distinct, we repeat the process, creating additional polygons
until we stop at a zr" such that D(r")- D(zr’). This means that r" is permutation
equivalent to r’ as required.

Since no edge will be reversed twice, the process will terminate and the polygons
are edge-disjoint. [3

PROPOSITION 2.15. Given a k-fan zr and a polygon reversal r’ obtained by reversing
on r simple, edge-disjoint, directed polygons then

cr ,’n" (- 1)to’(’rr).

Proof Assume we reverse on one polygon of length m. The basic permutation for
r’ can be obtained from that for r by cycling the m edgeswcausing a sign change
(-1) "-. However we have also switched these m bars in the count of bars entering
their heads or tails in their fmgiving an additional sign change of (--1)m. The total
change is (- 1) + (__ 1).

If there are r polygons, the process is repeated r times and tr(r’) (- 1)rcr(r). rG

2.3. Examples of pure conditions. We will illustrate the techniques of the previous
section by deriving the pure conditions for a few small examples.

Example 2.16. The graph illustrated in Fig. 2.2 has a unique 6-fan shown in Fig.
2.2B. As a result the pure condition is a single term. Assuming the edges of G are

A

FIG. 2.2
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oriented as in Fig. 2.2B and ordered lexicographically,

C(G) abcdef][ghijkl].

A graph with a unique k-fan covering is called k-simple.
For such simple examples C(G) can also be easily obtained by a block decomposi-

tion of det (M(G, T)).
Example 2.17. We return to the graph illustrated in Fig. 2.1. Assuming the graph

is oriented as in Fig. 2.1A, the three fans give the pure condition

C[ G] abc][def][ghi] abd][ cef][ghi] abg][dec][fhi].

2.4. A characterization of K-isostatic graphs. There are simple criteria for which
graphs will have nonzero pure conditions as k-frames. We offer an alternate proof
which illustrates the use of pure conditions, k-fans and a technique of specializing the
lines of the bars.

THEOREM 2.18. A graph G which is k-counted has a nonzero pure k-condition if
and only if there is a set ofk edge-disjoint spanning trees which cover the graph G, ifand
only if the rigidity matrix is the matroid union of k cycle matroids of the graph G.

Proof. Assume the graph has a nonzero pure k-condition. With the standard
tie-down we know det (M(G(p), T))# O. We now reorder the columns of this matrix
placing the Ivl-o columns of first entries for each vertex first, then the columns of
second entries, etc. A Laplace decomposition following these blocks of v columns
gives terms I-I (det Ni)1 _-<i<_-k where each Ni is a square v x v matrix formed from
the ith coordinates of the rows of v edges (possibly including "edges" in T).

There is at least one nonzero product II det (N). By the Laplace construction,
the rows used in the N form disjoint subgraphs, and it is clear, for a nonzero term,
that each N will include the ith row from T. The remaining v- 1 rows of N will each
be of the form

a,[O... 0 10’’’ 0-1 0’’’ O]

for some nonzero scalar c. Ignoring these factors, we have the usual matrix for the
subgraph ofthese edges. Any polygon in this subgraph gives a simple linear dependence
of the corresponding rows, so a nonzero term represents a subgraph with no polygons.
Since we have v vertices, v- 1 edges and no polygons, the subgraph must be a spanning
tree T. Thus the distinct factors N give the required edge-disjoint spanning trees
covering the edges of G.

Conversely, assume that (3 is covered by k edge-disjoint spanning trees. If we
root all these trees at the first vertex, and direct all edges down towards this root, we
have a k-fan diagram. Each vertex has k branches down to the root (one from each
tree) and ordering these edges in the order of the trees gives a k-fan II0.

The pure condition is expressed

c(G) x()[A][A] [L].

We specialize the vectors for the edges by assigning all edges from tree T the
same set of indeterminates ., (Xl,’’’, Xik). With this specialization G(X), we have
the term for 7to (up to sign)

[I""" .-/
since each f contains one edge from each tree.

Consider any k-fan diagram D(r’) which has only one out-directed edge from
each tree. For each vertex there is a unique path to the root vertex in T. Since all
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edges to this first vertex are directed into it, and no vertex has two out-directed edges
from T, this entire path is directed down to the root. This direction of edges matches
the diagram for r, so we conclude that r’ is permutation equivalent to r.

As a result any distinct k-fan has an f containing two edges from some tree. With
the given specialization [f] is zero because of the duplicate columns.

We can conclude that

C((X)) +[21 7.] -1 O.

Since this specialization is # 0, the original polynomial is also nonzero.
COROLLARY 2.19 (Tay [21]). A graph is k-isostatic if and only if IE]- k(IV 1)

and, for any nonempty subgraph G’: IE’l - k([ v’l- 1).
Proof. By a theorem of Tutte and of Nash Williams a graph can be covered by

k-edge-disjoint spanning trees if and only if it has the counts given [29].
Remark 2.20. Corollary 2.19 was first derived, for the case k-n(n + 1)/2, by a

very diiterent proof. An alternate proof of Theorem 2.18, along with the extension of
Tay to Grassmann coordinates of lines when k n(n / 1)/2 (describing actual bar and
body frameworks in n-space) is also given in [29].

Remark 2.21. One value of the tree covering property of Theorem 2.18 lies in an
efficient polynomial algorithm to find the trees. A direct verification of the counting
property of Corollary 2.19 would use an exponential algorithm. The role of tree
coverings in checking generic rigidity of bar and joint frameworks in the plane has
been explored by Lovasz and Yemini [14] and by Recski [15].

Remark 2.22. The count of Corollary 2.19 can be indirectly checked by a second
even more efficient algorithm introduced by Sugihara for plane bar-and-joint
frameworks 18]"

g graph satisfies ILl- k] V]- k and IE’l _-< k] V’ k for all nonempty subgraphs
if and only if for each vertex i, when k tie-down edges are added at the vertex
(as loops) to create G,,IE,I-klV, and, IE I<_-klv I for all nonempty
subgraphs.

This second count is verified by a bipartite matching algorithm applied to a special
bipartite graph with vertices" k disjoint copies of V on one side and E and the tie-down
edges T on the other. The edges join any edge (or tie-down) to all copies of adjacent
vertices. This matching is examined in more detail in Tay [22].

Remark 2.23. If we think of the tied-down graph (with tie-down edges as loops),
the bipartite matching of Remark 2.22 actually covers the graph G with k edge-disjoint
independent sets in the bicircular matroid of the graph. These sets replace the trees
of Theorem 2.18, which are independent sets of the cycle matroid of the graph. A tree
with a loop at the root is one example of such a set, but there are others (Fig. 2.3A, B).
(A minimal dependent set of the bicircular matroid is a "bicycle" (Fig. 2.3C).)

A
FIG. 2.3
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Remark 2.24. For any vertex i, the bipartite matching associates k adjacent edges
to each vertex (and associates the tie-down edges with the initial vertex i). This gives
a k-fan for the graph, and gives a starting point for implementing the Rosenberg-type
method, without finding any trees. Of course the existence of such a k-fan for one
initial vertex is not sufficient to show that the graph is k-isostatic. The existence of a
k-fan for each choice of initial vertex is both necessary and sufficient for the graph to
be k-isostatic, by Remark 2.22.

3. Motions and examples.
3.1. Examples of pure conditions. Let ts consider some more examples of isostatic

bar-and-body frameworks, frames, and their pure conditions. We begin with some
planar frameworks, which are examples of 3-frames.

Example 3.1. (Fig. 3.1.) Recall that a is the 2-extensor determined by the line in
which the corresponding bar lies, and that in the plane a is itself a 3-tuple. 13 is the
3 x 3 identity. We see that we may directly expand the 9 x 9 determinant det M(G, T)
as

C( G) [abd][cef] -[abc][def],
where brackets denote ordinary 3 x 3 determinants. This may also be obtained from
the two 3-fans (abd), (cef) and (abe), (def).

This pure condition has an interpretation in the dual Cayley algebra (see [5]) as
follows: rewriting C(G) (a ^ b) v (c ^ d) v (e ^ f), we see that C(G) 0 precisely
when the three points of intersection determined by the pairs of bars are collinear.
This result illustrates a thorem of Arnhold and Kempe:

If three bodies are in motion in the plane, the relative centers of motion of
the three pairs of bodies are collinear.

We will see shortly that (a scalar multiple of) ab represents the relative center of
motion of the bodies B1 and B2 if there is a motion.

B B
1 b 2

B

a -a

M(G,T) d -d

e -e

f -f

FIG. 3.1

We also remark that in this example we could have tied down another body, say
B2. Then we would obtain C(G)-[abe][cdf]-[abf][cde]. Although this appears to
be different from the previous bracket expression for C(G), it can be shown by the
use of syzygies (i.e. standard determinantal identities) that the two are equal, illustrating
Proposition 2.8. The equality of these expressions may also be inferred from the
symmetry of the dual Cayley algebra expression given above.
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Example 3.2. Next we consider the framework in space shown in Fig. 3.2A.
Using the three 6-fans shown in Fig. 3.2B, we have:

C(G) +[abcdej][fghikl] [ abcdek][fghijl] + [ abcdel][fghijk].

This also has a Cayley algebra factoring as C(G)= (abcde) ^ (jkl) ^ (fghi) which may
be interpreted geometrically as follows. There is a one-dimensional space of relative
motions between B1 and B2. Similarly there is a two-dimensional space of relative
motions between B1 and B and a three-dimensional space between BE and B Looking
at all three of these subspaces of the six-dimensional space of all possible motions,
C(G)- 0 says that the three subspaces are not independent, i.e. some relative motion
between B1 and B3 is a linear combination of a motion between B1 and BE and a
motion between B2 and B3.

B d B
1

A

B

B
FIG. 3.2

3.2. Motions of 1-underbraced frameworks. Let us now consider a k-frame which
is 1-underbraced, that is, one edge short of a k-counted graph. Such a k-frame will
generically have one k-motion besides the trivial ones. We now develop an algebraic
method of describing this motion. More specifically, we will think of vertex number
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one as tied down, and compute the relative motions of the other vertices relative to
vertex one.

Let us consider the k-frame matrix M(G(p), T) for such a k-frame.

a -a 0

b 0 -b

I, 0 0

Assuming that the kv- 1 rows of sp (M) are linearly independent, there is a unique
(up to scalar) row vector Z* of length kv orthogonal to the rows of M. We may
compute Z* by adding a row of indeterminates, (Xl, x2,’’ ", Xko), to M, and setting
the determinant equal to zero. The coefficient of xi in the resulting equation is (-1)i
times the ith component of Z*. This may be checked by elementary linear algebra and
Cramer’s Rule.

Let vertex V undergo a motion Z, meaning that Z is the k-vector of components
of Z* in the columns for V. Thus Z is the vector of coefficients of the k indeterminates
in the columns for V. These k indeterminates may be regarded as an indeterminate
vector Ve for a new edge between V1 and V.

THEOREM 3.3. In a 1-underbraced k-frame G, with V1 tied down, the motion of a
vertex V may be computed by adding a dummy edge x (Xl, x2,’’ ", Xk) between V1
and V, computing the pure condition ofG (.J x, and taking the coefficients ofthe component
ofx.

COROLLARY 3.4. The relative motion of a vertex V. with respect to a vertex V,. is
obtained by adding a dummy edge x between V and V and computing the coefficients of
x in the pure condition of G U x.

COROLLARY 3.5. The relative motion between V and V may be expressed in terms

of the Cayley Algebra as the k 1)-extensor obtainedfrom the pure condition ofG (.J x,
where x is a dummy edge between V and V, by deleting x from the bracket expression
for the pure condition of G (.J x.

3.3. Examples of motions.
Example 3.6. (Fig. 3.3.) In this 1-underbraced 3-frame, the relative motion of B2

with respect to B1 is obtained by adding an edge x between B and B2, obtaining the
pure condition [abx][cef]. Thus the relative motion is [cef]ab. Regarding this 3-frame
as a bar-and-body framework in the plane, the join ab of the vectors a and b is the
same as the meet a ^ b with a and b regarded as 2-extensors (or, in this case, co-vectors).
In Example 3.1, when the pure condition C(G) is zero, and the framework has a single
motion, any one of the six bars is dependent upon the other five; hence the motion
of the framework is the same as that of the 1-underbraced framework of this example.
Thus we have justified the statement in Example 3.1 that a scalar multiple of a ^ b is
the center of the relative motion of B and B2. Geometrically, the center of the motion
is the point of intersection of the lines a and b, regardless of the scalar multiple. The
scalar, [cef], affects only the velocity of the rotation of B2 about the point a ^ b, but
this is important in comparing or combining the relative motions of several bodies in
the same framework.

The relative motion of B relative to B may similarly be computed as [abc]ef,
and the motion of B relative to B2 as [abc]ef-[cef]ab (using the pure condition
computed in Example 3.1), and as we certainly expected, relative motions are additive:
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B1 b B2

B

FIG. 3.3

if M0 is the relative motion of Bi relative to Bj then Mo Mh + Mhj for all h, and

M -M,.
Example 3.7. This example is a l-underbraced bar-and-body framework in three-

dimensional space; hence a 6-frame (Fig. 3.4).
Here M is a 17 18 matrix. Applying Corollary 3.5,

Z =0,

Za [fghijk]abcde,

Z3 [abcdek]fghij [abcdej]fghik

where we have used 6-fans with the obvious conventions to compute Z3.

a

B d B
1 2

e

B

M(G,T)

a on

b -b

c -c

d -d

e -e

f -f

g -g

h -h

-i

-j

k -k

FG. 3.4
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An expression such as abcde in Z2 is a join of five "vectors" in the vector space
V(2 of 2-extensors, a six-dimensional vector space. Such a join corresponds to a
five-dimensional subspace U of V(2, which corresponds to a line complex (see [4],
10]), generated by five lines. In fact, an arbitrary five-dimensional subspace U corre-
sponds to a line complex, sometimes called a linear line complex. The line complex
is actually the set of vectors in U which correspond to lines. A line complex has a
unique line or screw reciprocal to it, and for abcde, that line or screw is the center Z2
of the motion of B2, up to scalar multiple. A line is reciprocal to Z2 precisely when a
bar on that line does not (instantaneously) block the motion with center Z2. Thus if
Z2 is a line, the line complex consists of all lines meeting Z2, whereas if Z2 is a screw,
every line of the complex is, at each of its points, normal to the velocity vector of the
screw motion. If ab is a line, then ab is in the complex corresponding to Z2 if and
only if Z2 v ab 0, agreeing with Proposition 1.3.

We have a linear combination of two such expressions for Z3*, but we may also
write Z3* in the factored form fghi(ak-j), where the last factor, a linear combination
of the lines k and j, is, in general, not a line. Nevertheless, Z3 is geometrically either
a line or a screw, as every instantaneous motion of B is a translation, a rotation, or
a screw motion.

3.4. Motions in special position. Now let us consider an overbraced k-frame G(p),
that is, one in which the rows of M(G) are dependent. If we select a basis of the
row-space of M(G) and delete all other edges of G, then we have clearly not changed
the motion space of G(p). This fact must be reflected in our Cayley algebra calculations.

Example 3.8. We return to the 3-frame in Example 3.1 (see Fig. 3.1). Now, however,
we assume that the 3-frame is in the special position

(.) O=C(G)=(a^b)v(c^d)v(e^f)=[abc][def]-[abd][cef].

Thus the frame, though correctly counted, is underbraced, and in a generic point for
this special position [see 4], the six edges form a circuit. Thus any one of the six
edges may be removed without affecting the single motion of G(p). Let Z(2u) denote
the center of the relative motion of B2 to B1, computed by removing edge U. Then

Z<2") cde]bf cdf]be.
Similarly

Z(2v [ cde]af cdf]ae, ZC2’) [def]ab,
etc.

Now Z(2 and Z(2 must represent the same geometric motion, and hence must
be scalar multiples of each other in the Cayley algebra. Indeed [acd]Z(2" [ bcd]Z(2 0
as may be verified using standard syzygies and (.). Similarly

abd]Z(2" + [cbd]Z(2 O.

Some care must be taken in choosing the coefficients, in addition to assuring
homogeneity and the correct sign. For example,

aef]Z(2") + cef]Z(2’) O.

For a more detailed examination of relative motion in special positions, see 4.3.

4. Factors, motions anti stresses. We have seen that deleting an edge from a
k-isostatic frame gives a single internal motion. The same motion occurred if this edge
was reinserted in an appropriate special position such that the coordinates satisfied
the pure condition.
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In this section we will give a description of the broad pattern of this motion and
the form of these special positions, based entirely on the factors of the pure condition
and on simple combinatorial properties of the graph.

4.1. The lattice of blocks. The basic units for our study will be the subgraphs of
a graph which are themselves k-isostatic, and the irreducible factors of the pure
condition. From previous work on bar-and-joint frameworks, we anticipate that some
of the factoring of the pure condition is explained by the presence of such k-isostatic
subgraphs [25, Prop. 4.4]. In fact, we will show that all the factoring and other associated
properties arise from this source.

With this goal in mind, we begin with a basic result about these subgraphs.
DEFINITION 4.1. A block of a k-isostatic graph G is a subgraph G’ which is also

k-isostatic.
We observe that the block G’ gives a block decomposition of det (M(G, T))

provided the tie-down T is attached to a body of G’ (see the proof of Proposition 4.4).
THEOREM 4.2. The blocks of a k-isostatic graph G, ordered by inclusion, form a

lattice, with G1 ^ G2 G1 G2 for any two blocks.
Proofi (a) Given any two blocks, G1 and G2, we will show that G1 f)G2 is a

block. If G f3 G2 is empty, then it is, in a trivial way, k-isostatic.
If G f3 G G3 is nonempty, then we know that this subgraph of G satisfies

IEal-< k([ Val- 1). We set m k( V3[- 1) -IEal, and show that m is also -<_ 0.
Since G1 and G2 are nonempty blocks, we know that IEll- k(I VII- 1) and IE _l-

k([ v2[-1). Consider the graph G’-G: k.J G2. By the inclusion-exclusion principle:

and

IE’l IE, + IE=l-lEvi-- k(] v]- 1) + k(I v21-1) -(k([ vl- 1) m)

k(I Vii + V2[-] V31)- k + m klV’ k + m.

Since G’ is contained in G, we know that IE’l<_-k([V’[-) and m <-0. Thus lEa1
k(I V31-1) and G3 is a block.

(b) The partially ordered set of blocks is a finite set with maximum element G
and minimum element b. For any two blocks G and G2 we define"

G1 v G2-- [’) G’ (intersection over blocks G’ D G, G’ D G2).

By part (a) this nonempty intersection is a blockwthe unique minimum block containing
G1 and Ga. Thus, by a standard construction we have a lattice.

Remark 4.3. If G1 f3 G2 b, then we find, from the count in part (a), that G [_J G2
is a block. In this case G v G2 G [.J G2.

In Fig. 4.1A we show a 3-isostatic graph and its associated lattice. (A block is
described by listing its vertices.) In Fig. 4.1B we show a 2-isostatic example with its
lattice.

This lattice of blocks gives a partition of the edges of G. For each edge e (joining
vertices B and C) there is a lowest block Ge which contains the edge (Ge B v C).
We say that e is associated with Ge. Figures 4.2A and B illustrate the associated edges
for the lattices of Figs. 4.1A and B.

The lattice of blocks also partitions the factors of the pure condition of G. We
recall that an irreducible polynomial over a field K is a polynomial f (with at least one
variable) such that, if f g. h over the field then either g or h is the zero element of
the field. Since the pure condition of a k-isostatic graph is a polynomial over the
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V1 V2 V3 V4 V5 V 6

A

V3 V4 V5 V6V7V83
V4 V 5 V6 V7 V8

V 5 V6 V7 V8

B

FIG. 4.1
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abcdef jklmno

A
fg

ijklmn

B
FIG. 4.2

rationals which is of first degree in every variable, it is a simple result of commutative
algebra that any irreducible factor over the rationals is also irreducible over the complex
numbers (or any other field extending the rationals). For simplicity we speak of an
irreducible factor of the k-isostatic graph G.

PROPOSITION 4.4. Each irreducible factor f of a k-isostatic graph G is associated
with a unique block G: such that:

(i) f is a factor of the pure condition of G:, and Gf is minimal among such blocks;
(ii) each edge with variables occurring in f is also associated with the block Gf.
Proofi (a) Any block G’ has IE’I k([ v’ 1). We reorder the rows and columns

of the k-frame matrix of G so that the vertices and edges of G’ come to the upper left
corner. The matrix now looks like

M(G) [ C( G’)H LO ]"
When we tie down the first vertex and take determinants, we find that

C(G)=C(G’).det(L).

Thus C(G’) is a factor of C(G). By the form of L it is clear that all variables for
edges in G’ occur only in C(G’).

(b) Any irreducible factor of G is either of first degree in each variable of an
edge or has no occurrences of variables for that edge. This follows from the fact that
C(G) is linear in the vector for the edge, and any factoring must preserve such
homogeneity [25, Thm. 2.1].

(c) Each edge occurs in a unique lowest block Ge, and the variables for the edge
occur in a unique irreducible factor fe. Therefore fe must be a factor of Ge. However,
if a block G’ does not contain the edge e, then fe cannot be a factor of C(G’). We
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conclude that the factor f is associated with the block Ge. Clearly this assignment
would be the same for every edge occurring in the irreducible factor and we have
defined the associated block Gy.

When some variables for an edge (and therefore all variables for the edge) occur
in an irreducible factor f, we say that the edge occurs in f.

In Figs. 4.3A and B, we give the associated factors in the blocks for the examples
of Fig. 4.1. This lattice of blocks, with its associated factors, gives a basic outline of
the structure of G. For any block G’ of G, the lattice of blocks of G’ is just the
sublattice from b to G’ defined inside G. The pure condition for each block G’ will
be the product of all irreducible factors for blocks -<_ G’ in the lattice.

4.2. The scope of an irreducible factor. If the vectors for the edges of a k-isostatic
graph are specialized so that the pure condition is 0, then the k-frame will have an
internal motion. This drop in the column rank of the/c-frame matrix must correspond
to a drop in the row rank--a row dependence. Such a row dependence is analogous
to a static stress in a bar and joint framework [25, {} 1].

DEFINITION 4.5. A stress on a k-frame G(p) is an assignment of scalars A(ei) to
the edges of the graph, such that (..., A(ei),.- .) is a row dependence of the k-frame
matrix for G(p).

The scope ofa stress is the set ofedges of G which have nonzero scalars in the stress.
We say a frame is independent if it has only the trivial stress with all scalars zero.

Thus, for example, an independent k-frame with k(] v]- 1) will be isostatic, since
it has the required row (and column) rank.

The set of stresses on a k-frame is a vector space--the space of stresses. As a
convenient short hand, when this space has dimension 1, we speak of a single stress.

[abc][def] [jkl][mno]
-[abd][cef] -[jkm][ino]

A
[fg]

[ki][mj][ln]
-[kn][mi][Ij]

B
FIG. 4.3
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For any irreducible factor f of a k-isostatic graph G, we can find a generic point
p of f: values for the variables such that f(p)=0 and such that, whenever g(p)=0
for another polynomial, then g =f. h [8, pp. 10-15], [31, p. 21]. For a general irreducible
polynomial, the generic point lies in some general extension of the field. Since an
irreducible factor of any pure condition is a polynomial over the rationals of first
degree in each variable, we can always find generic points in R". If circumstances
dictate the addition or deletion of variables which do not occur in f, we can simply
delete, or add corresponding algebraically independent real numbers, without changing
the generic character of the point. In this chapter, such changes to the point will pass
without further comment. We also note that if the value for at least one variable in f
is omitted, the remaining coordinates are algebraically independent.

PROPOSITION 4.6. A generic point p ofan irreducible factorfor the k-isostatic graph
G defines a single stress on the k-frame G(p), whose scope is the entire block

Proof. (a) If we add an extra edge d to the graph Gy, joining some pair of vertices
also joined by an edge e of f, then we create a graph G’ whose general position frame
has a single row dependence. Using Cramer’s rule on the tied-down k-frame matrix
for G’, and writing R(ei) for the row of the edge ei, this row dependence can be written

E +/- C(G’- e,). R(e,) + C(Gy). R(d) O.

(See [25, 5] for details of the similar expansion on a framework.) When we specialize
to a generic point p of f, C(Gs(p))= 0 and the equation becomes

(1) ,+/-(C(G’-e,)(p)). R(e,(p))=O.

Since G’- e is isomorphic to Gs, with d replacing e, we know that C(G’- e) 0. Since
f cannot be a factor of this polynomial (different variables), and p is a generic point
off, we know that (C(G’-e)(p))#O. Equation (1) expresses a stress on edges in Gy.
Since removing the edge e from G’ creates an isostatic k-frame, we know there is
exactly one stress on G’(p), and therefore on Gr(p). We also know that the edge e is
in the scope of the stress, and this must be true for every edge occurring in f.

(b) Take a point q making Gy(q) isostatic and a generic point p off. We select
an edge e occurring in f, joining vertices B and C, and tie down vertex B. Assume
there is an edge d in Gy which is not in the scope of the stress on Gs(p), and therefore
not in f, and remove this edge to create G’. We will derive a contradiction.

Assume C does not move in G’(q). Then B and C must lie in a k-isostatic
subgraph of G’. This contradicts the minimality of Gy among blocks containing e.

Assume C does move in G’(q). Inserting a new edge e’, with general coordinates,
also joining B and C, creates a new k-isostatic graph G1, since it blocks this motion.
However G1(p) must contain a stress, since it includes the scope of the stress in Gy(p),
by assumption. Therefore, C G(p)) 0 for a generic point of f, and C G(p)) fh.
Since e and e’ join the same two vertices, setting the variables for e and e’ the same
will always create a row dependence, and make C(G’)= 0. Therefore the two sets of
variables must both occur in some irreducible factor of C(G’). However the variables
of e occur only in f, and no variables of e’ occur in f (since e’ was not in G,). We
have reached the desired contradiction. [3

Figure 4.4A shows a special position of the graph of Fig. 4.1A, with the three lines
g, h, concurrent. This is a generic special position for the factor [ghi]. Since all edges
lie below this factor in the lattice (Fig. 4.4B), this position defines a stress whose scope
is the entire graph G (shown by arrows on the edges). Figure 4.4C shows a special
position for the factor [fg] in the graph of Fig. 4.lB. For this position the scope of
the stress is the block shown in Fig. 4.4D.
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Since every generic point of a factor f creates a stress with the same scope, we
speak of the scope of the irreducible factor.

[abe][def] [jkl][mno]
-[abd][cef] -[jkm][lno]

A B

[rg] 3
[ki][mj][ln]
-[kn][mi][lj]

C D

FIG. 4.4
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4.3. The motion of an irreducible factor. For any generic point p of an irreducible
factor f, we know that G(p) has a single stress. If we tie down the first vertex, this
will leave a single motion (up to scalar multiplication). We want to investigate which
sections of the frame are locked together, and which pairs of vertices go into relative
motion.

DEFINITION 4.7. A component of a motion M of a frame G(p) is a maximal
subgraph G’ such that no two vertices in G’ are in relative motion in M. A link of the
motion is an edge of G which joins vertices which are in relative motion.

PROPOSITION 4.8. For any generic point p of the irreduciblefactorfofthe k-isostatic
graph G, the components of the motion of G(p) are the maximal blocks of G which do
not contain G/.

Proof. (a) Consider a block G, not containing G/. At any generic point p off we
can delete an edge occurring in f and leave an independent k-frame with the same
motion as G(p). Therefore GI(p)is an independent k-frame, with JEll--k(lV, I-1).
It is isostatic and must lie inside a single component of the motion.

(b) Consider a component G2 of the motion of G(p). Once more we delete an
edge e occurring in f, to create an independent k-frame G’. Any pair of vertices, A
and B, of G2, must share a k-isostatic subframe G(A, B)(p) in G’. For any three
vertices, G(A, B) and G(B, C) are isostatic subframes sharing at least a vertex, so
their union is an isostatic subframe (see Remark 4.3). By induction on the vertices,
we see that G2 is contained in a k-isostatic subgraph G of G’. By part (a) G3 is
contained in a component, so G2-G3 and the component is a block not containing

In Figs. 4.5A and B we show the components (lightly outlined boxes) and links
(heavy lines) of the special positions of Fig. 4.4A and C.

Since all generic points of an irreducible factor f create the same components
(and by subtraction, the same links), we speak of the components and links of the
irreducible factor.

A B
FG. 4.5
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THEOREM 4.9. An edge occurs in the irreduciblefactorfofa k-isostatic graph ifand
only if the edge is in the scope off and is a link off.

Proof. (a) Assume the edge occurs in f. The edge lies in Gy, so by Proposition 4.6
it lies in the scope of f. The edge does not lie in any block not containing Gy. By
Proposition 4.8, the edge does not lie in component--so it must be a link.

(b) Assume an edge b is in the scope of f and in the link of f. At any generic
point p off, the removal of the edge b leaves a k-frame with no stress, and one motion
(after a tie-down). Since b was in the link, the vertices joined by b are in relative
motion. Inserting a general vector for b will block this motion, and create a point q
with f(q) 0. We conclude that the variables for b actually occur in f.

The picture of how irreducible factors are associated to the lattice of blocks can
now be completed.

For the examples of Figs. 4.4 and 4.5, we see that the edges f, g, h (resp. the edges
f, g) are in both the scope of the factor and the links of the factor.

THEOREM 4.10. At most one irreducible factor is associated with a block of a
k-isostatic graph. All edges associated with the block occur in this factor.

Proof. Consider the block Gy for some irreducible factor. All edges of Gy are in
the scope of f. If an edge b is also a link of f, then, by Theorem 4.9 it occurs in f.
Otherwise b is in a component of f, a block G’ not containing Gy. Therefore b is in
the block G’fq Gy below Gy. The edge, and any related factor, is not associated with

Gs.

4.4. The reduced graph of a factor. Each generic point of an irreducible factor
has an associated internal motion and stress. In fact, from the lattice of blocks, with
the associated edges, and the position of the block Gs, we can identify the scope of
the stress, and the components and links of the internal motion. The essential features
of this factor will be even clearer if we shrink each component of the motion to a
single vertex, and restrict our attention to the scope of f.

DEFINITION 4.11. For an irreducible factorf of a k-isostatic graph G, the reduced
graph of the factor is the graph formed from Gf by contracting all edges of blocks
below Gs.

THEOREM 4.12. The reduced graph of an irreducible factor ofa k-isostatic graph G
is a k-isostatic graph, with edges in 1-1 correspondence with the edges occurring in f.
The pure condition of the reduced graph is f (up to a scalar).

Proof. Each edge of Gy is either in a component of f, and thus contracted out, or
is a link, and appears in the reduced graph. By Theorem 4.9 such an edge occurs in

f. Conversely all edges occurring in f are links in Gy, and survive to form edges of the
reduced graph.

Given a motion of the reduced graph, there is a corresponding motion of Gy which
transfers the motion of the vertex to the associated block Gy. Since, in general position,
Gs has only trivial motions, the reduced graph is also rigid in general position. If we
delete any edge of the reduced graph then we get the motion corresponding to deleting
an edge occurring in f from Gy. Thus deletion of any edge of the reduced graph, in
general position, causes an internal motion. We conclude that a general position
realization as a k-frame is minimal and rigid, so the reduced graph is k-isostatic. At
a generic point p of f, the frame Gy(p) has an internal motion in which blocks below
Gy are components. The reduced graph will have the corresponding internal motion,
and p must make its pure-condition zero. Therefore f divides the pure condition of
the reduced graph. Since f incorporates all possible occurrences of variables for edges
of the reduced graph, it is, up to a scalar, the pure condition.
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Figure 4.6A shows the reduced graph ofthe factor [ghi] in the example of Fig. 4.1A,
while Fig. 4.6B shows the reduced graph of [fg] in Fig. 4.lB.

Remark 4.13. The reduced graph of a factor has a lattice of blocks which is very
simple: a bottommb, a topmthe graph, and a set of pairwise incomparable middle
points--one for each vertex. Conversely, any k-isostatic graph with such a lattice
cannot be further reduced, so it must have an irreducible polynomial as its pure
condition.

Such a k-isostatic graph G with an irreducible pure condition is also recognizable
by the simple counting property: IEI- k([ v[- 1) and IE’l < k(I v’l- 1) for all proper
subgraphs. Such graphs are k.irreducible.

A k-irreducible graph shows a striking uniformity of both static and kinematic
behavior as a general position k-frame.

If we delete an edge from a generic, k-isostatic realization of the graph, the
resulting motion puts all pairs ofvertices into relative motion. (This motion is equivalent
to the motion at a generic point of the pure condition, with the deleted edge in special
position). This is a complete motion, a concept which has applications in scene analysis
(see 5).

If we add an extra edge d, in general position, to a generic isostatic realization
of the k-irreducible graph, G(p), the resulting stress will have the entire extended
graph as its scope. (Deletion of any other edge from the extended k-frame is equivalent
to deleting an edge of G(p) and inserting a general edge between vertices which are
in relative motion. Therefore no subgraph contains the stress.) Such a graph is a general
position circuit, a concept which is common in matroid theory and in the study of
tensegrity frameworks 17].

V2

V1

A B
FIG. 4.6

4.5. Generic points of several irreducible factors. We know that distinct irreducible
factors actually use disjoint sets of variables.

DEFINITION 4.14. A genericpoint ofthe set {f} ofirreducible factors ofa k-isostatic
graph G is a point p in Rkv such that for each i, when p is restricted to variables not
in f, j i, p is a generic point of f.
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Remark 4.15. If the value of at least one variable in f is omitted for each i, the
remaining coordinates of a generic point will be algebraically independent over the
rationals.

Remark 4.16. In algebraic geometry, generic points are defined for irreducible
varieties [8, pp. 10-15]. The set of irreducible factors {f} defines a variety

V({f/}) {(x ,’’ ", Xm) - Rmlf(x) 0

Since the f are irreducible, with disjoint sets of variables, this is indeed an irreducible
varty. Its generic points are defined as points p such that g(p)=O g(X)= 0 for all
X in V({f}). In fact it can be shown that these are identical to the generic points
defined above. We have chosen to emphasize the property of generic points which will
be used in our proofs.

THEOREM 4.17. Assume p is a generic point of {f, g} for two irreducible factors of
the k-isostatic graph G.

(i) If Gf and Gg are incomparable in the lattice of blocks, then G(p) has a 2-dim
space of stresses generated by the stresses off and g, and a 2-dim space of internal
motions, generated by the motions off and g.

(ii) If Gf < Gg, then G(p) has the single stress off and the single internal motion

ofg.
Proof. (i) Assume Gy and Gg are incomparable. If we restrict to Gy, this omits

all edges of g and leaves a generic point of f. We have the stress off in Gy and in G.
Similarly we have the stress of g and these stresses (with different scopes) are indepen-
dent. The dimension of the space of stresses is at least 2.

The space of internal motions is now at least of dimension 2. If we delete one
edge occurring in f, and one occurring in g, this leaves an independent k-frame with

IE’I k( V’ -1)-2. Therefore the space of motions has dimension exactly 2. If we
reinsert the edge from g, with general coordinates, this leaves only the motion of f, so
this motion appears in G(p) as well. Similarly, the motion of g also occurs in G(p).
These independent internal motions of f and g generate the entire space of internal
motions (modulo a tie-down of the first vertex).

This also shows that the space of stress of G(p) has dimension 2, so it is generated
by the stresses of f and g.

(ii) Assume Gy < Gg. If we restrict to the graph Gy, we omit all edges of g and
have a generic point of f. Therefore there is at least the stress of f, with scope Gy, in
G(p). If we delete an edge occurring in f, Gy(p) becomes an independent, general
position k-frame. In Gg(p), the omitted edge would be part of the scope of g (if placed
in general position). Therefore Gg(p), with this edge deleted is an independent k-frame
with remaining coordinates for a generic point of g. It has the single internal motion
of g (the same motion which occurs with the edge inserted in general position). We
conclude there is exactly the single stress of f and the single motion of g.

Figure 4.7A shows a special position for the graph of Fig. 4.1B which is a generic
point of the incomparable factors [fg] and [ab]. The scopes of the two stresses are
shown with arrows, and the links and components of a general combination of the
two motions are drawn with heavy lines and light boxes, as before. Figure 4.7B illustrates
a special position for the graph of Fig. 4.1A which is a generic point for the two factors
[abc][def]-[abd][cef]<[ghi]. The scope of the single stress and the links and
components of the single motion are also shown in the figure.

This analysis can be extended to describe the patterns of motions and stresses at
a generic point p of three factors f, g, h of a k-isostatic graph G. We offer, without
proof, a summary of the cases:
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k

A B
FG. 4.7

(i) If no two blocks Gy, Gg, Gh are comparable, the G(p) has a 3-dim stress
space generated by the stresses of f, g and h, and a 3-dim space of internal motions
generated by the motions of f, g and h.

(ii) If Gy < Gg < Gh, then G(p) has the single stress off and the single internal
motion of h.

(iii) If Gy < Gg, Gh and Gg, Gh are incomparable, then G(p) has a 2-dim space
of motions generated by the motions of g and h, and a 2-dim stress space including
the stress of f.

(iv) If Gy, Gg < Gh and Gs, Gg are incomparable, then G(p) has a 2-dim space
of stresses generated by the stresses off and g, and a 2-dim space of internal motions
which includes the motion of h.

For a generic point p of a general set of irreducible factors f, g,. ., h, we know
that:

(i) If Gs is minimal among blocks for the set, then the stress off is in the stress
space of G(p).

(ii) If Gg is maximal among blocks for the set, then the motion of g is in the
space of internal motions of G(p).

(iii) If there is a set of m pairwise incomparable blocks for the set, then the space
of stresses (and of internal motions) has dimension at least m.

We conjecture that"
(iv) The dimension of the space of stresses (and the space of internal motions)

is exactly the size ofthe largest set of pairwise incomparable blocks for the set of factors.

4.6. Finding graphs for given factors. For a mathematician, it is natural to ask
whether a pure condition arises from a unique graph, or a unique lattice of blocks.
The answer is no.

In Figs. 4.8A and B we give two 3-isostatic graphs with the same lattice and
associated irreducible factors (Fig. 4.8C).
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g g

a a

A B C
FIG. 4.8

In Fig. 4.9, we give a graph with the same pure condition, but a different lattice
of blocks.

However, for each irreducible factor f, we know that there is a unique lattice for
any associated k-reduced graph (a lattice with m / 1 middle points, where f is of

degree m in the brackets). We conjecture that there is a unique k-irreducible graph
with such a factor as its pure condition.

[abc][def]
-[abd][cef]

a f

FIG. 4.9

5. Scene analysis. By our choice of topics and vocabulary, we have emphasized
the role of k-frames as an abstract form of framework. Matrices with the same pattern
also arise in scene analysis--the study of which plane pictures represent spatial scenes
formed by distinct planes in space with designated points of contact which project to

given points in the picture [19].
A basic correspondence between plane pictures, with their spatial scenes, and

associated 3-frames, with their motions, has been described, in detail, in [28]. We
recall three critical features of this correspondence.

(i) A picture S(p) is an abstract incidence structure S (V, F; I) with vertices
V, faces F, and incidences I VXF, together with a mapping p: V-> R2(pi=(xi, yi)).
Such a picture corresponds to a 3-frame with a vertex for each face, and a tree of
collinear edges (with coordinates (x, y, 1)) spanning the faces incident to each vertex

v with coordinates (x, yi) in the picture.
(ii) A scene S(q,r) is an assignment q:V->R3(q(i)=(x,y,z)) and r:F-->

R3, (r(j)=(a, b, c)) such that ax+byi+zi+c=O (the point is on the plane) if the
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vertex is incident with the face in I, and q(i) has the same x and y coordinates as p(i)
(i.e. q(i) projects onto p(i)). Such a scene over a picture corresponds to a motion of
the corresponding 3-frame, where the vertex of face j has the motion r(j). Flat scenes
(with all faces in the same plane) correspond to trivial motions (with all bodies receiving
the same center).

(iii) The desirable sharp scenes (with each face in a different plane) correspond
to complete internal motions (with each pair of vertices in relative motion).

In Fig. 5.1 we show three pairs of corresponding pictures and frameworks. The
example in Fig. 5.1A is a framework of four bodies and eight bars which corresponds
to the picture of a tetrahedron. Such a picture always has a nontrivial scene, and the
framework has a nontrivial motion Oust by the count). The example in Fig. 5.1B is
our standard framework with three bodies and six bars which is generically isostatic
(Example 3.1), so the corresponding picture has only flat scenes. If the picture is drawn
to represent a proper prism of three planes (Fig. 5.1C), then the corresponding
framework has a complete motion.

We see from (i) that a general position picture for an incidence structure does
not produce a general position 3-frame for a corresponding graph. The requirement
that certain sets of edges must be collinear gives a special position to the 3-frames
corresponding to pictures. When we identify the variables for edges which must be
collinear, the pure condition of a 3-counted graph will specialize to the pure condition
ofthe corresponding incidence structure. (The pure condition obtained for the incidence
structure will be independent of which of the equivalent collinear trees is chosen to
correspond to each vertex.) A picture S(p) will have a nontrivial scene if the point
p’ (xl, yl, 1, , xi, yi, 1, .) satisfies this pure condition C(p’) O.

This identification of edges causes a modification in the counting algorithm for
generically correct pictures [30, Thm. 5.2]"

An incidence structure gives a minimal flat picture if and only if

Vl + 31FI- 3-1II, and V’l 4- 3IF’ 3 >-II’l for all proper substructures.

Of course this identification of variables also destroys the linearity of the pure condi-
tion-and may introduce many complications into the factoring of pure conditions of
incidence structures. The lattice of blocks, and its associated partition of factors will
remain. However most other results of 4 (including the uniqueness of factors in a
block) will be disturbed.

With these specialized matrices, Rosenberg’s method for calculating conditions
on k-frames can also be modified. Since no vertex should have two exiting edges in
a 3-fan diagram with the same coordinates, each tree of collinear edges (corresponding
to a vertex of the incidence structure) should be rooted and oriented as a whole towards
this root. As a result the number of compatible 3-fans will be drastically reduced. The
proof of Theorem 2.18 actually illustrated this principle, where we specialized to k
trees and we were left with a single k-fan.

If we take an incidence structure whose pictures are, in general, sharp
([V’I+aIF’I-4_-> I’ for all substructures) and are maximal (IVI+3IF[-4= [II)then the
corresponding k-frames for these pictures will have a single motion which is computed
by the methods of 3. This method will therefore compute the planes of a general
scene over such a picture. The results could be used to investigate other aspects of the
picturemsuch as additional inequalities which follow from visual occlusion (require-
ments that one plane be above another at a specified point) [28, 6].

We leave further discussion of these and other associated topics for another
occasion.
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EMBEDDING GRAPHS IN BOOKS: A LAYOUT PROBLEM
WITH APPLICATIONS TO VLSI DESIGN*

FAN R. K. CHUNG’, FRANK THOMSON LEIGHTON: AND ARNOLD L. ROSENBERG

Abstract. We study the graph-theoretic problem of embedding a graph in a book with its vertices in a
line along the spine of the book and its edges on the pages in such a way that edges residing on the same
page do not cross. This problem abstracts layout problems arising in the routing of multilayer printed circuit
boards and in the design of fault-tolerant processor arrays. In devising an embedding, one strives to minimize
both the number of pages used and the "cutwidth" of the edges on each page. Our main results (1) present
optimal embeddings of a variety of families of graphs; (2) exhibit situations where one can achieve small
pagenumber only at the expense of large cutwidth; and (3) establish bounds on the minimum pagenumber
of a graph based on various structural properties of the graph. Notable in the last category are proofs that
(a) every n-vertex d-valent graph can be embedded using O(dn1/2) pages, and (b) for every d > 2 and all
large n, there are n-vertex d-valent graphs whose pagenumber is at least

log n ]"
Key words, book embeddings, arrays of processors, fault-tolerant computing

AMS(MOS) subject classifications. 05C99, 94C15, 68C25

1. Introduction.
1.1. The problem. We study here a graph embedding problem that can be viewed

in a variety of ways. We start with an undirected graph G.
Formulation 1. To embed G in a book, with its vertices on the spine of the book

and its edges on the pages, in such a way that edges residing on the same page do not
cross.

We seek embeddings of graphs in books that use pages that are few in number
and small in width. (The width of a page is the maximum number of edges that cross
any line perpendicular to the spine of the book. The width of a book embedding is the
maximum width of any page ofthe book. The cumulativepagewidth ofa book embedding
is the sum of the widths of all the pages.) The results we present are of four types"

(1) We characterize graphs that can be embedded in books having one or two
pages. For instance, the one-page graphs are precisely the outerplanar graphs. (A graph
is outerplanar if its vertices can be placed on a circle in such a way that its edges are
noncrossing chords of the circle.)

(2) We find upper bounds on the number of pages required by graphs of valence
(i.e., vertex-degree) at most d, and we show that these bounds are often approached

* Received by the editors December 17, 1984, and in revised form February 20, 1986. A portion of this
paper was presented at the Thirteenth International IEEE Symposium on Fault-Tolerant Computing and a
portion at the Fifth International Symposium on Theory and Applications of Graphs.
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Advanced Research Projects Agency contract N00014-80-C-0622, and by Air Force contract OSR-82-0326.

Department of Computer Science, Duke University, Durham, North Carolina 27706. A portion of
this research was done while this author was visiting Bell Laboratories, Murray Hill, New Jersey. The
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MCS-83-01213 and DMC-85-04308.
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by specific d-valent graphs. For example, every n-vertex (d > 2)-valent graph can be
embedded in a book with min (n/2, O(dn/2)) pages (graphs of valence d <_-2 require
only one page); and there exist such graphs that cannot be embedded in fewer than
O(n/2-/d/log2 n) pages. (All logarithms are to the base 2.)

(3) We find optimal or near-optimal embeddings of a variety of families of graphs,
including trees, grids, X-trees, cyclic shifters, permutation networks, and complete
graphs. For example, every n-vertex d-ary tree can be embedded in a book having
one page, of width [d/2 log n.

(4) We exhibit two instances of a tradeotI between the number of pages and the
widths of the pages. For example, every one-page embedding of the depth-n "ladder"
graph requires width n/2, but there are width-2 two-page embeddings for this graph.

1.2. The origins of the problem. The problem has several origins.
Sorting with parallel stacks. Even and Itai 10] and Tarjan [24] study the problem

of how to realize fixed permutations of {1,..., n} with noncommunicating stacks.
Initially each number is PUSHed, in the order 1 to n, onto any one of the stacks. After
all the numbers are on stacks, the stacks are POPped to form the permutation. One
can view this problem graph-theoretically as follows. Say we are studying permutations
of {1,. ., n}. Then consider the bipartite graph Gn with vertices
{a,. , an, bl," ", bn} and edges connecting each ai to hi. The problem of realizing
the permutation r on {1,. ., n} with k parallel stacks is equivalent to embedding Gn
in a k-page book, with its vertices embedded in the order a,. ,

Single-row routing. In an attempt to simplify the problem of routing multilayer
printed circuit boards (PCBs), So [22] decomposed the problem in the following way.
In his variant, one arranges the circuit elements in a regular grid, with wiring channels
separating rows and columns of elements. One then decomposes the circuit’s net lists
(possibly by adding new dummy elements) so that every net connects elements in a
single row or in a single column. The PCB can now be routed by routing each of its
rows and each of its columns independently. The variant of this scenario that does
not allow a net to run from the top of a row around to its bottom nor to change layers
en route [20] corresponds directly to our embedding problem applied to small-valence
graphs.

Fault-tolerant processor arrays. The DIOGENES approach to the design of fault-
tolerant arrays of identical processing elements (PEs, for short) [7], [21] uses "stacks
of wires" to configure around faulty PEs. In broad terms, the approach works as
follows. The PEs are laid out in a (logical, if not physical) line, with some number of
"bundles" of wires running above the line of PEs. One then scans along the line of
PEs to determine which are faulty and which are fault-free. As each good PE is
encountered, it is hooked into the bundles of wires through a network of switches,
thereby connecting that PE to the fault-free PEs that have already been found and
preparing it for eventual connection to those that will be found. To simplify the
configuration process, each bundle is made to behave like a stack, as illustrated by
the following embedding of a complete depth-d binary tree (see Fig. 1). One uses a
single bundle whose wires are numbered 1,. , d. After determining which of the PEs

FIG. 1. The preorder 1-page layout of the depth-3 complete binary tree.
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are good and which are faulty, one proceeds down the line of PEs from right to left.
As a good PE that is to be a leaf of the tree is encountered, it is connected to line 1
in the bundle, simultaneously having lines 1 through d- 1 "shift up," to "become"
lines 2 through d; switches disconnect the left parts of the lines from the right parts
so that vertex-to-vertex connectivity remains correct. The bundle has thus behaved like
a stack being PUSHed. As a good PE that is to be a nonleaf of the tree is encountered,
it is connected to the stack/bundle in two stages. First it is connected to lines 1 and
2 of the bundle, simultaneously having lines 3 through d "shift down" to "become
lines 1 through d- 2; again switches ensure that proper vertex-to-vertex connectivity
is maintained. The bundle here behaves like a stack being twice POPped. Second, the
PE PUSHes a connection onto the stack. In this scenario, POPs amount to having a
PE adopt two children that lie to its right in the line, while PUSHes amount to having
the PE request to be adopted by some higher level vertex that lies to its left. The
process just described lays the tree out in preorder and, hence, uses at most d lines.

Although not directly related to the research in this paper, the following relation-
ship to Turing-machine graphs is also of interest.

Turing-machine graphs. One can construct a T-vertex graph that "models" a given
T-step Turing machine computation, as follows. Each vertex of the graph corresponds
to a step of the computation; vertices tl and t2 are adjacent in the graph just if one
of the machine’s tape heads visits the same tape square at times tl and t2, but at no
intervening time. One can easily show that every k-tape Turing-machine graph is
embeddable in a 2k-page book. Hence, a characterization ofgraphs that are embeddable
in books with a given number of pages might have applications to complexity theory.
For example, a proof that such graphs have small bisection width would lead to several
interesting complexity-theoretic results.

1.3. Additional formulations. Our perusal of the origins of the problem affords us
additional formulations with which to hone our intuition.

Formulation 2. To place the vertices of G in a line and to assign its edges to
stacks in such a way that the stacks can be used to lay out the edges.

Formulation 3. To embed the graph G so that its vertices lie on a circle and its
edges are chords of the circle; to assign the chords to layers so that edges/chords on
the same layer do not cross.

Formulation 3 combines the insights of 10] and [22], and yields a simple charac-
terization of the 1-page embeddable graphs.

THEOREM 1.1 [3]. A graph can be embedded in a one-page book if, and only if, it
is outerplanar.

Proof sketch. A graph G is outerplanar just when its vertices can be placed on a
circle so that its edges become noncrossing chords of the circle.

If G is outerplanar and is laid out on a circle as above, then cutting the circle
between any two vertices and opening it out to form a line yields a one-page embedding
of G.

Conversely, given a one-page embedding of G, passing a line through the vertices
of G in their order in the embedding and joining the ends of the line together to form
a circle demonstrates G’s outerplanarity. [q

This characterization suggests yet another formulation.
Formulation 4. To decompose G into outerplanar graphs all ofwhose outerplanar-

ity is witnessed by the same embedding of G’s vertices.

1.4. Reflections from the facets. The many formulations of our problem suggest
at least two variants: the first assumes that the layout of the vertices is fixed (as in
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sorting with parallel stacks and single-row routing); the second leaves the arrangement
of the vertices as part of the problem (as in the construction of fault-tolerant processor
arrays). We focus in this paper on the harder version of the problem, in which the
placement of the vertices is not given.

The many facets of our problem further allow us to draw on results obtained in
a variety of contexts.

The first result follows from Tarjan’s analysis of the number of stacks that are
required to compute a given permutation of {1,. ., n}. We translate the result to our
graph-theoretic setting.

THEOREM 1.2 [24]. Let the graph G have vertices {a,..., a,, b,..., b} and
edges connecting each a to b. Let 7r and 71"2 be permutations of {1,..., n}. Let the
vertices of G be placed in a line in the order ar(1),""", a(n), brE(n),""", br2(1). The
number ofpages needed to embed G given this placement of its vertices is precisely the
length of the longest sequence of b-vertices whose indices are similarly ordered with their
a-mates.

The next result is immediate from the following important observation by Even
and Itai [10]" The problem

To minimize the number of pages required to embed a graph G in a book, when
the ordering of G’s vertices along the spine of the book is prespecified

is equivalent to the problem

To find a minimum vertex-coloring for a circle graph (which is the intersection-
graph for chords of a circle).

The correspondence between the two problems is best seen from Formulation 3 of the
book-embedding problem. Garey et al. [13] show that the coloring problem for circle
graphs is NP-complete.

THEOREM 1.3 [10], [13]. The following problem is NP-complete" Given a graph G,
an ordering ofthe vertices ofG, and an integer k, decide whether or not G can be embedded
in a k-page book when its vertices are placed along the spine of the book in the specified
order.

See 1] for a related result.

2. Sample embeddings and helpful principles. The problems of embedding small-
valence graphs and of analyzing given embeddings are harder than they seem at first.
In order to help the reader develop intuition for the remaining sections, we now present
helpful strategies for obtaining bounds, and we illustrate them with sample embeddings
and their analyses.

2.1. An embedding strategy. Formulation 3 of our problem suggests a strategy for
embedding graphs in books, that is valuable both in finding and describing embeddings.
In order to embed the graph G in a book, the strategy advocates"

1. embedding the vertices of G in a circle by finding a hamiltonian cycle in G or
in some edge-augmentation of G (that is, a graph obtained from G by adding zero or
more new edges);

2. assigning the edges of G (which are easily transformed into chords of the
circle) to pages in some noncrossing manner, perhaps by coloring the vertices of the
associated circle graph.

Reinforcing the intuition behind this heuristic is the fact that hamiltonian cycles
add virtually no cost to an embedding: a cycle adds only 1 to the cutwidth of a layout
(since one snips it), and it does not interfere with any other edges, so it does not
increase the pagenumber of the embedding.
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2.2. Two strategies for lower bounds. The first strategy for bounding pagenumber
from below resides in the following result, which follows from Theorem 4.1 (q.v.).

THEOREM 2.1. If the graph G is not planar, then it cannot be embedded in fewer
than three pages.

The second bounding strategy revolves around the properties of matching graphs.
For our purposes a matching graph is a regular univalent graph (hence has an even
number of vertices). If we view a matching graph as being bipartite, we can naturally
associate with it a permutation r: the graph’s "input" vertices are labelled 1,..., n
and are connected, respectively, to "output" vertices ,r(1),. , 7r(n). We shall encoun-
ter situations when analyzing a specific layout or a class of layouts of a graph G
wherein we can assert that G must contain as a subgraph a matching graph G* such
that

1. the input vertices of G* all lie to one side of its output vertices;
2. the input and output vertices of G* are similarly ordered, in the sense that, if

the inputs are laid out in the order Vl, v2, , v,, then the outputs appear in the order
r(v,), ,r(v), , ,r(v.).

When the existence of such a * can be established, we can infer that this (class
of) embedding(s) of requires n pages. The reasoning leading to this conclusion
bears a strong kinship with the reasoning that Tarjan [24] and Even and Itai 10] used
when studying sequences of integers that can be sorted using n stacks.

The lower bounds we obtain via matching subgraphs are among the best we derive
in the paper.

2.3. Sample embeddings.
2.3.1. The pinwheel graph. The embeddings we shall be presenting in the course

of our study will bear out the value of the hamiltonian-cycle embedding strategy. The
following example illustrates how careful one must be to search for a good hamiltonian
cycle.

The depth-n pinwheel graph P(n) has 2n vertices

{al, a2, a,,}
and

{bl,b2,"’,bn}
and edges connecting each pair of vertices of the form

ai- bi, 1 <- <- n,

ai bn-i+l 1 <-- <--_ n,

a ai+l, 1 --<_ < n,

bi- bi+l, 1 <= < n.

See Fig. 2.

FIG. 2. The depth-8 pinwheel graph P(8).
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When n > 2, the graph P(n) is not planar: P(3) K3, We shall see in 4 (Theorem
4.1) that this nonplanarity precludes P(n)’s being embedded in fewer than three pages.
Can one do this well? The obvious hamiltonian cycle--that goes "down the a’s and
up the b’s"--leads to an embedding using roughly n pages, one of width proportional
to n. However, if one studies the structure of pinwheels more carefully, then one
discovers a hamiltonian cycle that leads to a 3-page embedding for P(n), independent
of n, in which the three pages have widths 2, 4, and 4, respectively.

PROPOSITION 2.2. The graph P(n) is 3-page embeddable in such a way that one
page has width 2 and the other two have width 4 each.

Proof. The embedding. One obtains the desired cycle by rearranging the "butter-
flies" that comprise P(n), as follows. We use asterisks to divide the cycle into segments
that facilitate the analysis of the induced embedding. Assume for simplicity that n is
even.

a b a b bn_ a,,_ b a * a3- b3- an-2- bn_2- bn_3 an-3 b4- a4- *

* an bn/2_ an bn/2+2-bn/2+ an bn/2 an

Each segment of the cycle comprises two adjacent butterflies, the second recorded in
reverse order of the first. Let us linearize the vertices of P(n) by snipping the cycle
between al and a,/2, as suggested by the way we have written the cycle.

The analysis. For each segment, we need one width-2 page to hold the butterfly
edges. A second, width-4, page suffices to hold the edges that connect any single pair
of adjacent butterflies. But, if this page is used for the edges that connect the ith and
(i/ 1)th butterflies, it cannot also hold the edges between the (i + 1)th and (i/ 2)th
butterflies; for this next pair we need yet a third width-4 page. We need no additional
pages, since the latter two can alternate joining up adjacent butterflies. Thus the cycle
we have presented leads to a layout with the claimed efficiency.

2.3.2. The sum of triangles graph. The next graph we look at is interesting because
of the techniques that are needed to analyze and bound the efficiency of its embeddings.
In particular, it will afford our first use of matching subgraphs to obtain a lower bound
on pagenumber.

The depth-n sum of triangles graph T( n) has vertices

{ai, bi, ci: 1 <-_ <- n}

and edges connecting each triple ai, bi, c into a triangle.
THEOREM 2.3. The graph T(n) is 1-page embeddable, with width 2. However, if

one insists that T( n be laid out "by columns", so that the vertices {a} are all contiguous,
and so are the vertices {b} and the vertices {c}, then T(n) is 3 HI/a-page embeddable,
and this is optimal, within a factor of 3.

Proofi The unrestricted layout of T(n) being obvious (triangle by triangle), we
restrict attention to layouts of T(n) that keep all the a-vertices, all the b-vertices, and
all the c-vertices contiguous, so we can refer with no ambiguity to the a-block of
vertices, the b-block, and the c-block. We shall henceforth assume such a layout without
further explicit mention. We shall also assume, for simplicity, that n is a perfect
cube.

One of the referees has found a 3-page embedding of P(n) with pagewidths 4, 3, and 1, respectively.
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The upper bound. Begin with each of the blocks of vertices in order: the a-block
lies in the order

the b-block lies in the order

and the c-block lies in the order

Partition each ofthese blocks into n

al,a2," ",an,

bl, b2," bn,

c1, c2, Cn.

1/3 segments, each segment being further subdivided
into n 1/3 runs of 81/3 vertices each. Each block thus has the form:

(R1""" gd)(gd+l’’" Re)’’’ (Ry+l""" gg),

where runs are grouped by parentheses into segments. To this point, corresponding
runs in corresponding segments are similarly ordered in each block.

Now begin rearranging the vertices within blocks as follows. Assume without loss
of generality that the a-block lies to the left of the b-block, which lies to the left of
the c-block.

(a) Leave the a-block as is.
(b) Rearrange the b-block by reversing the order of its segments, and reversing

the order of the runs within each segment (but keeping vertices within runs in order,
as before). The block will now look like"

(gg... Ry+I)’’’ (Re’’’ ga+l)(gd’’" gl).

(c) Rearrange the c-block by reversing the order of the runs in each segment and
reversing the order of vertices within each run (but keeping the original order of the
segments). If we let R denote the run obtained by reversing the vertices of the run R,
then the block will now look like"

(Rd’’" gl)(Re""" gd+l)’’’(Rg’’" Ry+I).

Now let us add in the edges of T(n) and keep track of how many pages we can
get by with. When we add the edges that connect the a-block to the b-block, we note
that a single page will accommodate one edge from each a-run to its corresponding
b-run; since each a-run emits n 1/3 edges to the b-block, we need only this many pages
to realize the a-to-b edges. When we add the edges that connect the b-block to the
c-block, we note that a single page will accommodate the edges from one b-run per
segment to its corresponding c-run; since there are n 1/3 runs per segment, we need
only this many pages to realize the b-to-c edges. When we add the edges that connect
the a-block to the c-block, we note that a single page will accommodate all the edges
from one a-segment to its corresponding c-segment. Since there are only//1/3 segments
per block, we need only this many pages to implement the a-to-c edges. We have thus
used 3n 1/3 pages to implement all of T(n)’s edges.

The lower bound. Without loss of generality, say that we have T(//) laid out in
an a-block, a b-block, and a c-block, in that order. If we concentrate on any pair of
blocks, we have a subgraph of T(n) that is a matching graph whose "inputs" and
"outputs" are laid out disjointly. Using the obvious correspondence between similarly
(resp., oppositely) ordered inputs and outputs on the one hand, and increasing (resp.,
decreasing) subsequences of an integer sequence on the other hand, we note the
following variant of a well-known result of Erdos and Szekeres [9].
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LEMMA 2.4 [9]. Let A and B be orderings of the integers {1, 2,. , n}. Ifsequences
A and B share no similarly ordered subsequence of length greater than k, then they share
an oppositely ordered subsequence of length at least n k.

Now assume for contradiction that our layout of T(n) requires fewer than n
pages. As we have noted in 2.2, this implies that the a-block and the b-block share
no similarly ordered subsequence of vertices of length as great as n /3. By Lemma 2.4,
therefore, these blocks must share an oppositely ordered subsequence of length greater
than n2/3. Look now at the length-n/3 subsequence of the c-block that corresponds
to the oppositely ordered subsequence of the a-block and the b-block. By Lemma 2.4,
this subsequence of the c-block must share with the corresponding subsequence of the
a-block either a similarly ordered subsequence of length

(n2/3)1/2 hi

or an oppositely ordered subsequence of the same length. In the former case, the edges
between the a-block and the c-block cannot be realized with fewer than n 1/3 pages;
in the latter case, the edges between the b-block and the c-block require this many
pages. This contradicts our assumption that fewer than n/3 pages suffices to realize
the layout of T(n). lq

3. Specific efficient layouts. Our attention to this point has been on establishing
general analysis techniques and bounds. We now turn to the task of finding efficient
layouts of a number of familiar graph families. We shall find in 4 that these families
have much more modest pagenumber demands than random graphs.

3.1. Trees. In 1.2 we presented an embedding of the complete binary tree that
turns out to be optimal in both pagenumber (one) and pagewidth (log n). (Optimality
of width follows from [5].) It is not hard to show that all trees enjoy embeddings that
are approximately as efficient as those of complete trees.

PROPOSITION 3.1. Every n-vertex d-ary tree can be embedded in one page of width
at most

Proofsketch. Let G be a graph. One adds a fringe to a vertex v of G by appending
to v a line of (possibly 0) vertices"

Dr, r >- O.

A fringing of G is a graph obtained by adding a fringe to each vertex of G.
Concentrate on a single vertex v of G. Say that when G is laid out, v is flanked

(one or bothby vertices u and w. Let v have two fringes, v, ", Vr and v," ", v
of which may be empty). Lay the fringes out either in the indicated order between v
and w or in reverse order between u and v. To choose the side of v" place the first
fringe on that side of v where the fewest edges of G cross or meet v (as in the
conventional definition of cutwidth); place the second fringe using the same criterion
in the now-augmented embedding. This strategy increases the cumulative width of the
embedding by at most 1, while leaving the number of pages (one) unchanged.

An easy induction verifies that any d-ary tree T can be "built" by levels, by starting
with a single vertex and "double"-fringing the graph at most

/o 3/2/
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times. Our bounds on pagewidth follow from this method of constructing the tree and
from the fact that the tree has at most n- 1 edges. Details are left to the reader. [q

Proposition 3.1 seeks to optimize the worst-case tree embedding. Dolev and Trickey
[8] present an algorithm for finding a width-optimal one-page embedding for an
individual tree.

3.2. Square grids. Square grids are planar and subhamiltonian, hence 2-page
embeddable. (We verify this claim in Theorem 4.1.) The augmented hamiltonian cycle
formed by row-by-row alternated east-to-west and west-to-east sweeps, as indicated in
Fig. 3(a), leads to the 2-page embedding shown in Fig. 3(b). This embedding is optimal
both in number of pages--the grid is not outerplanarnand in the cumulative width
of the pages--the n x n grid has minimum bisection width n.

PROPOSITION 3.2. The n x n square grid admits a 2-page embedding, each page of
width n. This embedding is optimal in pagenumber and is within a factor of 2 of optimal
in pagewidth.

3.3. X-Trees. The depth-d X-tree X(d) is the edge augmentation of the depth-d
complete binary tree that adds edges going across each level of the tree in left-to-right
order (see Fig. 4(a)).

X-trees are planar and subhamiltonian, hence admit 2-page embeddings. While
it is easy to find a 2-page embedding for X(d)--the cycle that runs across levels in
alternating orders yields one suchnit is difficult to find one that has width o(n) (where
/1 2a 1 is the number of vertices in X(d)), despite the fact that X(d) has a bisector
of size d. However, the edge-augmentation of the X-tree depicted in Fig. 4(a), with

(b)

PAGE

PAGE 2

FIG. 3. (a) The 4 x 4 grid and its efficient hamiltonian cycle. (In all the figures, the edges added to create

an efficient cycle are shown as dotted lines; the graph edges comprising the cycles are thickened.) (b) The 2-page
layout of the grid induced by the cycle.
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(0) .... "’"

(b)

FIG. 4. (a) An edge-augmentation of the depth-4 X-tree and an efficient hamiltonian cycle. (b) The layout
of the X-tree induced by the cycle of (a).

the indicated hamiltonian cycle, leads to the width-O(d) 2-page embedding of X(d)
depicted in Fig. 4(b).

PROPOSITION 3.3. The depth-d X-tree admits a 2-page embedding, with one page
of width 2d and one of width 3d. This embedding is optimal in pagenumber and is within
a factor of 5 of optimal in cumulative pagewidth.

Proof. Optimality in number of pages is immediate since X(d) is not outerplanar
for d >-3. The (near-) optimality of the claimed cutwidth follows from the proof in
[17] that X(d) has no bisector of size less than d, coupled with the demonstration
that this implies a similar bound on cutwidth.

It remains only to verify that the widths of the pages in the prescribed embedding
do indeed satisfy the claimed bounds. The verification proceeds by induction, but
requires some detail about the layout of X(d). Say that we have a 2-page embedding
of X(d-1) with the claimed pagewidths and the following form. We depict the
embedding schematically by its linearization of X(d)’s vertices, together with a few
relevant edges. For simplicity we draw page 1 above the line of vertices and page 2
below the line.

LAYOUT

Here r, s, are, respectively, the root of X(d- 1) and its left and right sons; a and/3
are the strings comprising the rest of X(d- 1)’s vertices. Assume for induction that
in Layout 1"
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(1) the left spine vertices (which are the leftmost vertices at each level) of X(d 1)
appear consecutively in leaf-to-root order in a;

(2) the right spine vertices (which are the rightmost vertices at each level) appear,
not necessarily consecutively, in root-to-leaf order in/3;

(3) the vertices r, s, and all of the left and right spine vertices are exposed on
page 2, in the sense that no edge of X(d 1) passes totally over them (i.e., under them
in the picture);

(4) the width of page 1 is at most 2d- 2;
(5) the width of page 2 is 0 below the left spine vertices, and is less than 3k-3

to the right of the level-(d- k-1) spine vertices.
Now take a second copy of Layout 1:

LAYOUT 2

The prescribed layout of X(d)mwhose set of vertices is just the union of the sets of
vertices of its two depth-(d- 1) sub-X-trees, in addition to r*, its root vertexmis
obtained from the indicated layouts as follows:

cesrrr#tflct # s# #

LAYOUT 3

A careful analysis of the composite layout extends the induction: Conditions (1), (2)
are immediate since the left (resp., right) spine of X(d) is contained in the string asr
(resp., the string r# #/3#), whose order is inherited from Layout 1 (resp., from Layout
2). Condition (3) is clear from the depiction of Layout 3: no edges are placed in the
forbidden regions. Conditions (4), (5) are verified by simple counting.

Analysis of small X-trees establishes the base of the induction, thereby completing
the proof. [q

3.4. Benes permutation networks and their relatives. We now consider families of
graphs whose structure is materially more complicated than the ones we have considered
so far. These families are all very similar in structure and arise in a variety of contexts.
They include the FFTnetworks whose structure represents the computational dependen-
cies in the Fast Fourier Transform algorithm, Banyan networks whose structure approxi-
mates that of the Boolean n-cube while retaining bounded vertex-degrees, and the
Benes rearrangeable permutation network [2], which is shown in Fig. 5(a). We concen-
trate on the Benes network, since it is a supergraph of the others, hence the hardest
of the group to embed efficiently.

Let n be a power of 2. The n-input Benes network B(n) is the graph defined
inductively as follows.

1. B(2) is the complete bipartite graph K2,2 on two input vertices il, and i,2 and
two output vertices Ol, and o1,.
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(o)
eeOeOOOoooo

(b)

PAGES , 5, 6

PAGES 2,3, 4

FIG. 5. (a) The 4-input Benes network. (b) A 6-page layout of two levels of the network.

2. B(n) is obtained by taking two copies of B(n/2) as well as n new input vertices,
in, l, in,2, in, and n new output vertices, on,i, On,E, ", On, For each 1 _-< k _-< n, one
adds edges that create one copy of K2,2 with "inputs" in,k and in,k+n/2 and "outputs"
ink and i’,/2,k (the primed vertices coming from the second of the two copies of
B(n/2)) and one copy of K2, with "inputs" On/,k and On/2,k and "outputs" On,k and
On,k+,/ (again, primed vertices come from the second copy of B(n/2)).

Benes networks and their relatives are nonplanar, so they require at least three
pages. Games [12] has recently discovered an elegant embedding that achieves this
pagenumber. In order to illustrate a strategy that is often useful for finding good book
embeddings, we describe now a simple 6-page embedding, which is built upon the
hamiltonian cycle that alternates running up and down the "columns" of inputs ar,d

outputs of B(n); see Fig. 5(b). In this embedding, one uses three pages to realize the
"butterflies" that connect each "column" of vertices to the next "column." The fact
that the embedding uses only a bounded number of pages is due to its reusing pages
as it proceeds down the columns of B(n). This strategy of reusing independent pages
is a central feature of efficient embeddings (cf. [6], 15], [29]). It is somewhat surprising
that any graph capable of "computing" all permutations can be realized with any
bounded number, let alone 3, of pages.

PROPOSITION 3.4 [12]. The Benes network B(n) admits a 3-page embedding, with
each page having width n. This embedding is optimal in pagenumber and within a factor
of 3 of optimal in pagewidth.

3.5. The Boolean n-cube. Our next family of graphs also has a rich interconnection
structure which follows the communication structure of a broad class of algorithms.
This family has been proposed as a desirable network architecture for a highly parallel
computer; indeed, many of the other networks discussed in the literaturemthe shuffle-
exchange, the banyan, and the cube-connected-cycles, for example--arose as bounded-
valence stand-ins for our next graph. The Boolean n-cube C(n) has as vertices the set
of all binary strings of length n. The edges of C(n) connect string-vertices x and y
just when x and y are unit Hamming distance apart, i.e., when there exist binary strings
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c,/3, of collective length n- 1, such that

{x, y}= {aOfl, tlfl}.

Thus C(n) has 2" vertices and n2"-1 edges. Since C(n) is hard to visualize for n > 3,
its efficient embedding is more easily described inductively in string-oriented terms,
rather than via a hamiltonian cycle.

PROPOSITION 3.5. The graph C(n) (n->2) admits an (n-1)-page embedding, with
one page of width 2 for each 1 <-_i <- n- 1. This embedding is within a factor of 2 of
optimal in both pagenumber and cumulative pagewidth.

Proof. The lower bound on pagenumber is immediate from the facts that
(a) the pagenumber of C(n) is at least as big as the minimum number of

outerplanar graphs into which C(n) can be decomposed (Theorem 1.1);
(b) an N-vertex outerplanar graph can have at most N "noncircle" edges [23];
(c) C(n) has n2n-=(1/2)N log N edges.

The lower bound on cumulative pagewidth follows from the easily derived fact that
C(n) has minimum bisection width 2n-1.

The upper bound is seen easily by describing inductively the linearization of the
vertices of C(n).

The vertices of C(2) are laid out as follows:

00 01 11 10

hence C(2) is embeddable in one width-2 page.
Assume that C(n) is realized with n-1 pages of widths 2, 4,..., 2"-1, via the
linearization

where each fli is a distinct length-n binary word. Then the following layout for
C(n+l):

0102 0fin lflN" lflElfl
is realizable with just one more page, of width N. This extends the induction
and completes the proof. [3

3.6. The complete graph -Kn. Finally, we analyze the complete graph on n vertices,
Kn, in which every pair of vertices is adjacent. To simplify our analysis, without losing
any of the germane ideas, let us assume that n is even.

PROPOSITION 3.6. The complete graph K, is embeddable in n/2 pages, each ofwidth
at most n. This embedding is optimal in pagenumber and in cumulative pagewidth.

Proof. We establish the claims in reverse order.
Optimality in cumulative pagewidth is immediate since, by symmetry, all layouts

of Kn have the same cutwidth.
Optimality in number of pages is deducible from our principle about matching

subgraphs. Lay the vertices of K, out on a line; call the vertices 0, 1,..., n-1 in
left-to-right order. Note that K, contains as a subgraph the matching graph M, whose
input vertices are 0, 1,. ., (n/2)-1, and whose output vertices are given by: 7r(v)=
v / n/2 for 0_-< v < n/2. Since the inputs and outputs of Mn are similarly ordered in
this embedding, this embedding requires n/2 pages. Since all embeddings of Kn are
isomorphic, the bound on pagenumber follows.

To see the upper bounds, consider the following way to lay out K,. Place the
vertices 0, 1,..., n-1 evenly spaced on a circle. For each vertex v, 0<-_ v<n/2, draw
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the line-graph Lv as indicated in the following illustration, in which all arithmetic is
modulo n and in which double dashes denote edges of the line:

v= v+ 1 v-1 v+2= v-2 v+(n/2)-I v-(n/2)+l v+(n/2).

It is not hard to verify the following facts.
(1) Each such line is composed of noncrossing chords of the circle; hence, by

Theorem 1.1, each is embeddable on a single page.
(2) Every edge of K, appears in precisely one line: to verify this, note that each

vertex w is an endpoint of (hence, has valence 1 in) precisely one line, namely, Lw mod n/2

and has valence 2 in all other lines, so that in all, n- 1 edges leave w; moreover, no
two lines share an edge since, in the circle picture, all the lines emanating from vertex
w have different slopes.
These two facts establish that, if one snips the circle between any two vertices, thereby
laying Kn out in a line, and if one colors the edges of Kn according to which line Lv
they lie in, one obtains an embedding of Kn in an n/2-page book. By the symmetry
of K,, this embedding has optimal cumulative pagewidth. U

3.7. The mesh of cliques. The n x n mesh of cliques M(n) is the graph whose
vertex-set is {1,2,...,n}x{1,2,...,n} and whose edges connect each row {i}x
{1,2,..., n} into an n-vertex clique and each column {1,2,..., n}x{i} into an
n-vertex clique. While we do not know how efficiently M(n) can be embedded in a
book in general, we can show that any embedding that places M(n)’s vertices along
the spine row by row must use tl

4/3 pages. The proof follows the inspiration of Theorem
2.3; details are left to the reader. Any nontrivial bound (particularly a lower bound)
on the pagenumber of M(n) would be interesting.

As a closing note to this section, Muder [18] and West [30] have a number of
nontrivial bounds on the pagenumber of complete bipartite graphs K,,,, that improve
our results in [7].

4. Graph structure and pagenumber. In this section, we look at certain structural
features of a graph, that are related to the number of pages required to embed the
graph in a book. We find certain unexpected effects as well as the absence of certain
expected ones.

4.1. Planarity. Theorem 1.1 indicates that the outerplanarity of a graph has a
material effect on its pagenumber. It is easy to show that planarity has a not-dissimilar
effect, but only when it is accompanied by a second structural property.

THEOREM 4.1 [3]. The graph G admits a 2-page embedding if, and only if, it is

subhamiltonian, i.e., a subgraph of a planar hamiltonian graph.
Proof sketch. A graph is subhamiltonian just if it is embeddable in the plane so

that (1) its vertices lie on a circle; (2) each of its edges lies either totally within the
circle or totally without it; and (3) no edges cross in the layout.

Given such a "circular" embedding of a subhamiltonian graph G, cutting the
circle between any two of G’s vertices yields a planar embedding of G in a line, with
each edge lying either totally above the line (i.e., on page 1) or totally below it (i.e.,
on page 2).

Conversely, given a 2-page embedding of the graph G, we view this embedding
as placing G in a line with each edge lying totally above the line (page 1) or totally
below it (page 2), and with no edges crossing. Pasting together the ends of the line
containing G’s vertices yields a "circular" embedding of G that witnesses G’s subhamil-
tonian planarity. [3
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In the several years since the appearance of [3], the question of how many pages
an arbitrary planar graph requires has attracted considerable attention. Buss and Shor
[6] were the first to demonstrate that planar graphs can be embedded in a bounded
number of pages; their elegant layout technique embeds an arbitrary planar graph in
9 pages. Heath [15], [16] used a quite different technique that improves this bound to
7 pages. Yannakakis [29] has recently settled the issue by proving coincident upper
and lower bounds of 4 pages.

THEOREM 4.2 [29]. Every planar graph admits a 4-page embedding. Moreover, there
exist planar graphs requiring 4 pages.

Returning to the consequences ofTheorem 4.1, we observe that every series-parallel
graph is 2-page embeddable. The class of series-parallel graphs is defined inductively
as follows.

1. The 2-vertex graph with one source vertex s adjacent to one target vertex is
a series-parallel graph.

2. If G is a series-parallel graph with source vertex s and target vertex and if
G’ is a series-parallel graph with source vertex s’ and target vertex t’, then the graph
G" obtained by "identifying" vertices and s’ is a series-parallel graph with source
vertex s and target vertex t’. (This is an example of "series composition.")

3. If G1,’’’, G, are series parallel graphs with source vertices Sl,’", s, and
target vertices tl," ", t,, respectively, then the graph G* obtained by: taking a new
source vertex s and adding edges between s and each of the si; and taking a new target
vertex and adding edges between and each of the ti is a series-parallel graph with
source vertex s and target vertex t. (This is an example of "parallel composition.")

A graph is series-parallel just when its being so follows from provisos 1-3.
PROPOSITION 4.3. Every series-parallel graph is 2-page embeddable.
Proof It is clear that every series-parallel graph is planar. By Theorem 4.1, then,

we need only show that each such graph is subhamiltonian. This is easily proved by
induction on the number of vertices in the graph, using the following inductive
hypothesis.

Given a series-parallel graph G with source vertex s and target vertex t, there is
a planar edge-augmentation of G that has a hamiltonian path starting at s and
ending at t.

The indicated path can then be completed to a cycle by an edge from to s, without
endangering planarity, thus establishing that the graph is subhamiltonian.

We sketch the easy induction. (1) Trivially, the unique 2-vertex series-parallel
graph satisfies the claim. (2) If the graphs G and G’ with source vertices s and s’ and
target vertices and t’ each satisfies the claim, then so also does their series composition:
the desired hamiltonian path goes from s through G to t, which is identified with s’,
and thence through G’ to t’. (3) If the graphs G,..., G, are series-parallel, with
source vertices s,. , s, and target vertices tl," tn, then the parallel composition
of the graphs satisfies the claim: the desired hamiltonian path goes from s to s, thence
through G1 to tl, to $2, thence through G to t2," ", from tn-1 to Sn, thence through
G, to t,, and finally to t. Details are left to the reader. [3

The final corollary of Theorem 4.1 is a direct consequence of Wigderson’s result
that the problem of deciding whether or not a maximal planar graph is hamiltonian
is NP-complete [28].

COROLLARY 4.4. The problem of deciding 2-page embeddability is NP-complete.

4.2. Bisection width. The next structural property we consider measures the ease
of recursively cutting a graph into two equal size subgraphs. We find that this measure
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yields a nontrivial upper bound on pagenumber but does not provide any nontrivial
lower bound.

For our purposes, the simplest measure of the ease of bisecting a graph resides
in the Bhatt-Leighton [4] notion of bifurcator: The graph G has a p-bifurcator of size
B (B an integer and p> 1) either if G has fewer than B edges or if G admits a
decomposition tree with the following property. The root of the tree (which is the sole
vertex at level 0 of the tree) is the graph G. Each graph H at level k >_-0 of the tree
that has more than one vertex gives rise to two disjoint graphs at level k + 1, having
the following properties: (a) each graph contains at least one vertex; (b) their union
is H; and (c) each is connected to the other by no more than Bp-k edges.

THEOREM 4.5. If the graph G has a p-bifurcator of size B, then it is embeddable in
(p/(p- 1))B pages.

Proof. Let G have a p-bifurcator of size B. One begins the process of embedding
G in a book by forming G’s decomposition tree. One now lays G’s vertices in a line
(which will be the spine of the book) in the same order in which they appear as leaves
of the decomposition tree. One assigns edges to pages as follows. At each level k of
the tree, one creates Bp-k new pages. One proceeds through all of the subgraphs of
G that are split at that level, and one assigns one "cut" edge from each such subgraph
to each of the new pages. No crossings can be introduced by such an assignment
strategy since (a) edges that belong to the same level-k subgraph are assigned to
different pages, and (b) edges that are assigned to the same page belong to disjoint
intervals of vertices (because of the way vertices were laid out in the spine). It remains
only to count the number of pages used in the embedding. This number is clearly
bounded above by

k_O

An immediate corollary of this result is that every small-degree n-vertex planar
graph is embeddable in O(n/) pages. This was the best upper bound known before
the work of Buss and Shor [6], Heath [15], [16], and Yannakakis [29].

Theorem 4.5 indicates that the size of a graph’s bifurcator places a nontrivial
upper bound on the number of pages it requires. For the most part, this does not work
in the other direction. By Theorem 4.1, every n-vertex 2-page embeddable graph has
a 2/-bifurcator of size O(n/), but once we get to 3-page embeddable graphs,
knowledge of a graph’s pagenumber no longer yields a nontrivial bound on the size
of its bifurcators.

PROPOSITION 4.6. There exist n-vertex 3-page embeddable graphs whose smallest
p-bifurcators have size f(n/log n) for all p > 1.

Proof. Games [12] has shown that the n-input Benes network can be embedded
in a 3-page book. A straightforward application of Thompson’s lower bound proof
technique [25] shows that every p-bifurcator of the O(n. log n)-vertex 3-page embed-
dable graph B(n) has size (n). l-]

The bound in Proposition 4.6 has recently been strengthened by Galil, Kannan
and Szemeredi 11], but it is still not known whether or not there exist n-vertex 3-page
embeddable graphs whose smallest p-bifurcators have size O(n). As we mentioned in

1.2, showing the existence of such graphs could have interesting consequences in
classical complexity theory.

4.3. Valence. The final structural property we study is the valence of a graph. We
find that this property affords us nontrivial upper and lower bounds on pagenumber.
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These bounds are not very close for small or large valences, but they are close for
moderate-valence graphs.

The graph G has valence d if no vertex of G has degree exceeding d. G is regular
if all its vertices have the same degree.

4.3.1. An upper bound for d-valent graphs.
THEOREM 4.7. Let d be any positive integer, and let e be any positive constant. Say

that G is a d-valent graph with n vertices, where

n> (ln ((d + l)nl/2))
If d <-2, then G is 1-page embeddable. For any values of d and e, G is F(e, d, n)-page
embeddable, where

F(e,d,n) =man [ (1+ e)(2+21/2)(d+ 1)n 1/2]
Proof The cases d _-<2 are simple, for if d 1, G is a matching graph, and if

d -2, G consists of disjoint paths and cycles.
We turn now to the case of arbitrary valence d. Say that we are given an n-vertex

graph G of valence d. We note first that G is embeddable in n/2 pages, since K, is
(Proposition 3.6); hence we need look only at the second term in the expression for
F(e, d, n). We shall justify this term (nonconstructively) by showing that not all
embeddings of G in books can be "bad," in the sense of using too many pages.

We begin by decomposing G into at most d + 1 matching graphs, Go,’", Gd,
each having at most n vertices, by means of an edge-coloring algorithm (this is always
possible by Vizing’s Theorem [26]). Now consider all possible permutations of G’s
vertices (or, equivalently, all possible layouts of the vertices in the spine of a book).

Focus on an arbitrary permutation 7r and on its "behavior" on one of G’s
constituent matching graphs G. Consider those edges of G that connect a vertex in
the left half of the layout with a vertex in the right half; say there are k such edges.
These edges can be viewed (as we have noted earlier) as specifying a permutation on
k integers. Since we have assumed nothing about the layout nor the edges, this
permutation can be viewed as a random permutation on k integers. By a fundamental
result of Hammersley [14, Thm. 6], the fraction of such permutations that have an
increasing sequence of length exceeding kl/+ e(n/2) 1/2 is strictly less than

exp (-2e() 1/2).
This means (as we have noted before, by analogy with work of Tarjan [24]) that at
most this small fraction of the layouts will require as many as (1 + e)(n/2) 1/2 pages to
realize the edges of Gi that connect a vertex in the left half of the layout to a vertex
in the right half (since k -< n/2).

Recall that increasing (resp., decreasing) sequences in a permutation correspond
to similarly ordered (resp., oppositely ordered) sequences of inputs and outputs
of our matching graph. Moreover, one can show via a strengthened analogue of
Lemma 2.4 that the existence of a length-p increasing sequence in a permutation
implies that the permutation can be partitioned into p decreasing sequences. The
residents of each of the pages in the layout are the edges corresponding to one
of these decreasing sequences.



50 FAN R. K. CHUNG, F. T. LEIGHTON AND A. L. ROSENBERG

Now let us remove these edges that connect the two halves of the layout and their
incident vertices. We are left with two (roughly) half-size copies of the same problem.
Moreover, since we have been discussing a matching graph, the relative layout of the
remaining vertices is completely independent of the layout of the vertices that were
removed, so that once again, the permutations induced by the edges can be viewed as
random ones, hence within the purview of Hammersley’s theorem. This means that
when we analyze each of the permutations specified by the edges that connect the left
halves of each of the subgraphs with the right halves, we find that at most the fraction

)
require as many as (1 + e)(n/4) 1/2 pages for their realization. We can now continue in
this fashion to remove edges that have been considered, thereby reducing our concern
to 2 subproblems of size roughly n/2 each, each of which encounters "bad" layouts
with probability less than

We continue generating half-size subproblems until n/2 <-n 1/2, for by that time,
Proposition 3.6 assures us that every layout can be realized within n 1/2 pages (i.e., that
the probability of a layout’s being bad" is 0). It is clear from the foregoing reasoning
that the probability that a random layout requires more than

(1/2) log., (l+e)(n/2i)l/2<=(l+e)(1-1-21/2)nl/2+n1/2
i=1

< (1 + e)(2+ 2’/2)n ’/2

pages to realize one of G’s component matching graphs is less than
(1/2) log

Y 2’-1 exp (-2e(n/2’) 1/2) <-- n 1/2 exp (-enl/4).
i=1

Since G is just the disjoint union of its component matching graphs, it follows
that the probability that a random layout of G’s vertices requires more than

(1 + e)(2 + 21/2)(d + 1)n 1/2

pages to realize all of G’s component matching graphs, hence G itself, is no greater than

(d + 1)n 1/2 exp (-enl/4),
which is less than unity, by the assumed relationship among n, d, and e.

We have thus shown that almost all orderings of G’s vertices result in layouts
using no more than F(e, d, n) pages. [3

Remark. The result of Hammersley that is at the center of the preceding proof
deals with the lengths of monotonic subsequences of permutations. We needed the
result instantiated for increasing subsequences, for this yielded the sought bound on
pagenumber. However, the result can also be instantiated for decreasing sequences,
thereby giving an O(n 1/2) upper bound on pagewidth also. Details are left to the reader.

4.3.2. A construction for trivalent graphs. The (nonconstructive) upper bound of
Theorem 4.7 holds for almost all orderings of the vertices of arbitrary d-valent graphs,
but we do not have a general construction that yields a good ordering. If we restrict
attention to trivalent graphs, then we do have such an explicit construction. We begin
with a special case.
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Let G be a trivalent graph, and let S be the set of its degree-3 vertices. We say
that G is trimmable if G admits a matching whose removal leaves G with at most one
degree-3 vertex.

LEMMA 4.8. Every n-vertex trimmable trivalent graph can be embedded in a (nl/2+
5)-page book, each page having width at most n 1/2.

Proof. Let G be an arbitrary n-vertex trimmable trivalent graph. We shall embed
G in a book via the following series of steps.

1. We remove a matching from G, plus at most one additional edge, in such a
way as to be left with a bivalent subgraph of G: in fact, a set of vertex-disjoint cycles
and paths that include all of G’s vertices. This is possible since G is trimmable. Let
us refer to the removed matching edges as matched edges.

2. We (tentatively) lay G out in a line, cycle/path by cycle/path. Then we reinsert
the removed edges.

3. We partition the linearized version of G into n 1/2 contiguous blocks of n 1/2

vertices each, from left to right. (Assume for simplicity that n is a perfect square.)
4. Our next task is to rearrange our tentative layout so as to achieve the claimed

pagenumber. Note that every block (save possibly one) has at most nl/2+4 edges
leaving it to any other block: at most n 1/2 matching edges and at most 4 emerging
edges that go from the cycles/paths of this block to neighboring blocks. The one
possible exceptional block is the one that had one additional edge removed with the
matching; it could have that additional edge leaving it, too.

We rearrange the vertices in each block, from left to right, in the following way.
For the first block, we sort the vertices in decreasing order of the block numbers to
which their matched edges go. For each subsequent block: (a) we place those vertices
whose matched edges go to leftward blocks to the left of those vertices whose matched
edges go to rightward blocks; (b) we sort the leftgoing vertices in decreasing order of
the block numbers to which their emerging edges go; (c) we sort the rightgoing vertices
analogously; (d) within each group of leftgoing vertices that are going to the same
block, we arrange the vertices in increasing order of the distance from the present
block of their target vertex.

Analysis. The effect of the rearrangements in 4(a)-(d) is that now each of the n 1/2

blocks needs just one page to realize all of its rightgoing matched edges; each of these
pages has width at most n /2. The edges that we have scrambled within each block lie
totally within blocks of size n 1/2 each; hence, we need at most half this many additional
pages to realize them" By Proposition 3.6, m/2 pages, each of width m, can realize
the edges interconnecting any group of m vertices; moreover, since the blocks are
mutually disjoint, we can use the same 1/2n 1/2 pages to realize all of them. The (at most)
4n 1/ emerging edges can be realized using at most 4 new pages: Since we never move
blocks, at most two of these edges connect a block to its right neighbor, and at most
two connect the block to its left neighbor; hence, the only conflicts occur within a
block, and 4 new pages can resolve these conflicts. (Two of the pages used with one
block can be reused in its neighbor block.) Finally, at most one additional page is
necessary, to realize the one non-matched edge of G that we may have had to remove
at the beginning of the embedding. The result follows. [’1

With the help of a crucial observation by Lenny Heath [31], we can extend Lemma
4.8 into a (nl/2+ 6)-page embedding of arbitrary trivalent graphs.

LEMMA 4.9 [31]. Every trivalent graph without cut-edges (i.e., edges whose removal
disconnects the graph) is trimmable.

Proof. If the trivalent graph G has no cut-edges, then every vertex of G has degree
2 or 3. Let us pair up the degree-2 vertices of G and add an edge between each pair.
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This will augment G to a regular trivalent graph, unless G started with an odd number
of bivalent vertices, in which case our pairing leaves us with one unmated degree-2
vertex, call it v. We handle this last contingency as follows. Let u-v-w be a chain in
the augmented G. (If G had fewer than three vertices, it would be univalent.) Replace
v and the edges (u, v) and (v, w) by the single edge (u, w). At this point, in either of
the contingencies, we have augmented G to a regular trivalent graph, possibly having
multiple edges, but definitely having no cut-edges (since G had none). By a well-known
result of Petersen 19], the augmented G has a perfect matching, i.e., a matching whose
removal renders the graph regular bivalent. If we now restore G to its original state
and consider the implications of Petersen’s perfect matching, we verify easily that G
is trimmable. [3

THEOREM 4.10. Every n-vertex trivalent graph can be embedded in a book wzth
(nl/2+6) pages. Each page, save possibly one, will have width at most 2n /2. The
cumulative pagewidth of the embedding will at worst be proportional to n, which cannot
be improved in general.

Proof. Let us be given an arbitrary n-vertex trivalent graph G. By removing all
of G’s cut-edges, we decompose G into subgraphs G1, G2," ", G,,, each having no
cut-edges. By Lemma 4.9, each Gi is trimmable; hence, by Lemma 4.8, each Gi can
be embedded in a (nl/2+ 5)-page book, each page having width at most n /2. Thus,
any embedding of G that lays the Gi out disjointly along the line has the claimed
efficiency. To prove the theorem, then, we need only show how to deal with the removed
cut-edges.

We begin with two easily verified but crucial observations for which we are grateful
to Lenny Heath. First, we note that if we take our layout of one of the Gi and shift
the vertices cyclically, we do not change the pagenumber of the layout, and we at most
double its pagewidth (since our layouts really are in circles, not lines; cf. Theorem
1.1). Second, we note that if we contract each subgraph G to a point, leaving only
the cut-edge interconnections, then the resulting contraction of G is a tree.

Our strategy is to lay G out as a tree of subgraphs, with each subgraph laid out
as in Lemma 4.8, but possibly cyclically shifted.

We begin by arbitrarily picking G1 as the first subgraph to process. We lay G1
out as in Lemma 4.8. Say that in the layout, the vertices

/)11, /)12, /)lk,

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k subgraphs along the line in the reverse order of the v;. When we place each
subgraph, we use the layout prescribed by Lemma 4.8; but we cyclically shift the
vertices in this layout so that the leftmost cut-edge-bearing vertex is the one connected
to Ga. The subgraphs just placed will remain in this order, and their layouts will stay
fixed, but other subgraphs may be placed between them.

Next, we process the just-placed subgraphs recursively, from left to right. (By
"recursively" here we mean the following. If we have subgraphs A and B remaining
to be processed, in that order, and if in the course of processing A we place a new
subgraph C between A and B, then C gets processed before B.) We process subgraph
Gi, i> 1, as follows. Say that in the layout of G the vertices

l)il I)i2, IAiki,

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k subgraphs along the line in the reverse order of the v, immediately to the right of
G (hence, to the left of all other subgraphs that have previously been placed to the
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right of Gi). As before, when we place each subgraph, we use the layout prescribed
by Lemma 4.8; but we cyclically shift the vertices in this layout so that the leftmost
cut-edge-bearing vertex is the one connected to Gi. Again, the subgraphs just placed
will remain in this order, and their layouts will stay fixed, but other subgraphs may
be placed between them.

The reader will recognize that we have essentially laid the contracted tree version
of G out in preorder. By Proposition 3.1, then, we need only one extra page to
accommodate the cut-edges. Since the contracted tree has at most n edges, the extra
page has cutwidth at most n.

We thus have an embedding of G with the parameters advertised in the statement
of the theorem. The cumulative pagewidth of the embedding (which is at worst
proportional to n) cannot be improved in general, as one can verify by observing that
the cutwidth of a trivalent n-superconcentrator must be proportional to n. [3

4.3.3. A lower bound for d-valent graphs. We have been unable to find lower
bounds on the worst-case pagenumber of d-valent graphs that match the upper bounds
of Theorem 4.7 and Theorem 4.10. We have, however, found nontrivial lower bounds,
that we present now.

THEOREM 4.11. For all valences d > 2, for all sufficiently large n, there are n-vertex
graphs of valence d whose pagenumber is no less than

rl
(1/2)-(1/ d)

(const)
log2 n

Proof Let the valence d > 2 of the graphs of interest be fixed. Imagine that we
have a table each of whose rows is labeled with one of the n! permutations of n items
(= layouts of n vertices), and each of whose columns is labeled with one of the n-vertex
matching graphs: the table entry corresponding to row and column j is "FEW" if
layout uses no more than p pages on matching graph j, and is "MANY" if the layout
uses more than p pages. The general strategy of our proof is to demonstrate that if p
is no larger than indicated in the statement of the theorem, then some d-tuple of
columns encounters at least one "MANY" in every row.

In order to get the argument going, we need to know roughly how many rows/per-
mutations/layouts contain a "FEW" for a given column. This information is derivable
from the following lemmas.

LEMMA 4.12. At most p2r permutations of r integers have no increasing sequence of
length p + 1.

Proof We noted in Lemma 2.4 that any permutation of { 1, 2, , r} whose longest
increasing subsequence is oflength p can be partitioned into p decreasing subsequences.
This decomposition can be used to specify the permutation uniquely via two length-r
strings over the alphabet {1, 2,..., p}. The first string specifies, for each position i,
which decreasing sequence occupies that position. The second string assigns the integers
{1,2,..., r} to subsequences. Since there are p2r pairs of length-r strings over
{1, 2,...,p}, the lemma follows. [3

LEMMA 4.13. Let G be an n-vertex matching graph. The number of layouts of G
that use at most p pages does not exceed

P(n, p) 2 E(n’p)

where

n
E (n, p) _-< log n + n. log p + 2n. log log n.
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Proof. Let us count the number of layouts of G that require at most p pages. We
employ the correspondence we have established between matching graphs and permuta-
tions ( 2.2). Consider an arbitrary layout of G that has r edges passing between the
leftmost n/2 vertices of G and the rightmost n/2 vertices; there are obviously no more
than n/2 such edges. Let () denote the binomial coefficient

y!(x-y!"

1. There are at most () ways to choose the r edges that cross the center of the
layout.

2. Each association (= edge) between element and element j in a permutation
can arise because r(i)=j or because -(j)= i; hence there are 2 ways of assigning
left and right halves to each of the r edges.

n/2--r3. There are at most <n/2-r/2J ways to assign edges that do not cross the center
to either the right or the left half of the layout.

4. Since the edges that cross the center can appear in any order, there are r! ways
of ordering the left endpoints of these edges.

5. By Lemma 4.12, no more than p2r of the permutations specified by the r edges
can be realized with only p pages, so there are at most p2 ways of ordering the right
endpoints of the edges that cross the center.

6. There are (n/2) ways to place the (now ordered) endpoints of the r crossing
edges on each side of the layout.

Aggregating all of these possibilities, recursing down to handle the two induced
subgraphs of G to the left and to the right of the center of the layout, and allowing r
to range over its possible values, we end up with the recurrence

( /r ) ((n/2)-r p2 (n/r2)2 [ ( )]2P(n, p)_-</:
n 2

.2" [(n/:Z)-r]/2/’r" P r, p

Our strategy will be to take the largest term T (say that it is the rth term) from this
sum and show that nT, which certainly is no less than P(n, p), is no greater than the
claimed bound. We begin by representing r as

r b, 0 < b <= 1,

and by applying to T standard estimates for the binomial coefficients. We find that

P(n,p)<-nT

_-< exp 2 log n +- H(b) n + + b log b b log e + bn log p

where exp 2(x) =a2, and where H(b) is the base-2 entropy function

H(b)=-[b log b + (1- b) log (l b)].

Let us now assume for induction that our claimed bound

m
E(m, p) _-< - log m + m log p + 2m log log rn
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on E (hence on P) holds for all rn < n. It then follows from the preceding inequalities,
after simplification, that

+ log n- b
n

P(n, p) -< exp 2 log n + H(b) n
2

log e + n log p

+2(1-b)nloglog((1-b))].
Note that the right-hand expression can be shown to be less than

exp 2 log n + n log p + 2n log log n

provided only that for all 0 < b -< 1,

logn () b
H(b)+ <_-2 log log n- 2(1 b) log log (1 b) + log e.

n

We establish this last inequality by verifying that, in fact,

(1) H(b)+log n 2 (_) b
<_-+2b log log + log e.

n log n

This will suffice since

21oglogn-2(1-b) loglog((1-b)-)>21oglogn-2(1-b)loglog(-)
2 log log n -2 log log () +2b log log ()

=21oglogn-21og(logn-1)+2bloglog(-)
>-t-2b log log

log n

Now we must verify the final inequality (1) involving H(b): Using the Taylor’s series
expansion for log (1- b), one can show that

1
H(b) <-b log+ b log e

for all b <_- 1. Hence it suffices to verify that

b log-g+ log e + <_-+2b log log
n log n

This is easily accomplished by analyzing the two cases

b <= (log n)-3/2 and b > (log n) -3/2.

Thus we establish the desired inequality (1) on H(b) and, through it, the desired
inequality on P(n, p).

Return to proof of Theorem 4.11. Consider again our large table with entries
"FEW" and "MANY". The number of "FEW" entries in each (n !-item) column of
the table is at most P(n, p), where/9 is the number of pages we are prepared to use
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to lay out our n-vertex d-valent graphs. Clearly, we cannot lay out all such graphs
unless every d-tuple of table columns contains only "FEW" entries in at least one row
of the table. (The d-tuples of this last assertion arise from the fact that every union
of d matching graphs forms a d-valent graph.) These "FEW" entries have a chance
of existing only if

cd<-n! P(n,P)
c

\ n!

where c denotes the number of n-vertex matching graphs. The left-hand quantity is
the number of d-tuples of matching graphs, while the right-hand quantity is the product
of the number of rows and the number of d-tuples of "FEW" entries in each row.
(The latter fact follows from the observation that, by symmetry, every row has the
same number of "FEW" entries.) Simplifying, then, we can accommodate all d-valent
graphs in p pages only if

P(n,p)d>--(n!)d-1.
By Lemma 4.13, this inequality implies (after taking logarithms)

dn. [1/2 log n + log p + 2 log log n >-- (d 1) n log n + O(n).

The validity of this inequality finally implies the claimed lower bound on p, namely,

Fl
l/2-1/d

p _>- (const)
log2 n

Our upper and lower bounds are within a few logarithmic factors apart when the
valence d is logarithmic in n; they are rather far apart when d is either very big or
very small. We conjecture that one of the factors of log n can be removed in the lower
bound, but the tighter analysis needed is likely to be quite complicated.

5. Cost tradeotfs. In this section, we point out a rather interesting anomaly that
could be important in the context of our study. We describe here two families of graphs
that engender pagenumber-pagewidth tradeoffs. Each of these families can be laid out
using some number p pagesmbut only if the widths of the pages are allowed to grow
proportionally to the size of the graph being laid out. However, if one uses just one
additional page, then the widths of the pages can be kept bounded by a constant.

Both ofthe graph families have the following form. The depth-k K,-cylinder C(k, n)
is the graph whose vertex-set is the union of the k sets

V,, { vi,1, vi,2, ", vi,, }, 1 -< -< k,

and whose edges (a) connect each set V,, into an n-clique, and (b) connect each vertex

vi,j to vertex vi+l,j, 1 _-< < k, 1 _-<j _-< n.
The anomalies of interest appear in the first two parts of the next result. The third

part of the result indicates the failure of the obvious generalization of the first two parts.
PROPOSITION 5.1. (la) Any 1-page layout of C(k, 2) has pagewidth at least k/2.

(1b) There are 2-page layouts of C(k, 2) having pagewidth 2.
(2a) Any 2-page layout ofC(k, 3) haspagewidth at least k/2. (2b) There are 3-page

layouts of C k, 3) having pagewidth 4.
(3) There are 3-page layouts of C(k, 4) having pagewidth 4.

Proof sketch. The fact that C(k, 2) is outerplanar guarantees that it is 1-page
embeddable. The fact that C(k, 3) is planar and subhamiltonian (a hamiltonian cycle
can be traced by going from Vl,1 to Vl,2 to v2,1 to v2,2, and so on until one has reached
/32,n; at that point one goes to /3n,3, thence to Vn_l,3, and so forth, to /31,3) guarantees
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that it is 2-page embeddable. Proving the lower bounds on the pagewidths of the
resulting layouts proceeds by showing that at least half of the constituent n-cliques
must be nested in any minimal-page layout. This is easily verified directly in the case
of C(k, 2): any (not necessarily contiguous) sequence of the form

(or its reversal), where {a, b}= {1,2} precludes an embedding using just one page.
(This verification is a special case of Syslo’s result [23] that every biconnected outer-
planar graph has a unique outerplanar embedding.) In the case of C(k, 3), a direct
verification is a bit more difficult; but the result follows immediately from Whitney’s
proof [27] that every triconnected planar graph has a unique planar embedding.

The existence of the claimed small-pagewidth layouts can be verified by the reader
from the illustrative layouts depicted in Fig. 6. [3

(o)

(b)

(c)

FIG. 6. A small-width layout for (a) C(4,2), (b) C(4,3), (c) C(4, 4).

It would be interesting to know whether or not there exist pagewidth-pagenumber
tradeotts analogous to those of Proposition 5.1 for every number of pages; i.e., can
using one more page decrease pagewidth unboundedly?

Acknowledgments. It is a pleasure to thank Lenny Heath, Ravi Kannan, and Gary
Miller for helpful conversations leading to several key insights.
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ON THE SINGULAR "VECTORS" OF THE LYAPUNOV OPERATOR*

RALPH BYERSt AND STEPHEN NASH

Abstract. For a real matrix A, the separation of A" and A is sep(Ar,-A)=min IIA’X+XAll/lIxll,
where []. represents the Frobenius matrix norm. We discuss the conjecture that the minimizer X is symmetric.
This conjecture is related to the numerical stability of methods for solving the matrix Lyapunov equation.
The quotient is minimized by either a symmetric matrix or a skew-symmetric matrix and is maximized by
a symmetric matrix. The conjecture is true if A is 2-by-2, if A is normal, if the minimum is zero, or if the
real parts of the eigenvalues of A are of one sign. In general the conjecture is false, but counterexamples
suggest that symmetric matrices are nearly optimal.

Key words. Lyapunov equation, sep, singular values, singular vectors
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1. Introduction. For A R define the separation sep (At, A) [9], [10] by

1 sep (Ar, A) min
A /XA

Here II’ll is the Frobenius matrix norm IlzlI=trace (z"z). We are concerned with
the following:

CONJV.CTUgE. The minimum in (1) is obtained by a real symmetric matrix X.
Of course, there may be nonsymmetric minimizers as well.
The sensitivity of the solutions of Lyapunov equations [7] and algebraic Riccati

equations [1], [4] to perturbations in the data is governed by sep (Ar,-A). Related
quantities govern the sensitivity of invariant subspaces [9].

In this paper we show that (1) is maximized by a symmetric matrix and is minimized
by either a symmetric matrix or a skew-symmetric matrix. It is definitely minimized
by a symmetric matrix if A is 2-by-2, if A is normal, if sep (At,_ A)= 0 or if the real
parts of the eigenvalues of A are of one sign. A counterexample shows that the
conjecture is false.

In terms of the Lyapunov operator

L(X) AX+XA
the conjecture is that the smallest singular "vector" of L is symmetric. The structure
of the Lyapunov operator has been studied extensively. Some surveys on this and more
general operators appear in [8] and [11].

Section 2 points out some of the conjecture’s practical consequences in the design
of numerical algorithms. Section 3 proves the conjecture for several special cases.
Section 4 presents some counterexamples. The examples suggest that nearly optimal
symmetric matrices always exist for the problem (1).

2. Applications to numerical software. Consider the Lyapunov equation

(2) L(X) AX /XA B,
where A and B- B are known n-by-n matrices and X--X Rn is unknown. If
the spectra of A and -A are disjoint, then there is a unique solution X. Using t-digit
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base b arithmetic, a sound numerical algorithm for solving (2) will produce an
approximate solution X such that

(3) aTf +fa B- R,

where the residual R is small in the sense that for some modest constant c depending
on the size of the problem and the algorithm used,

(4) U =< cb’-’llA I1- II.
Such an approximate solution X may be bounded in terms of the correct solution X
of (2) using

Ar(X- f)+(X- ff)A=R.

Thus,

(5) IIx- ll sep (A,-A)"

The Bartels-Stewart algorithm [2] and the Golub-Nash-Van Loan algorithm [7] both
produce approximate solutions satisfying (3) and (4), but in the presence of rounding
errors, the Bartels-Stewart algorithm preserves the symmetry of X and R while the
Golub-Nash-Van Loan algorithm usually does not. The latter algorithm could sym-
metrize the solution, but it was designed for nonsymmetric systems, and is less efficient
than Bartels-Stewart in the symmetric case.

So, the Bartels-Stewart algorithm produces a better quality approximate solution.
Furthermore, if (1) is not minimized by a symmetric matrix, then (5) cannot be an
equality for the Bartels-Stewart algorithm. The main issue in (5) is really the difference
in magnitude between the left- and right-hand sides, so this point may not be significant.
(The Bartels-Stewart algorithm also requires less work and storage to solve (2) than
the Golub-Nash-Van Loan algorithm. However, for the more general problem in
which AT is replaced by some other matrix the Golub-Nash-Van Loan algorithm
becomes less expensive.)

An economical estimator for sep (A, A) described in [3] uses a heuristic similar
to the LINPACK condition estimator [5] to choose an approximate minimizer of (1).
The heuristically chosen minimizer can be improved by using inverse iteration on the
Lyapunov operator (2) and its transpose. The approximate minimizer is symmetric
and symmetry is preserved by inverse iteration. Separation estimators like [3] that use
symmetric approximate minimizers may fail when (1) is not minimized by a symmetric
matrix X.

3. Special eases. In this section we show that the quotient in (1) is maximized by
a symmetric matrix and is minimized by either a symmetric matrix or a skew-symmetric
matrix. We establish that it is minimized by a symmetric matrix if A is 2-by-2, A is
normal, sep (AT,_ A)= 0 or if the real parts of the eigenvalues of A are of one sign.

In what follows, we use the usual ordering of (possibly complex) Hermitian
matrices: B=> C if and only if B-C is positive semi-definite. The notation An

represents the Hermitian transpose of A.
The first lemma shows that the conjecture can be false only if (1) is minimized

by a skew-symmetric matrix.
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LEMMA 1. Let A be a real n-by-n matrix. There exists a real matrix Z Rnn such
that Z O,

(6) min
ArX +XA AZ+ZA

and either Z Zr or Z -Z
Proof The Lyapunov operator L(X) in (2) is a linear transformation on the

finite-dimensional, real vector space R"". The Frobenius norm is simply the vector
2-norm applied to "vectors" in R"", so the minimum in (6) occurs when X is a
singular "vector" of L corresponding to the smallest singular value. Let W R"" be
such a singular "vector." Since

]ArW+ WAIl ll(arw+ WA)r[[ [Iarwr + wral[,
Wr is also a singular "vector" of L corresponding to the smallest singular value. If
W+ Wr 0, then Z W is a skew-symmetric matrix satisfying the theorem. Otherwise,
Z (W+ Wr) is a symmetric singular "vector" of L corresponding to the smallest
singular value. S

Notice that the set of real, symmetric matrices and the set of real, skew-symmetric
matrices form invariant subspaces ofthe Lyapunov operator L(X) (2). These subspaces
are ohogonal with respect to the Frobenius inner product

(A, B) trace (ArB)
from which the Frobenius norm arises. Since the symmetric and skew-symmetric
matrices span R", the singular "vectors" of L(X) may be chosen from these invariant
subspaces. The interpretation in terms of singular values and the ohogonality of these
two invariant subspaces makes the use of the Frobenius norm in (1) more natural than
other matrix norms.

Much of what follows depends on the following corollary to the proof of Lemma 1.
COROLLARY 2. If (1) is minimized by a possibly complex matrix X e C, then it

is minimized by , X +, X- 2, X +X and X-X (whenever these are nonzero).
N particular, if (1) is minimized byX e C and the realpart ofX is not skew-symmetric,
then (1) has a real symmetric minimizer.

Proo Similar to Lemma 1.
An immediate consequence of the corollary is
THEOREM 3. Ifthe minimum of (1) is zero, then it is achieved by a symmetric matrix.

Furthermore, ifA is nonsingular, then the minimum is also achieved by a skew-symmetric
matrix.

oo IfA is singular, then there is a vector v e R such that Arv 0. The symmetric
matrix X vvr minimizes (1). If A is nonsingular and K 0 is a skew-symmetric
matrix such that ArK + 0, then is a nonzero symmetric matrix and

(7) A()+()A A()+(-AK)A=O.
Similarly, if A is nonsingular and X 0 is a symmetric matrix such that ArX +XA 0,
then XA is a nonzero skew-symmetric matrix that minimizes (1). S

The conjecture can also be proved for the class of normal matrices.
THEOREM 4. IfA e R is normal, then (1) is minimized by a symmetric matrix X.
oo Since A is normal, there is a unitary matrix U e C and a diagonal matrix

D e C" such that A UDU. The Frobenius norm is invariant under unitary transfor-
mations, so if X e R", then

(8) liNeN + XAII IIO ( SXS +( UXU )DII
X SXS
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Let W UXUn and denote the diagonal entries of D by di. Define integers k and
by Idk + d =min Idi + djl. In terms of W and D, the right-hand side of (8) becomes

d )l /llwllil j

which is minimized by setting W-[wo] where

if i= k andj= l,
wj= 0 ifiCkorjl,

and to is a number of unit modulus chosen so that the real part of UU( W+ Wu) U
is nonzero. By Corollary 2, (W/ W/) also minimizes the right-hand side of (8). So
X- Uu( W/ W)U minimizes the left-hand side. Again applying Corollary 2, the
real part of UI(w+ WI-I)u also minimizes (8). [3

The conjecture holds without any special assumptions for 2-by-2 matrices.
THEOREM 5. IfA is 2-by-2, then (1) is minimized by a symmetric matrix.

Proof. By Lemma 1, either a symmetric or a skew-symmetric matrix minimizes
(1). We will show that for every 2-by-2, skew-symmetric matrix, there is a symmetric
matrix that makes the quotient in (1) at least as small.

Suppose

is a real, 2-by-2 matrix. Without loss of generality, we may assume a & To see this,
let be a root of the quadratic equation

(a 8)+ 2t(y+/3)- t2(a 5) O.

The discriminant is 4(3, +/3)2 + 4(a )2 __> 0, so is real. Set c (1 +/2)-1/2 and s ct.
So, c2 + s2 1, and

is orthogonal. These choices of c and s make the diagonal entries of , RAR 7- equal.
The Frobenius norm is unitarily invariant, so

min
ArX +XA

min
+

IlXll II ll
If the right-hand side is minimized by a symmetric matrix X, then the left-hand side
is minimized by the symmetric matrix X RXR r.

All 2-by-2, skew-symmetric matrices are scalar multiples of

The only value of the quotient in (1) for a skew-symmetric matrix is IIATK +
/AII/llgll I/1. If a=8, and c and s are real numbers such that C2/S2= 1, then
for the symmetric matrix

the quotient in (1) is also I[A:rX + XAII/IIXII 211 I + 1.
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An important special case of the Lyapunov equation (2) is the case that A is
stable, i.e., all eigenvalues of A have negative real part. It is well known that the
Lyapunov operator is order preserving for stable matrices. A consequence is that the
conjecture is true for stable matrices A. To establish this, we need the following two
lemmas.

LEMMA 6. Suppose all eigenvalues ofA Rnn have negative real part and suppose
B and C are (possibly complex)Hermitian matrices such that B >= C. IfX and Y satisfy
the Lyapunov equations ATX +XA B and ATY+ YA C then Y >-_ X.

Proof. The ditterence X- Y satisfies the Lyapunov equation

AT(x Y)+(X- Y)A= B-C.

Since A is stable and B- C is positive semi-definite, X- Y is negative semi-definite
[12, p. 277]. [3

We also need
LEMMA 7. IfX and Y are (possibly complex) n-by-n Hermitian matrices such that

X >- Y >= -X, then X >-- Eli.
Proof. Let Y UDUI-I be a unitary spectral-decomposition of Y (i.e. U is unitary

and D is diagonal). Set Z UXUn. Note that Z >- D>=-Z. In particular, for
1, 2, 3,. n, zii- d, ->_ 0 and z + di -> 0. So z, ->_ Id,,I and

IIYIla=IIDll== z, ,<-IlZll==llXll
i=1 i=1

The first and last equalities follow from the unitary invariance of the Frobenius norm.
We can now prove
THEOREM 8. /f the eigenvalues of A e R have negative real part, then (1) is

minimized by a symmetric matrix.

Proof. For a real skew-symmetric matrix K # 0, we will exhibit a symmetric matrix
S (depending on K) such that

IIATK + KAII> IIATS + sail

The theorem then follows from Lemma 1.
Let K R"" be skew-symmetric and set M ATK + KA. M is skew-symmetric,

so it has an orthogonal spectral-decomposition ofthe form M UDUr where U
uTu I, D eR, D=-DT, and D diag(Djj) is block diagonal with 1-by-1 and
2-by-2 blocks. The skew-symmetry of D forces the 1-by-1 blocks to be zero and the
2-by-2 blocks to take the form

(9) Djj
-a)

The a’s are real and (without loss of generality) positive. Define 1-by-1 and 2-by-2
matrices E)) as follows. If D)) is a 1-by-1 zero block, then let E))= Dj). If D)) is of the
form (9), then

For each j,
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where i2__-1. Define E R"" as the block diagonal matrix E diag(Ejj), and set
R UEUr. The unitary invariance of the Frobenius norm shows that

2 2R

Also R >- iM >-_ -R. If S solves

ATS+SA=R,
Lemma 6 shows that S>-_ iK >- -S, and Lemma 7 shows IlStl->-IliKII IIKII. Therefore

arS + SA
IIsII [Isll IIsII IlK IlK

The difficulty of establishing the symmetry of the minimizer leads to the question
of the symmetry of the maximizer. We close this section by showing that the maximizer
of (1), the "vector" corresponding to the largest singular value of the Lyapunov
operator, is symmetric.

THEOREM 9. For all A

(10) max
,o Ilxll

mx+xm

is achieved by a symmetric matrix X.
Proof. An analogue of Lemma 1 shows that the maximizer is either symmetric or

skew-symmetric. So, for any skew-symmetric matrix K, it suffices to construct a
nonskew-symmetric matrix $ such that

(11) IlarK + KA[I< liars+ Sail
Ilgll IlSll

Suppose that n 2m for some integer m. (The case of n odd is similar.) There is an
orthogonal matrix U R"" and a matrix D R such that

0 D
(12) UrKU=

-Dr 0

This decomposition can be obtained from the Schur decomposition D QJQr, where
Q e R"" is orthogonal and J e R"" is block diagonal with m 2-by-2 blocks. If P is
the permutation matrix obtained from the n-by-n identity by interchanging rows j and
m+j-1 for j=2,3,... ,m, then K=(QP)(PrJP)(QP)T is of the form of (12).

Now partition UrAU into m-by-m blocks as

[All A121UAU
I_AI A:EJ"

The Frobenius norm is invariant under unitary transformations, so

AK + KAII= UAUUTKU+ UrKUUAUII=
IIKII 2 IIUrKUII

Da= aDT =/ IIaD Dm= =/ 211AD/ Da==ll
211011 =

< IlDa=ll=+ IIaDII=+ IIaD+ Da==ll
iiDii =

alr2 AJ[ ]+[00 )][All
0 A21 A22
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Inequality (11) is satisfied by S UTEU where

It is remarkable how specific are the proofs of the above theorems. The conjecture
holds for normal matrices because they are diagonalized by unitary similarity transfor-
mations. It holds when the minimum in (1) is zero because both a symmetric and a
skew-symmetric minimize. It holds for 2-by-2 matrices because there is essentially only
one skew-symmetric, 2-by-2 matrix. It holds for stable matrices because in the stable
case the Lyapunov operator respects order.

4. Condusion. The following counterexample shows that the conjecture is not
true in general.

-2 1 -1

0 1 1

0 0 1

With this choice of A, the minimum in (1) is .5034 (to four significant digits). It is
achieved by the real skew-symmetric matrix

0 .305457 .480347
X -.305457 0 .491479

-.480347 -.491479 0

The smallest quotient in (1) that can be obtained from a symmetric matrix X is
approximately .5079.

The counterexample is not compelling: there is a symmetric matrix that makes
the quotient (1) almost, as small as the minimizing skew-symmetric matrix. In all
counterexamples we have been able to find, there has been a symmetric matrix that
produces a quotient that is no more than three times the quotient for the best skew
minimizer.

To obtain a heuristic estimate of how frequently the conjecture fails, we used
LINPACK [6] to run four sets of Monte Carlo studies. Each set generated upper-
triangular and full matrices A of sizes 3-by-3 to 8-by-8 with nonzero entries chosen
from the normal (0, 1) distribution or the uniform (-1, 1) distribution. The singular
values and "vectors" were computed using the Kronecker product matrix for the
operator (2). The results are summarized in Table 1. We know of no reason why the
triangular samples produced fewer skew-symmetric minimizers than the full samples.

TABLE
Monte Carlo: number of skew-symmetric minimizers out of 1000 trials.

Uniform (-1, 1) Normal (0, 1)
Order Full Triangular Full Triangular

3 14 4 3 3
4 19 8 14 5
5 20 8 13 5
6 24 8 18 6
7 22 10 22 5
8 24 5 23 5
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Counterexamples are rare. The conjecture is true in the common case that the
eigenvalues of A have negative real parts and it is true whenever sep (At, A)= 0.
Furthermore, it appears that there is always a nearly optimal symmetric minimizer, so
the conjecture is true in spirit.

The case of Theorem 8 in which the eigenvalues of A have negative real part is
particularly important because it is in this form that the Lyapunov equation arises in
the theory of stochastic and optimal control. The cost ofthe quadratic regulator problem
is essentially the solution of such a Lyapunov equation [13, p. 284]. Solving the
algebraic Riccati equation by the Kleinman-Newton method requires the solution of
a sequence of such Lyapunov equations 13, p. 285]. The covariance matrix of a linear
stochastic differential equation driven by white noise is the solution of such a Lyapunov
equation [13, p. 252].

REFERENCES

[1] W. F. ARNOLD III, Numerical solution of algebraic matrix Riccati equations, Report NWC TP 6521,
Naval Weapons Center, China Lake, CA, 1984.

[2] R. H. BARTELS AND G. W. STEWART, A solution of the equation AX +XB C, Comm. ACM, 15
(1972), pp. 820-826.

[3] R. BYERS, A LINPACK style condition estimatorfor the equation AX XB7" C, IEEE Trans. Automat.
Control, 29 (1984), pp. 926-928.

[4] ., Numerical condition of the algebraic Riccati equation, Proc. 1984 Joint Summer Research
Conference: Linear Algebra and Its Role in Systems Theory, 1984.

[5] A. CLINE, C. MOLER, G. W. STEWART AND J. H. WILKINSON, An estimate for the condition number

of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368-375.
[6] J.J. DONGARRA, J. R. BUNCH, C. B. MOLER AND G. W. STEWART, LINPACK Users’ Guide, Society

for Industrial and Applied Mathematics, Philadelphia, 1979.
[7] G. GOLUB, S. NASH AND C. VAN LOAN, A Hessenberg-Schur Methodfor the problem AX+XB C,

IEEE Trans. Automat. Control, AC-24 (1979), pp. 909-913.
[8] P. LANCASTER, Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544-566.
[9] G. W. STEWART, Error and perturbation bounds associated with certain eigenvalue problems, SIAM Rev.,

15 (1973), pp. 727-764.
[10] J. M. VARAH, On the separation of two matrices, SIAM J. Numer. Anal., 16 (1979), pp. 216-222.
[11] H. WIMMER AND A. ZIEBUR, Solving the matrix equation ,,=lf(A)Xg,(B)=C, SIAM Rev., 14

(1972), pp. 318-323.
[12] W. M. WONHAM, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York,

1979.
13] D. L. RUSSELL, Mathematics ofFinite-Dimensional Control Systems, Marcel Dekker, New York, 1979.



SIAM J. ALG. DISC. METH.
Vol. 8, No. 1, January 1987

(C) 1987 Society for Industrial and Applied Mathematics

L-FUNCTIONS AND THEIR INVERSES*

JOHN S. MAYBEE AND GERRY M. WIENER

Abstract. Using concepts from qualitative matrix theory, we introduce a class ofnonlinear mappings from
n n called L-functions. These generalize the L-matrices in much the same way that M-functions generalize
M-matrices. We prove some global inverse function theorems for L-functions on several different types of
domains without assuming that such functions are differentiable. Thus we do not make use of the Jacobian
matrix. We also obtain interesting qualitative relations which must hold between an L-function and its inverse.
Finally we prove a global implicit function theorem for L-functions, again without assuming differentiability.

Key words. Jacobians, inverse function theorems, implicit function theorems, global univalence
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1. Introduction. The classical inverse function theorem and implicit function theo-
rem are strictly local results. Therefore they are of limited utility to research in various
applied fields such as economics, engineering, or regional and urban planning where
nonlinear models are often formulated. In these fields scientists would like to know when
the models they have built have solutions wherever data is given in the range of the
functions defining the model. Thus global inverse function theorems are often required.

In recent years several global theorems have been proved. The main result seems
to be the work of Gale and Nikaido [2] who deal with the so-called P-functions, i.e.,
functions whose Jacobian matrix is a P-matrix throughout a suitable domain. (The matrix
A is a P-matrix ifevery principal minor of.4 is positive.) The monograph ofParthasarathy
11 summarizes this and other known results on global univalence although it says very

little about implicit functions.
From Jacobi’s time down to the present, researchers have concentrated upon the

use of properties of the Jacobian matrix in order to derive inverse function theorems.
We shall show that differentiability throughout a domain is not essential in order to
prove either a global inverse function theorem or implicit function theorem. Thus it is
not always necessary to formulate such results in terms of the Jacobian matrix.

During the past 25 years qualitative matrix theory has been developed and applied
to a variety of problems such as stability (see Jeffries, Klee and van den Driessche [4]),
the solution of linear systems (see [9], [8], [6], among others) controllability (see Jeffries
[3]), etc. We borrow the basic ideas from this field and a fundamental concept due to
Ortega and Rheinboldt 10] in order to define the concept of a qualitative mapping.
From among the qualitative mappings we identify a subclass which we call L-functions
and which generalize to the nonlinear case the notion ofan L-matrix introduced by Klee,
Ladner and Manber [6]. Our definition generalizes L-matrices in much the same way as
the definition ofan M-function (see, for example, Rheinboldt 12]) generalizes the notion
of an M-matrix. For the L-functions we prove both global inverse function theorems
and a global implicit function theorem.

2. Fundamental concepts. Given a real matrix A, we can associate with it a new
matrix Q(A) such that Q(A)ij sgn aij for all and j (see Maybee and Quirk [9], where
this concept was first introduced and elaborated upon). For example, if

* Received by the editors August 19, 1985; accepted for publication (in revised form) April 21, 1986.
University of Colorado, Boulder, Colorado 80309. The work of this author was supported in part by

grant no. l01/84 from the Division of Scientific Affairs of the North Atlantic Treaty Organization.
University of Colorado, Denver, Colorado 80202.
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then

-3 4 21A0 -8
6 -4 0

sgn A0
+ +1+ +

+ 0

Note the use of + in place of and in place of- here. This usage has become
conventional (see Johnson [5]).

Equivalently we can associate with A a signed digraph S(A) (V, A, tr) where V
consists of n points (vertices) labeled 1, 2, n, (i, j) e A is an arc of S(A) if and only
if ao 4:0 and a: A -- (+, -) following the rule that a(i, j) + if aij > 0 and (i, j)
if a0 < 0. For the above matrix Ao, S(Ao) is shown in Fig. 1. Note the use of a dashed
line for a negative arc.

DEFINITION 1. A real n n matrix A is an L-matrix (or sign nonsingular matrix)
if and only ifA is nonsingular and for all n n matrices B satisfying Q(B) Q(A), B is
also nonsingular.

In other words, A is an L-matrix if it is nonsingular by virtue of its sign pat-
tern alone.

We will denote by (A) the signed digraph obtained from S(A) by deleting all loops
of S(A). Also, as is conventional, the sign of any subset Ao ofA is simply the product of
the sign ofthe arcs in A0 (sign Ao + ifA0 ). The following result is the fundamental
theorem on square L-matrices.

THEOREM A. (Bassett, Maybee and Quirk [1]). A real n n matrix A is an L-
matrix ifand only ifby column permutations and multiplication ofcolumns by -1, it
can be transformed into a matrix B satisfying

(i) bii < O, <- <= n,
(ii) S(B) has only negative cycles.
An L-matrix B is said to be in normal form when it satisfies (i) and (ii) of

Theorem A.
We now have the tools to introduce the concept of a qualitative function. To this

end assume f." D
_
n .. n and thatf- (J], fn). Let ej be the jth standard basis

vector for n. Following Ortega and Rheinboldt suppose x 6 D and define

4o(t) f(x+ te)
for all such that x + te D. Suppose that for all i, j, -< i, j =< n, 0 is either a strictly
increasing, strictly decreasing, or constant function of t independent of the base point x.

FIG. 1. The signed digraph ofAo.
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In this case we say thatfis qualitatively defined on D and we associate withfa matrix
Q(f) such that

Q(f)o +
Q(f)o

Q(f)o 0

if 0(t) is a strictly increasing function,

if 0(t) is a strictly decreasing function, and

if 0(t) is a constant function.

Thus we see that Q(f)q 0 if the variable x "does not appear inf", Q(f)o + if
f is an increasing function of x in D when all other variables are held constant, and
Q(f)o in a decreasing function ofxj in D when all other variables are held constant.

DEFINITION 2. The function D
___
n .+ n is called an L-function on D iffis

qualitatively defined on D and Q(f) is an L-matrix.
Now Theorem A can be extended to the nonlinear case because column interchanges

in the matrix Q(f) correspond to relabeling pairs of variables in the function f and
multiplication of a column of Q(f) by -1 corresponds to replacing a variable infby its
negative. Thus we can use the test given in Theorem A to determine when fis an L-
function by applying the theorem to Q(f). We wish to point out two facts ofimportance,
however. The first is that at the present time it is unknown whether or not the problem
of testing a signed digraph to determine that it has only negative cycles is NP-complete.
Thus the problem of testing a given qualitative function to determine if it is or is not an
L-function is ofunknown difficulty. The second fact ofimportance is that it is not always
desirable to put an L-matrix or an L-function into the same normal form.

Here are some examples of L-functions.
Example 1. Letf(x, X2) (J(Xl, X2), A(XI, X2)) where

A(x,,x,) allXl + a12x2

a2lx + a22x2
a a22 al2a21 < O,

J(x, x2) where ao> 0, 1,2, 3, j 1,2.
a3x + a32x2

This is an L-function for all x > 0 and x2 > 0.
Example 2. Letf(xl, Xn) (f(xl, Xn), ,L(Xl, Xn)) where

aq(x,, ,x,)
b + al lXl

f(x,, ,Xn) Xi+ + Ci

ai,i- ixi- + aiixi + bi’
2=<i=<n-1,

f,(x, ,x,)
an,n- lXn- + annXn + bn’

with all constants positive. This is an L-function for all x >_- 0, _-< -< n. This example
is of particular interest because the closely related example defined by

jq(x, ,x,)= ax + a12x2 + c,

f(x ,x,) aiixi + ai, + lXi + + ci

ai,i- lXi + bi
2_-<i=<n- 1,

fn(X ,Xn) Xn + Cn

an,n- Xn- + bn’
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with all constants positive is also an L-function for all xi >- 0. This second case is not in
the normal form required in Theorem A.

We conclude this section with two technical ideas required in the following theorems.
First we say that two vectors x, y n conform in sign if for _-< _-< n, sgn xi q= 0

and sgn Yi 0 imply sgn xi sgn Yi, and for at least one i, _-< _-< n, sgn xi 0 and
sgn Yi O. The vector x, y n anticonform in sign if x and -y conform in sign. Two
vectors x, y nonconform in sign ifx and y neither conform nor anticonform in sign.
Two vectors x, y n strictly nonconform in sign ifx and y nonconform in sign and for
at least one value of sgn xi q: 0 and sgn Yi q: 0. To illustrate observe that:

(1, 0, 2, 0) and (2, 1, 0, 1) conform in sign,
(1, 2, 3, -1) and (-1, -2, -3, 0) anticonform in sign,
(1, 0, 5, 0) and (0, 1, 0, -3) nonconform but do not strictly nonconform in sign,
(1, 3, 5) and (2, -1, 2) strictly nonconform in sign.

DEFINITION 3. A domain D
_

will be called coordinately connected if, given
any two points a, b e D, there exists a finite sequence of distinct points Pl a,/92,

Pk b in D such that
(A) each vector Pi / Pi, l, , k l, has exactly the same sign pattern, i.e.,

sgn (Pi + Pi) sgn (b a), and
(B) there is a path from p to p + 1, along the edges of the parallelepiped enclosed

by Pi, Pi + for l, k which lies entirely within D.
Note, for example, that DI in Fig. 2 is coordinately connected but Dz is not because

each path from a to b violates condition (A).

3. Univalence. For reference we state the classical inverse function theorem. In this
connection we shall use J(f) to denote the Jacobian matrix ofthe functionf: D

_ --. The value of this matrix valued function at the point x is J(f)(x).
THEOREM B. Suppose fe CI(D) on the open set D

_
n into n and [J(f)(a)]-I

existsfor some a D. Then
(a) there exist open sets U, V in with a U,f(a) Vandf is a univalent mapping

ofU onto V, and
(b) f- 1: V- U is C1(V) andfor all y V

j(f-l)(y) [j(f)(y)]-l.

If J(f)(x) exists for all x D, it is not necessarily true thatfis globally univalent as
can be seen by the example f(x, y) (ex cos y, ex sin y). We have

IJ(f)(x, y)l
ex cos y
e sin y

-ex sin Yl e2x 4:0
ex cos y

D1

FIG. 2. D is coordinately connected, D2 is not.
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for all (x, y) e 2, but, since f(x, y + 2r) f(x, y), fis not globally univalent on all of
2. Note, on the other hand, that Q(f) is an L-matrix on (0, r/2), 0r/2, r), etc.
Our first theorem shows thatfis, in fact, globally univalent on each ofthese semi-infinite
rectangles.

THEOREM 1. Letf: D
_
n _. n be an L-function on an open or closed rectangle

D. Thenfis globally univalent on D.
Proof. Suppose a, b e D, a =/= b with a (al, a2,

Then

f(b)-J(a) =f(b, a2, an) -j(al a2, an) +fi(b b2, a3, an)

-jS(bl, a2, a) +... +j(b, b2, b,)

-j(b, b2, b_ , a)
for 1, 2, n. Observe that (a, a2, an), (b, a2, an), (bl, b2,
bn) are all points in D since D is rectangular. If (b a) and row/Q(f) conform or
anticonform in sign, then

sgn (J(b)-f(a))= +_sgn row/Q(f). (b- a)q= O.

Here represents the standard scalar product. Since Q(f) is an L-matrix and (b a) is
not the zero vector, there exists a row of Q(f), say row Q(f), such that row Q(f) and
b a either conform or anticonform in sign. Thus fc(b) -fc(a) 4:0 implying f(b)
f(a) 4 O. Since a and b were arbitrary, distinct points in D, fmust be globally univalent
on D. r-l

Note that D is not required to be a finite rectangle in the proof so the assertion
made above regarding the function f(x, y) (ex cos y, ex sin y) on domains such as
(0, r/2), etc., are correct.

Our next result shows how the domain, D, can be enlarged.
THEOREM 2. Let f: D n n be an L-function on a coordinately connected

domain D. Thenfis globally univalent on D.
Proof. Suppose for contradiction that f is not globally invertible, i.e., there exist

points a, b e D, a =/= b, such that f(a) fib). Since D is coordinately connected, there
exists a sequence of points p, P2, , Pk in D withp a, Pk b such that (A) and (B)
are satisfied. Now (B) implies that for each pair pj, pj / there is a sequence of n points
q, q22, qn2 such that qi2 D, <= <= n, qj p, qn P / and qo, qi / , differ in
at most one coordinate. (qj, ..., qn2 will be equal to the vertices of the parallelepiped
that lie on the path from p to p2 / . If the parallelepiped ;nduced by p2 and pj / has
dimension m =< n, then exactly m of q2, q22, "’", qn2 will be distinct.) Thus for all i, -<
-< n,

fi(Pj +,) fi(Pj) =J(q2j) -J(qlj) -I-j(q3j) fi(q2j) +"" +f(qnj) f(qn ,,j).

As in the proof of Theorem l, if pj + p: and row/Q(f) conform or anticonform in
sign, then

sgn (jS(Pj + ) -J(P)) sun row/O(f).(p + p) :/= O.

Since Q(f) is an L-matrix and p / pj is never the zero vector, there exists a row of
Q(f), say rowe Q(f), such that rowe Q(f) and p / p either conform or anticonform
in sign. Moreover, by condition (A) in the definition of coordinate connectedness, each
pj /, pj, j 1, k 1, has the same sign pattern so row Q(f) and pj / p1 will
either conform or anticonform in sign for each j. Consequently either f(p+ 1)
fc(Pj) > 0 for -< j =< k or f(p / ) -f(pj) < 0 for -< j -< k (the difference



72 JOHN S. MAYBEE AND GERRY M. WIENER

being positive when rOWc Q(f) and pj / pj conform in sign and negative when rOWc
Q(f) and p / p anticonform in sign). Since

f(b)-fc(a) =fc(Pk) --fc(Pk- ,) +f(Pk- ,)--f(Pk- 2) +’’" +f(P2)--fc(P),

we have fc(b) -fc(a) # 0, when p + Pi and rOWc Q(f) conform or anticonform in
sign. But this impliesfc(b) f(a) # 0 when b a and rowe Q(f) conform or anticonform
in sign as b a and p / P have the same sign pattern. The remainder of the proof
now follows the proof of Theorem 1. V1

The following result is now of some interest.
COROLLARY 3. Iffis an L-function on an open convex region D, thenfis globally

univalent on D.
Proof. Suppose a, b are distinct points ofD. Since the line segment [a, b] is compact,

there exists a radius 2r such that for each p e [a, b], the open ball B(p, 2r) with center p
and radius 2r lies entirely within D. Ifp, q are on the line ab and the distance from p to
q is less than or equal to r, then it follows that the closed cube with diagonal pq must lie
entirely within D. It is thus clear that there exists p, P2, "’", Pk on [a, b] such that
properties (A) and (B) are satisfied. Thus Theorem 2 applies to D. Vq

As an example illustrating Theorem 2 consider the following function discussed by
Gale and Nikaido, namely

f(x, y) e2x- y2 + 3, g(x, y) 4e2Xy- y3.
Observe that when x 0, y +2, we havef g 0. Now (f, g) is an L-function for all
x and for 0 < y < 2eX/4. Also this region is coordinately connected although not convex,
hence the mapping defined byfand g is globally univalent there.

We can extend Theorem 2 and Corollary 3 by using the invariance of the domain
theorem which states that if D is open in n and f: D -- n is globally univalent and
continuous, thenf(D) is open in " andfis a homeomorphism 11 ]. We therefore have
the following result.

THEOREM 4. Iff: D --* is a continuous L-function and D is an open
coordinately connected set or ifD is a compact coordinately connected set, then f is a
homeomorphism.

It should be noted that iffe C(D), then the usual inverse function theorem and
its related results apply so we obtain also the following results.

THEOREM 5. Iff: D
_

--* is a continuously differentiable L-function and D
is an open coordinately connected set, thenf- is continuously differentiable on riD).

We will present here two applications of our results thus far. In this connection we
point out that our definitions imply that L-functions are normalized so that each ii(t),

1, ..., n is different from zero. The usual normalization is that given by Bassett,
Maybee and Quirk [1 where 4ii(t) is strictly decreasing, i.e., Q(f)ii --, 1, n.

As our first application supposef(z) in an analytic function ofthe complex variable
z on the convex or coordinately connected domain D

_
2. Then in Df(z) u(x, y) +

iv(x, y) satisfies the Cauchy Riemann equations Ux Vy, uy -Vx. Assume ux and uy
do not change sign in D and that at least one of Ux, uy is nonzero in D. Then the Jacobian
matrix of the mappingf= (u, v) is

J(f)(x,y)=[-UyUx u,UY]"
If u > 0 in D, then this matrix is an L-matrix throughout D and

Q(f)
+ +

for Uy> O,
+

for Uy < O, or for Uy 0+ + + 0 +
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in D. If Ux < 0 in D, then the matrix is again an L-matrix throughout D with

Q(f) for uy> 0, for u, < 0, or for u, 0
+ 0

in D. Similar results hold for Ux O, u, 0 in D. Thus in all cases we can assert that if
f(x) is analytic in D with u and u, ofconstant sign at least one ofwhich is nonzero, then
the mapping (u, v) defines an L-function on D. Therefore by our theorems (u, v) or,
equivalently, fis globally univalent on D.

As a second application we consider what form an L-matrix A takes when the
normalization is a > 0, 1, 2, ..., m. We then have that A is an L-matrix if and
only ifevery cycle ofeven length in S(A) is negative and every cycle ofodd length positive.
For such a matrix every principal minor of order r is positive for all r, i.e., A is a P-
matrix. Thus we can identify the class of qualitative P-matrices, a subclass ofP-matrices
apparently not noticed before. It follows that there is a subclass ofP-functions, the qual-
itative P-functions, which are globally univalent as a consequence of our theorems.

In his book Parthasarathy presents an example, namely,f(x, y, z) (,j,J;) where
q x + z, x + y, j; y + z. The Jacobian is

J(f)(x, y, z) 2x 2y 0
0 2y 2z

It is easy to see that for all x < 0, y < 0, z < 0 this is an L-matrix as it is also for all x >
0, y > 0, z > 0. On the other hand, for all x > 0, y > 0, z > 0, it is also a P-matrix and

+ 0 +
Q(f)= + + 0

0 + +
is a qualitative P-matrix. Note that the related functionj x2 z2, y2 x2, j
Z2 + y2 has

Q(f)=- + 0
0 + +

and J(f)(x, y, z) is also a P-matrix for all x > 0, y > 0, z > 0.
We could, of course, generate families of additional examples.

4. The sign pattern of the inverse. The classical inverse function theorem (Theorem
B) says something about the Jacobian matrix ofthe inverse mapping. On the other hand,
the following result of Lady and Maybee [7] details the sign pattern of the inverse of an
L-matrix.

THEOREM C. (Lady and Maybee). Let A be an irreducible L-matrix with aii O,
<-_ <= n. Then, setting A- [a0], we have

(i) ifao 4: O, sgn aji sgn a0,
(ii) ifao O, then the sign ofaj is qualitatively determined ifand only ifevery path

p(j --, i) in S(A) has the same sign. In this case, sgn ai -sgn p(j -- i) where
p(j - i) is any path in (A)from j to i.

For example, suppose

+ 0 +
0Q(A)=

0 +
0 +
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then

sgnA-1 + +

where we use to denote an element whose sign is not determinate because of paths of
different signs from j to in S(A).

Theorem C shows that the structure of the inverse of an irreducible L-matrix is to
a large degree qualitatively determined. One would hope that a similar result holds for
L-functions. In fact we can say even more.

THEOREM 6. Suppose f: D
_
n

__
n is an L-function and D is coordinately

connected. Ifsgn (Q(f))?,) is qualitatively determined, then:
(c0 sgn (a(f))i,-] + implies fc, l(x + teJ) is increasing with respect to for any

xef(O).
() sn ((f))] 0 iplief: (x / tej) i constant with respect to t for any x e

f(D).
() sn ((f))] -1 impliesf(x + te) is decreasing with respect to for any

x e f(D).
Proo Suppo ((f))] is qumtivdy deten. tf-(x) u, f-(x + tej)

v for some t > 0. Thusf(u) x, f(v) x + te andf(v) -f(u) tej. We now claim that
for the above j,

(1) row1 ((f)) and v u confo in sign,
(2) if j, row ((f)) and v u nonconfo in sign.

Facts (1) and (2) follow from the proof of Theorem 2 in which we found out that

sn ((v) -(u)) sn ro (f). (v u) 0

if row (f) and v u confo or anticonfo in sign. If row1 (f) and v u neither
confo nor anticonfo in sign, there must be another row in (f), say row (f),
such that row (f) and v u either confo or anticonfo in sign. This is due to the
fact that (f) is an L-matrix. But then fi(v) -fi(u) 0 for some c j, contradictin
the fact thatf(v) -f(u) (v) -(u) tei. Since row/f) and v u cannot anticonfo
in sign as > 0, it is clear that (1) and (2) hold.

We fuher claim that them exists an L-matrix A havin identical sign patterns of
(f) such that A(v u) ej. To prove this, let v u (, , ,). Define A as
follows:

A sn (f) if 0,

A 0 if(f) 0,

A when (f) and have the same nonzero sign.
CWk

(Here c equals the number of coespondin dements in row (f) and havin the
same nonzero sign.)

-1
A when (f) and k have opposite signs.

dw
(Here d equals the number of coespondin dements in row (f) and that have
opposite signs.) From propeies (1) and (2) and the definition ofA it is evident that A
is an L-matrix.
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Since there exists an L-matrix A having the same sign pattern as Q(f) such that
Ao e, any qualitative determination found for elements in colj (Q(f))-l must hold
for o and vice versa. Thus, if sgn (Q(f)) is qualitatively determined, sgn oi
sgn (Q(f)). But 0i fv,(x + te) -fv,(x) and x was arbitrary, so that properties (a),
(/3), and (-y) must hold.

From the proof of Theorem 6 we obtain the following interesting corollary.
COROLLARY 7. IfA is an L-matrix, then row A and col A- conform in sign for

<= j <= n, and rowj A and COlk A-1 nonconform in signfor <= j, k <= n, j 4 k.

5. An implicit function theorem. Before presenting an implicit function theorem
for L-functions, we will present two general implicit function theorems that apply even
for nondifferentiable functions.

THEOREM 8. Supposef" D
D, a , b m such that f(a, b) O. Define F: D

_
m ._ m by

F(x, y) (x, f(x, y)). IfF is globally univalent, then the set S {(x, y)
m: f(x, y) 0} defines a nontrivial implicit function y h(x), i.e., if (x, y) S and
(x, z) S, then y z h(x).

Proof Suppose f(x, y) 0 and f(x, z) 0 where (x, y) D, (x, z) D, x ,
y, z m. Since (x, f(x, y)) (x, f(x, z)), we have F(x, y) F(x, z) and thus y z as F
is one-to-one. []

THEOREM 9. Supposef: D
_
n m _. m and there exists a point (a, b) D,

a n, b m such that f(a, b) O. Suppose N is a neighborhood of(a, b) contained
entirely within D. IfF as defined in Theorem 8 is a homeomorphism, then the set S
{(x, y) D, x , y m:f(x, y) O} defines a continuous, nontrivial implicitfunction
y h(x) and there exists an open set H such that a H domain h.

Proof. Let U, 1/" be open sets containing a, b, respectively, such that U F N.
By the invariance of domain theorem, F(U F) is an open set containing (a, 0). Thus
there exist open sets H, K containing a, 0, respectively, such that H {0
F(U F). Clearly, H

___
U by the definition of F. The remainder of the theorem follows

from Theorem 8.
We will now present an implicit function theorem for L-functions.
THEOREM 10. Supposef" D n m _. m and there exists a point (a, b) D,

a , b m, such that f(a, b) O. Suppose D is coordinately connected and that
f(x, y) is an L-function with respect to yfor all x, (x, y) D. Then F as defined in Theorem
8 is an L-function on D and Theorem 8 holds.

If in addition f is continuous, D is compact and (a, b) e N
_
D where N is a

neighborhood of (a, b) or iffis continuous and D is open, then Theorem 9 holds.
Proof. Since f is an L-function with respect to y for all x for (x, y) D we can

introduce the matrix Q(F) defined as follows:
q 0
0 qn

Q(F) q + 1,1 qn + l,n +

qn + m, qn + m,n + m

Here the elements qi +, -< =< n, and the elements q, n + 1, n + m, j
n + 1, ..., n + m, are determined by the fact thatfis an L-function with respect to y.
Thus Q(F) is block lower triangular and the diagonal blocks are L-matrices. By an easy
argument Q(F) is then an L-matrix regardless of the numbers Q, n + 1, ...,
n + m, j 1, ..., n, which we may arbitrarily assign the values +, for example. The
theorem now follows from Theorems 2, 8 and 9.
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Theorem 6 may now be employed to provide us with information concerning the
implicit function y h(x). In this regard assume that h(x) (hi(x), h2(x), "", hm(x))
and that F-l(x, y) (g(x, y), g2(x, y), gn + m(X, y)). Since y h(x) iff (x, y)
F-(x, 0),

hi(x + tej) hi(x) gn / i(x + te, O) gn / i(x, 0).

Thus if sgn (Q(F))+ i, is qualitatively determined, we can determine if hi(x + te)
hi(x) is increasing, decreasing or constant with respect to t.
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THRESHOLD REPRESENTATIONS OF MULTIPLE SEMIORDERS*
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Abstract. Cozzens and Roberts recently proved a variant of the Scott and Suppes representation theorem
for semiorders. They treated nested pairs of semiorders, but stated as open the corresponding problem with any
number of relations. A solution is described which even alleviates the condition and the proof in the case of
two relations. Moreover, representations simultaneously involving constant and nonconstant thresholds are

considered.
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1. Introduction. In order to modelize an individual’s preferences on a finite set X
of objects or actions, Luce [5] associates to every object x in X a measure of utilityf(x),
and proposes to explain preferences through comparisons of utility values, taking into
account a discrimination threshold a. Formally a semiorder is a binary relation P on a
finite set X which satisfies the conditions in the following proposition from Scott and
Suppes 14].

PROPOSITION 1. There exist a real-valued mappingfon X, and a nonnegative real
number a such thatfor all x, y X,

xeycf(x) >f(y) + 0-

iffP is an irreflexive relation with for all a, b, c, d X,

(aPb and cPd) (aPd or cPb),

(aPb and bPc) (aPd or dPc).

In recent papers concerned with decision theory, there appeared a variant of the
semiorder model in which two thresholds respectively determine weak and strong pref-
erences. Roy and Hugonnard 10] encode in this way various criteria underlying the
.forecast analysis ofline extensions for the Paris metro, and Vincke 15] shows the adequacy
of the model in a case study of a projects comparison. After further advocating their
model, Roy and Vincke 11 raise the problem ofcharacterizing pairs ofrelations amenable
to their description. Motivated by other applications whose report shall not be repeated
here, Cozzens and Roberts 1] also consider, and solve, the same problem, but leave
open the following general question: given m relations P, P2, Pm on the finite set
X, when do there exist a real-valued mappingfon X and nonnegative real numbers 0-,

0"2, 0"m such that for all j { 1, 2, rn} and x, y X

(1) xPj yc.f(x) >f(y) + 0"j.

Such families of relations appear in psychological measurement: each Pj captures one
level of the preferences an individual expresses among a set X of objects. They are also
met in the theory of"probabilistic consistency" (see e.g. Roberts [6], [7] or the references

* Received by the editors December 10, 1984; accepted for publication (in revised form) March 31, 1986.
This work was supported by National Science Foundation grant IST84-18860 to J.-C1. Falmagne at New York
University, New York, New York 10012.

Universit6 Libre de Bruxelles, C.P. 216, Bd du Triomphe, 1050 Bruxelles, Belgium.
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therein). Given the frequency p(a, b) that object a is chosen over object b by some given
subject, one forms a family Px of binary relations by setting for any real number ,

aPxb iffp(a, b) > k.

The subject’s consistency is then defined in various senses by conditions on the family
of relations Px. It turns out that the Px are usually assumed to be semiorders, and that
the existence of a representation as in (1) is a Very strong form of consistency.

Now when does a representation as in (1) exist? For m 1, the answer was given
in Proposition 1. In case m 2, Cozzens and Roberts [1 ], relying on a technique due to
Scott 13], were able to formulate a rather involved criterion that they could not extend
to other values of m. We will provide here a general result for all m, from which easily
follows their solution. Our proof uses the so-called potential theory of graphs, and a bit
of convex geometry. The relevance of potential theory to semiorders was illustrated by
Roy and Vincke [12] in establishing for m 2 a result similar to, but weaker than, the
one in ]. Notice that, independently ofus, Roubens and Vincke [9] obtained the Cozzens
and Roberts [1] result (m 2).

After having established the general case, we will apply the technique to a still wider
setting. The thresholds in the representation can be taken either as constant or depending
on the object. Besides semiorders, we thus work in 5 with interval orders, whose rep-
resentation theory is due to Fishburn [4].

2. Multiple graphs. Our basic tool is a classical result on graphs that we restate for
the reader’s convenience. Here a weighted multiple graph G (V, E, w) will be a finite
set V of vertices, a family E of (ordered) pairs of vertices called edges (with repetitions
of the same pair allowed), and a weight mapping w from E to the reals. By a cycle of G
we mean any finite sequence of edges having the form XlX2, x2x3, Xt- lXt, XtXI. The
weight of a cycle is the sum of the weights of its edges.

PROPOSITION 2. For G V, E, w) as above, thefollowing two conditions are equiv-
alent:

(i) there exists a real-valued mappingfon X such thatfor all xy E,

f(x) >_-f(y) + w(xy);

(ii) no cycle ofG has a strictly positive weight.
Clearly in condition (ii) one can replace "cycle" by "simple cycle" (in the sense that

no vertex is met more than once by the cycle).

3. Representations of multiple semiorders. Let (PI, P2, Pm) be an m-
tuple of binary relations on the same finite set X. A constant threshoM representation for

consists in a real-valued mappingfon X and real numbers trl, a2, O’m such that
the following condition holds for all j { 1, 2, m} and x, y e X:

xejy.cf(x) >f(y) + aj.

We shall denote this representation by (f, a, a2, , a,,). When such a mappingfexists,
we call the m-tuple of real numbers (a, a2, trm) a constant threshold vector for .

When a representation exists, it is clear that any P must be irreflexive (in case aj ->_
0) or reflexive (in case aj < 0).

For a binary relation R, we write R’ for its dual, that is, the converse of its inverse.
Given a family as above, we call cyclefrom any sequence ofpairs ofthe form XlX2,

X2X3, Xt- IXt, XtXl, all taken in P tA P’ tA P2 I..J P’2 U t.J Pm I..J P’m. We associate
to this cycle the numbers pj and pj of pairs that were chosen in P and P), respectively,
and set qj p) pj. It will be assumed in the definition of a cycle from that py > 0
for at least one j.
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PROPOSITION 3. The m-tuple (o-1, O-2, o-m) ofreal numbers is a constant threshold
vectorfor ifffor each cyclefrom thefollowing inequality holds:

qlo- + q2o-2 + + qrno-m> O.

Proof Assume (f o-, O-2, O’m) is a representation for . Since there are only
a finite number of values f(x) -f(y) o-j, we can find > 0 which is a lower bound for
all those strictly positive values. We then have

and also
xPy f(x) >=f(y) + + ,

Now define a weighted multiple graph G (V, E, w) by taking V X and introducing
an edge xy of weight

o-j + whenever xPjy,

-o-j wheneverxPjy.

Proposition 2 implies that any cycle of G has nonpositive weight, that is,

or

which implies

m m

j=l j=l

m m

E (p-p)-, 2; pj >= o,
j=l j=l

m

qj,>O.
j=l

Conversely, since there are only a finite number ofcycles from without repeated pair,
we can find > 0 such that for any cycle

m m

j=l j=l

Relying on the same graph as above, and taking the arguments in reverse order, one
derives the existence of a mapping fsuch that (f o-, o-2, o-m) is a representation
for .

COROLLARY. There exists a constant threshold vectorfor iffthere exists such a
vector with integer components.

Let us consider the particular case of two relations P and P2. Assuming P2 is irre-
flexive a representation (f o-1, o-E) exists for (P, P2) iff such a representation exists
with O-2 > 0 (this will be explained in the proof of Proposition 4 below). Hence we see
that (o-, o-2) is a threshold vector for iff for each cycle from

which amounts to
(PI --Pl)O-I + (P P2)O-2 > 0,

P P2 > 0 when p’ Pl,

-(pl-p:) o-1<-- when p’ >p,
PI --Pl 0"2

-(p-p:)
< when p’ <pl.

0"2 PI --Pl
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We deduce that a representation using (7, (72 exists iff the following four conditions are
fulfilled:

(i) no cycle from P uses the same number of pairs from P and P’;
(ii) no cycle from P2 uses at least as many pairs from P2 than from P;
(iii) no cycle from (P, P2) is balanced, that is, can be obtained by choosing

the same number of pairs in P and P’, and the same number of pairs in P2
and P;

(iv) for any two cycles C and t from (P, P2), one has in case p > Pl and
q <"

P] Pl ff2 ffl
The first two conditions when both P and P2 are irreflexive mean that these relations

are semiorders (cf. Proposition 1), while the last two amount to conditions used by
Cozzens and Roberts [1]. Hence, Theorems 6 and 7 of these authors are included in
Proposition 3.

4. Characterizations of multiple semiorders. The proposition in the last section
does not offer a criterion for the existence of a representation for (PI, P2, Pro)-
We shall formulate such a criterion using the following concepts. A k-cyclone from
will be any nonempty union of at most k cycles from . Thus a k-cyclone is obtained
by taking pairs in PI, P’, P2, P[, Pm and/or P, that altogether can be partitioned
into k cycles. When for each j 1, 2, m, the same number (possibly zero) of pairs
is taken in P/and P), we say that the cyclone is balanced.

PROPOSITION 4. Assume m >= 2. There is a constant threshold representation for
(P, P, Pro) iffno m-cyclonefrom is balanced.
Proof First assume that admits a representation (f, (7, (72, (7,,). Then

xPj y =>f(x) f(y) > o’j, xP} y =,f(x) f(y) >--_

Ifwe consider any k-cyclone, write those implications for all its pairs and sum the resulting
inequalities, we get

m m m

(2) 0 >- , pj(Tj + , p}(-(Tj) , (pj- p})(Tj
j=l j=l j=l

where pj and p), respectively, denote the number ofpairs taken in P and Pj. when forming
the cyclone. Moreover inequality (2) is strict when at least one pair from some Pj is used.
This clearly implies pj 4 pj. for at least one j.

Conversely, assume that no m-cyclone from ) is balanced. First notice that any P
is either reflexive or irreflexive (otherwise we construct a balanced 2-cyclone by taking
one loop in Pj and another one in P)). Since there are only a finite number of values
f(x) -f(y), we can always look for a nonzero threshold (7, and by an appropriate change
of scale, even assume (71 +-1. We treat the case P is irreflexive, setting (7 + 1. (The
other case is similar.)

By Proposition 3, we have to show the existence of a common solution to all the
inequalities

q2(72 + q3(73 q" -I- qm(7m >" --ql

associated to simple cycles from ) (considering simple cycles, as in the remark following
Proposition 2, leaves us with a finite number ofinequalities). Applying the Helly theorem
(see e.g. [8]) to the convex sets defined by those inequalities in the euclidean space of all
(m 1)-tuples ((72, (73, (Tin), it is sufficient to show that any m of those inequalities
have a common solution, say
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(3) qi2tr2 "[" qi3tr3 --I-- -[- qimtrm >" --qil

with 1, 2, m. By a classical result (see e.g. [8, Thm. 22.2]), this is equivalent to
the following assertion: given real numbers , ,2, km with , >= 0 for each i, and
> 0 for at least one i,

m

(4) , ,iqij 0 forj 2, 3, m,
i=1

implies
m

(5) . kiqil >" O.
i=1

Since qi.i P Pij is an integer, we have only to check the assertion for rational numbers
,i (because the real tuples (, 2, km) satisfying hi -> 0 and (4) form a polyhedral
convex set with rational extreme points and directions). From the positive homogeneity
of (4) and (5) it then follows that we need only consider k’s which are natural numbers.

Now any ofthe equation in (3), for fixed i, comes from a cycle Ci from . Assuming
)k is a natural number, we consider the cycle Ci obtained by traversing k times the cycle
C, and then the union U of those i. The resulting m-cyclone U uses

and

m, Xip pairs from P),
i=1

m, XiPij pairs from P.
i=1

Formula (4) tells us that for j 2, 3, ..., m, these two quantities are equal. Since by
assumption U is not balanced, we deduce

Xiqil O.
i=1

In order to establish (5), and thus complete the proof, it remains to show that (4) together
with

m

(6) , kiqil < 0
i=1

lead to a contradiction. If (6) were true, we would of course have one of the q strictly
negative (because all , are nonnegative), thus the m-cyclone U would use at least one
pair xy from P. Now we form a new m-cyclone U by adding

m

_
kiqil

i=1

times the pair xx to U (recall that P is taken as irreflexive, thus xx P’). Then is a
balanced m-cyclone, in contradiction with our present assumption.

Notice that Proposition 4 does not directly extend to the case m 1, as exemplified
by X {a, b} with P {aa, ab}. Nevertheless, it remains true for m under the
additional assumption that P be irreflexive or reflexive. The proofprompts a few simple
remarks. First, one needs only to ask that m-cyclones of a certain kind be nonbalanced
(more precisely, those which are the union of at most m repetitions of simple cycles
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together with loops). Moreover, this requirement implies that no k-cyclone for any k is
balanced.

5. Not necessarily constant thresholds. Fishburn [4] introduced interval orders in
connection with representations involving a threshold that depends on the object. More
precisely interval orders are the binary relations S on a finite set X that are characterized
by the following proposition [4].

PROPOSITION 5. There exist real valued mappings f o on X such that for all x,
yeX,

o(x) >= 0
and

xSy f(x) >f(y) + p(y)

iffS is an irreflexive relation with for all a, b, c, d X,

(aSb and cSd) (aSd or cSb).

We want now to establish representation theorems for families ofrelations involving
both semiorders and interval orders. Suppose thus that we are given rn + n relations P,
P2,’", P,, S, $2,"’, S on the same finite set X, writing for short m,,
(P, P2, Pro, S, $2, S,). A threshold representation for ,,, consists in real-
valued mappingsf p, 02, p, on X and real number a, a2, tr, such that the
two following equivalences hold for all x, y e X, j e ( 1 2, rn}, e 1, 2, n}:
(7) xPj. ycf(x) >f(y) +

(8) xSy:f(x) >f(y) + p(y).

We will need direct generalizations of notions introduced in 3 and 4. A cycle from,,,, is any sequence of pairs of the form XlX2, x2x3, xt- xt, XtXl, taken in

P LJ P’ LJ P2 LJ P’2 LJ LJP LJ P’m LJ S S’ LJ S2S’2 LJ LJ S,S’
(where juxtaposition represents relative product), but not all in P’l LJ P[ LJ LJ P,.
Then a k-cyclone is any nonempty union of at most k cycles, or when k 0, it is taken
as being any cycle. It is simple if it never meets twice the same element from X. For a
given k-cyclone, we denote by p, p) and s, respectively, the number of its pairs that
were chosen in P, P. and StS, and we set also qj p) p. The k-cyclone is balanced
when p p) for j 1, 2, m; it is pure when p p. 0 for j 1, 2, m. The
qualifiers simple, balanced and pure also apply to cycles.

PROPOSITION 6. Fix real numbers , 2, "’", ,. There exists a threshold rep-
resentation for m,, involving those numbers iff the following inequality holds for each
cyclefrom m,n"

qtr + q2tr2 + + qmam>O,

and in particular no pure cycle can beformed.
Proof First note that the basic equivalences (7) and (8) defining a representation

are equivalent to the following four implications

(9)

(0)

xPj y=:,.f(x) f(y) > rj,

xP’g. y=:>f(x)-f(y) >-_ -aj,

x&z f(x)-f(z) > re(z),

zS’y f(z) -/(y) >_- -re(z).
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The last two imply

1) xSzSy =f(x) -f(y) > O.

Assuming that a representation exists, consider a cycle with its associated quantities pj,
p and s. Ifwe write the corresponding implications (9), (10) and (11) for all of its pairs,
and sum up the right-hand sides, w obtain

m

0 > E (p-p)
j=l

from which follows the thesis.
Conversely, suppose that we have the inequality in Proposition 6 for each cycle

from ,,, or equivalently, for each ofthe simple cycles. Since the last ones are in finite
number, there exists e > 0 such that for each simple cycle

() Nqee p+ s
j= =

As in the proof of Proposition 3, we now construct a weighted multiple aph G with
veex set X. Define an edge xy with weight

aj + whenever xPjy,

-# whenever xP)y,

whenever xSSy.

Inequality (I 2), rewritten as

0 Z p(+)+ Z p)(-)+ Z s,
j= j= I=

ensures us that the graph G has no simple cycle with strictly positive sum. By Proposition
2, there exists a real-valued mappingfon X such that

xy f(x) f(y) + + ,
xP.y f(x) f(y) ,

( 3) x&Siy f(x) f(y) + .
From the first two implications follows inequality (7) for a representation. It thus remains
to define real-valued mappings p on X that satisfy (8). We first rewrite (I 3) as

(14) if XSlZ and not ySz, then f(x) fly)+ .
Now define

gl(z) max (f(y)]not ySz},

agreeing that the maximum of the empty set is some real number less than all values
fix), and then set

p(z) g(z)-f(z).
We surely have

and also from (14)
(not xStz) =:> f(x) <= gl(z),

xSIZ :: f(x) > gl(Z).

The last two implications amount to (8). This ends the proof.
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For families 0,n consisting only of interval orders, a more direct, purely relational
approach leads to the particularization ofProposition 6 (that is, one precludes the existence
ofalternating cycles in the following sense: pairs ofthe cycle would be alternatively taken
in St and the corresponding S). For this and many related results, we refer the reader to
Doignon, Monjardet, Roubens and Vincke [3], or Doignon [2].

Finally, a criterion for the existence of a representation can be derived from Prop-
osition 6, exactly as Proposition 4 was derived from Proposition 3. The requirement
m q: can be dispensed with as soon as the relation P is assumed to be either reflexive
or irreflexive.

PROPOSITION 7. Assume rn 1. Thefamily m, admits a threshold representation

iffno m-cyclonefrom m, is balanced.
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ON THE NUMBER OF VERTICES OF RANDOM POLYHEDRA
WITH A GIVEN NUMBER OF FACETS*

CHRISTIAN BUCHTAf

Abstract. The set of points x (x, x.) satisfying the linear inequalities = ax =< (/ 1,
rn) is a convex polyhedron. If the m points a (a, .., a,) are chosen independently and uniformly from
the unit sphere in n-space, the number Vm,, of vertices of the polyhedron is a random variable. We give an
asymptotic expansion of the expected value EVm,, as m oo and an explicit formula for EVm,, for any rn
and n.

Key words, random polyhedra

AMS(MOS) subject classifications. Primary 52A22; secondary 60D05

1. Introduction. Two famous results, due, respectively, to McMullen [7] and Bar-
nette ], state that the number of vertices of a simple bounded polyhedron with exactly
m facets is at most

and at least

2 2
+

m-n m-n

(m n)(n 1) + 2.

For unbounded polyhedra, the lower bound is considerably smaller, being m n + 1.
Thus, the upper bound is of order const (n)mt’/21, whereas the lower bound is of order
const (n)m as m -- c. The gap between the bounds suggests to ask for the number of
vertices in the "average" case.

We shall investigate this question for a particular class of polyhedra. We consider
the set of points x (xl, "", xn) satisfying the linear inequalities

n

2=1 (#=1 m)., a,,,x,<= where a,
v=l v=l

2 =1This set is a convex (not necessarily bounded) polyhedron. The condition = a,,
implies that the hyperplanes Y= a, x, are tangent to the unit sphere. If every
n + ofthese m hyperplanes have empty intersection, it follows that the polyhedron has
exactly rn facets (as no hyperplane is identical to another one) and is simple.

In order to derive the "average" number ofvertices ofsuch a polyhedron, we suppose
that the points a (a, ..., a,) (# 1, .., m) are chosen independently and uniformly
at random from the unit sphere in n-space. Consequently, the number of vertices of the
polyhedron Y= a, x, =< (# 1, m) is a random variable Vm,,. Note that, with

* Received by the editors March 11, 1985; accepted for publication (in revised form) March 19, 1986.
f Mathematisches Institut der Universitiit, Albertstrasse 23 b, D-7800 Freiburg im Breisgau, Federal Republic

ofGermany. Permanent address: Institut ftir Analysis, Technische Mathematik und Versicherungsmathematik,
Technische Universitiit, Wiedner Hauptstral3e 8-10, A- 1040 Wien, Austria.

85



86 CHRISTIAN BUCHTA

probability one, every n + of the m hyperplanes Zn= a. x have empty
intersection.

Kelly and Tolle [6] investigated the expected value EV.,. of Vm.: They derived an
integral expression for EVm. and asymptotic bounds of the form

otnn(n-6)/9-m < EVm, <= [3"n("- 5)/2m,

where the constants a and/3 are independent of m and n. Moreover, they gave some
tables of EVm, computed numerically by means of Gaussian quadrature routine.

In {}2 we prove that

EVmn C(o")m + c]n)m 2/(n- 1)_. c(2,)m, -.4[(n-1)

(n) 2([n/2]- l)/(n 1) _1_ O(1) (m --* ).-]- + tin/Z1- m
The constants c(n) (p 0, In/2] 1), which depend on the dimension n ofthe space,
are given explicitly. Especially,

2,-((n-l)2)(n
C(On)

( n--1 )n-l’n
(n 1)/2

where, in the case of even n, the binominal coefficients are defined on replacing n! by
I’(n + 1). Note that

C(On) 2n/27r(n 2)/2e-l/4n(n 5)/9_ (n --* ),

whence it follows that the upper bound due to Kelly and Tolle gives the exact order of
convergence.

In {}3 we derive an explicit formula for EVm, for any m and n.
Quite a lot is already known about random polyhedra based on probabilistic models

which are different from that considered here. In contrast to the present paper, these
polyhedra generally do not have a given number of facets. Important contributions are
especially due to Rnyi and Sulanke [9], Schmidt 10], Sulanke and Wintgen 12], Pr6kopa
[8] and Schneider 11 ]. Further references are contained in a recent survey [3]. Prkopa’s
work is partially extended in [4].

2. An asymptotic expansion of EVm..
THEOREM 1. The expected number EVmn of vertices of the polyhedron

n (a a.) are chosen= a..x. < (# 1,..., m), where the m points a ,
independently and uniformly at randomfrom the unit sphere in n-space, is given by

In/2]-

EVmn E c(")m 2p/(,- ) + O(1)
p=0

The constants c(’ are defined by

c= 2-n- 1, -n + 2p/(n- 1)

n! Y(n- l)2"yn

[n/2]-

o, n+i-l+n,
where 7, 2-(n+ )I’(n + 1){I’(n/2) + 1)} -2 and where ,4(.")., is the coefficient ofx in the
polynomial
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(-1)k
n2

k=O k
xk

Proof For the sake of completeness, we first sketch the idea of Kelly and Tolle
leading to the integral expression of EVmn. Consider the hyperplanes

a,,,x,= (u= 1, ,n).
v=l

The n points a (a, aun) lie on a hypercircle which divides the unit sphere Sn-
into two caps; we denote the surface area of the smaller cap by (al, an). The
intersection of the n hyperplanes is a vertex of the polyhedron in question if none of the
points a (aul, "", an) (# n + 1, ..., m) lies on the smaller cap. As all points are
independently and uniformly distributed, this event occurs with probability

where con denotes the surface area of the unit sphere in n-space. As the points ,
(a,, ..-, a,,,) (# 1, m) are identically distributed and as there are (,) possibilities
of choosing n points out of m, it follows that

EVmn
n con CCOn COn

where co is the spherical surface measure. A transformation due to Miles yields

(/) fr/2 ( COn_ 0r )m--nEVm, 2 (n 1)2-y 1)2 sinn 2 xdx
dO CCOn

sinn2- 2n r dr;

for details cf. the paper of Kelly and Tolle. (We use the symbol "Yn instead of Kelly and
Tolle’s symbol c(n). It is easy to see that ’n {rc(n)}-.)

Putting cos r s and cos x y, we obtain

where

(m)EVmn= 2 (n-
n

1)2"y(n_l)2 gn(s)) n(s(2 S))(n2- 2n- 1)/2

K.(s)

We divide this integral into

con- (y(2 V’}’}(n- 3)]2 612.
COn

l/2

1)2 Kn(s))m- n(s(2 S))(n2- 2n- 1)/2 ds,
dO

(m)I2=2 (n-
n

1)2’)’(n 1)2 Kn(s))m- n(s(2 s))t"2- 2n 1)/2 NS.
/2
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Obviously,

(rn) fl/2<2 (n- 1)2"y(n-l)2 (1--gn(1/2))m-n(s(2--S))(n2-2n-l)/2ds.
n /2

As Kn(s) is the ratio of the surface area of a cap of height s to the surface area of the unit
sphere, it follows that 0 < Kn(1/2) < 1. Thus, I2 exponentially tends to zero as m tends
to infinity.

To determine the asymptotic behaviour of 11, we note that

E (-1)J
(n-3)/2

j=o J

\ [n/21 --)(n 2n 1)/2 [n/2]

(- 1)k ((n2 2n 1)/2

where 0 < 0 < and 0 < < 1. We now replace m n by m and put

my._ (2s)"- 1)/2.

taking into consideration that ")tn t-On-{(n- 1)con} -1, we obtain

EVm. 2 (n- 1)3’(.-
n ao m’Yn- Tn-

m j=O j n+2j- 2-2J( m3,tn_ )2j/(n- l))m
k (n2 2k[(n- 1)

k o k
2-2k

m3’.-
dt + 0(1)

As

m j=o j n+2j- \m’yn-i

[n/-l(_t)i([n/2]-l ( ) ()2j/(n-l))i(- 1)J (n- 3)/2 n- 2_2 t

i=0 j=l
j n+2j-1

it follows that

+0 (m-- ),
m

Vm’-"",, 2
n- in/2]-

n! (n-1) Z 2-2P,,y-n- 1-2p/(n-1)

p=O

_,p t.+ i- 2 + 2p/(n- 1) dt
i=0 d0

m 2p/(n- 1)

_
O(
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To get rid of the remaining integrals, we use the relation

1--- tdt= I’(a+ 1)+0 (m--),
m

which holds for 0 < r _-< and a > 0. (For a proof of this relation cf., e.g., [2, Lemma
1].) Elementary calculations yield 3"0 1/2, 3’ 1/r, %, + n%,_ /(n + 1), whence
3",, -< 1/2 for any n. Thus,

1- t,, + i- + zP/,,- ) dt I n+i-l+,2P +0
ao n-

and we obtain the claimed expansion

n- in/2]-

EVmn 2 3’(,,-1) 2-2P3"-n_- 1-2p/(n- 1)

n! p=O

[n/2]- . n+i-l+ m
=o n-1

2p](n- 1)

__
0(1)

hence

COROLLARY.

Proof For any n,

EVmn
(n 1)2/2
n-1 )n-n

(n- 1)/2

for i= 0,
for i= 1, ,[n/2]- 1,

(n 1)2/2
n-1 )n-In

(n 1)/2

To illustrate Theorem 1, we give some numerical values:

EVm2 1,00m + O( (m -- ),EVm3 2,00m + O( (m -- ),EVm4 6,77m 22,90m/3 + O( (m -- ),EVms= 31,78m 142,27m/2 + 0(1) (m-- ),

EVm6 186,74m 1007,64m3/5 + 1778,82m/5 + O(1)

3. An explicit formula for EVm..
THEOREM 2. The expected number EVmn of vertices of the polyhedron

--l ax <= (# 1,..., m), where the m points a (a, a,n) are chosen
independently and uniformly at randomfrom the unit sphere in n-space, is given by
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EVmn

foreven n,

where 3’’ 2-(n+ ’r(n + ){r((n/2) + 1)}-, (Co, ", c) denotes the coefficient ofx
in the polynomial (,ri=o cixi)k, and

J(l, p, q) sinp cosq dt.
/2

Proof. As shown in the proof of Theorem 1,

() for( fo )m-n/2 OOn-EVm" 2 (n- 1)23,(’_ 1)2 sin’-2xdx sinn2-2"rdr.
(.On

From the relation
(,0"

sin" 2 xdx
,"

sin" xdx
O)n (.On

it follows on putting r r and z r x that

(m)EVmn=2 (n-
n

O)n-)2"(n 1)2 sinn 2 Z dz sin"- 2n t dt.
/2 (.On

EV,../m

m=n+l
m=n+2
m=n+3
m=n+4
m=n+5
m=n+6
m=n+7
m=n+8
m=n+9
m=n+ 10

m--

TABLE

n=2 n=3 n=4 n=5 n=6

0,7500 0,6875 0,6594 0,6418 0,6292
0,8750 0,9750 1,1162 1,2647 1,4146
0,9375 1,1875 1,5521 1,9846 2,4750
0,9688 1,3393 1,9381 2,7331 3,7332
0,9844 1,4473 2,2685 3,4666 5,1134
0,9922 1,5252 2,5481 4,1628 6,5560
0,9961 1,5828 2,7851 4,8132 8,0196
0,9980 1,6268 2,9879 5,4171 9,4781
0,9990 1,6614 3,1637 5,9778 10,9168
0,9995 1,6894 3,3179 6,4996 12,3279

1,0000 2,0000 6,7677 31,7778 186,7380
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Using the identity

o. sin.- 2 Z dz
(.On

we obtain

(n 3)/2

"to- cos 3’2i sin2it forodd n,
j=0

(n 4)/2

"rt- cos t 3’2/ sin2 / for even n,
j=0

On sinn-2 z dz
n

(-1)k
m- n

k=O k
,,y- n-k

(n- 3)/2

Z (’YO, "Y2, "Yn-3 cosk t sin2j t for odd n,
j=O

o (_1)
m- n

k= k ofr- n- k

(n-4)/2

(’Yl,ff3, ,{n-3)tm-n-k coskt sin2j+kt for even n,
j=O

and hence the claimed result.
Table gives some values ofEVmn/m calculated by means ofTheorem 2. The ratio

ofthe expected number ofvertices to the number ofinequalities provides a better insight
into the geometrical situation than the mere value EVm,.

4. Concluding remarks. (a) Denote by Pmn the probability that the considered
polyhedron is unbounded. As mentioned by Kelly and Tolle, Pm2 m/2m- 1. More
generally, already in 1962, Wendel [13] showed by an elegant argument that

(m- /Pmn 2m_ kk=0

(b) The expected value EVmn is closely related to the expected number EFmn of
facets ofthe convex hull ofm random points chosen independently and uniformly from
a sphere in n-space, which was determined in a recent paper [5, Thm. 3]. Using the above
notation,

(m)fs. fs. (n)m-ndcO(al) dco(an)EFmn EVmn
n (.On n

and thus EVmn < EFmn. Fuher, /w, , hence it follows that EVm, EFmn as m
tends to infinity. (Note that the definition ofJ(L P, q) in Theorem 2 ofthe present aicle
is different from the definition of I(m, p, q) in [5, 2].)
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THE EXISTENCE OF A SUBSQUARE FREE LATIN SQUARE
OF SIDE 12"

P. B. GIBBONS AND E. MENDELSOHN

Abstract. A subsquare free Latin square of side 12 is displayed. The computational method for its con-
struction is outlined, and its significance is discussed.

Key words. Latin square, quasigroup, subsquare, backtracking
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1. Introduction. In this paper a Latin square of side n will be an n n matrix with
entries from the set of n integers { 1, 2, n}. A quasigroup is an algebra with one
binary operation whose multiplication table is a Latin square. Thus we have a distinction
between a subsquare and a subquasigroup. A subsquare of side k of a Latin square is a
triple R, C, E, [R[ [C[ [E[, such that if R {r, r2, rk} is a set of row names,
and C {c, c2, Ck} is a set of column names, then the entry in the rith row and
cth column (i, j l, 2, k) is always contained in E. A subquasigroup requires in
addition that R C E.

The first major step in the resolution ofthe problem ofthe existence ofLatin squares
with no proper subsquares was made by Heinrich [5] who managed to construct subsquare
free Latin squares (SFLS’s) of order n pq, where p and q are distinct primes, and
n 4: 6. Her method was extended and generalized by Andersen and Mendelsohn [2],
who showed that such squares exist for all n not of the form n 2a3b. When n is of the
form 2a3b it is known that SFLS’s do not exist for n 4, 6, and that they do exist for
n 8 (see [3], [5] and [6]).

There is also a relationship between one-factorizations and SFLS’s. From a one-
factorization of Kn an idempotent Latin square of side n can be constructed. If the
one-factorization is perfect, then the union of any pair of distinct one-factors forms a
Hamiltonian cycle in Kn. This means that in the corresponding Latin square, the smallest
subsquare containing any pair of distinct elements must be of size n 1. That is,
the Latin square is subsquare free. (For details the reader is referred to the survey pa-
per of Mendelsohn and Rosa [8].) Perfect one-factorizations of K are known to exist
when n is an odd prime, when n/2 is a prime, and when n 16, 28, 244, and 344.
(See [8] for the relevant references.) Thus, for example, there exist SFLS’s of orders
3, 9, 27, 8 l, and 243, but for no other known orders n 3b -< 3 2.

From the above we see that the first unsolved cases for SFLS’s are n 12, 16,
and 18.

In other related work N. S. Mendelsohn ([9]) showed that for all n there exists a
quasigroup of order n with no proper subquasigroup. Kotzig, Lindner and Rosa [4]
showed that if n :/: 2a there is a 2 2 subsquare free Latin square (N2LS). McLeish [7]
showed that an N2LS exists for n 2a, a >_- 6. Kotzig and Turgeon [6] constructed N2LS’s

* Received by the editors September 30, 1985; accepted for publication (in revised form) May 27, 1986.
Department of Computer Science, University of Auckland, Auckland, New Zealand.
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada MSS 1A4. The research
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for all even orders n 4:0 (mod 3), n 4:3 (mod 5), thus establishing existence for the
special cases n 24, 25. They also presented an N2LS of order 8 due to Regener. Thus
N2LS’s exist for all n 4: 2, 4. Although the N2LS’s in these constructions contain larger
subsquares, the idea of N2-completion of a subsquare free Latin rectangle turned out to
be a useful heuristic in the search for a SFLS of order 12.

Finally in this section we note that the SFLS construction theorem ofAndersen and
Mendelsohn [2] states that there is an SFLS of order pm where p is a prime greater than
3 and m is any positive integer. It is hoped that a multiplication by 8 and 9 using Regener’s
square and the SFLS of order 9 in place ofthe cyclic square ofprime order might some-
day be found. This would leave only the case n 12 in doubt. This paper removes
that doubt.

2. The construction. We begin this section by investigating conditions for a given
m n (1 < m _-< n) Latin rectangle L to be subsquare free. In L any pair ofrows defines
a permutation ofthe n elements--we shall call this a row permutation. The Latin rectangle
property prescribes that there is no row permutation containing fixed elements, i.e. cycles
of length 1. In addition, for L to be 2 2 subsquare free (N2), a necessary and sufficient
condition is that there is no row permutation containing a 2-cycle. Unfortunately this
does not generalize for L to be p p (2 < p _-< m) subsquare free (Np). However we can
say that a necessary condition for L to be Np is that there is no row which forms p-cycles
with p other rows on a common set ofp elements. In attempting to construct an N
Latin square L we could enforce the stronger condition that no row form p-cycles with
more than p 2 other rows (whether on a common set ofp elements or not). This is
the condition that we exploited in attempting to construct Latin rectangles, and hopefully
Latin squares, which were completely subsquare free.

As our aim is to produce an SFLS(12) we have the following extra information:
(a) The largest possible subsquare is of side 6.
(b) If a 6 6 subsquare exists then either a 2 2 or a 3 3 subsquare also exists.
(c) If a 5 5 subsquare exists then either

(i) there are 5 rows each pair ofwhich contains a 5-cycle in its row permutation
(and on the same set of cells), or

(ii) there is a 2 2 subsquare.
(d) The existence of a 4 4 subsquare implies the existence of a 2 2 subsquare.
(e) The existence of a 3 3 subsquare implies the existence of a set of 3 rows each

pair ofwhich has a 3-cycle in its row permutation (and on the same set of cells).
During the construction we placed restrictions on the types of row permutations

that might be formed. In particular we encouraged the use ofrow permutations containing
long cycles, in the hope that this would allow a large number of rows to be constructed
which should not contain a subsquare. In our case, n 12, and the cycle types in our
choice of decreasing order of desirability are (12), (6, 6), (5, 7), (4, 8), (4, 4, 4), (3, 9),
(3, 4, 5), (3, 3, 6), and (3, 3, 3, 3) (remembering of course that 2-cycles are banned
completely). The obvious starting point was to attempt to construct a square composed
only of 12-cycles. However this was found to be impossible. Our next attempt involved
using only the cycle types (12) and (6, 6). If a rectangle could be constructed containing
only these cycle types, it would be subsquare free. This suggested the use ofa backtracking
algorithm to construct the rectangle row by row, allowing each new row to form a (12)
or (6, 6) cycle type with each previous row, and making sure that the new row forms a
(6, 6) cycle type with at most 4 previous rows.

This approach was generalized to allow other mixes of cycle types. With each per-
missible cycle type c (al, a2, aq), 3 _-< a -< a2 =< =< aq, we allowed each new
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row to form a cycle type c with a maximum ofa 2 previous rows. (A stronger restriction
would have been to allow no new row to form any cycle type with the same a with more
than al 2 previous rows. However this was not implemented.) Rows were constructed
in increasing lexicographical order. Moreover, for each row, all possible combinations
ofallowable cycle types with previous rows were considered. The algorithm is summarized
by the following Pascal-like pseudocode:

{Attempt to construct an n n Latin square with specified allowable cycle types and
limits on the use of each cycle type. }

begin
{Get set to start search}
Set first row and column of square to (1, 2, ..., n);
current_row’= 1;

next row"

{Square found?}
if current row n
then begin

{Search succeeds}
Output specified pattern Latin square;
halt;
end;

{Advance to next row)
current_row" current_row+ 1;
Initialise cycle pattern of current_row with previous rows;

try_row"
{Construct row}
Attempt to construct next current_row in lexicographical order according to specified
cycle pattern with previous rows;
{Successful?}
if successful
then go to next_row;
{Adjust cycle pattern}
Find next cycle pattern of current_row with previous rows;
if there is a next pattern
then begin

Prepare to start afresh with construction of current_row;
go to try_row;
end

else begin
{Backtrack to previous row}
if current row 2
then begin

{Search fails}
Output "Search failedno such Latin Square";
halt;
end;

current_row’= current_row- 1;
go to try_row;

end;
end.
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Note that we were actually searching for a square of the form

2 3 n

This was not unduly restrictive since any completed square could be transformed into
such a form by performing appropriate row and column permutations. Also note that
we did not give up trying to construct a particular row until all possible cycle patterns
with previous rows had been tried.

The algorithm was implemented initially in the language Pascal on a Hewlett Packard
9836 16-bit microcomputer, and later in C on a PDP/11. Several cycle patterns were
tried, and in most cases the program had great difficulty in constructing more than the
first 7 or 8 rows of the square. In some cases a 9 12 rectangle was constructed, but in
no cases was the program able to proceed any further.

We then modified our approach so that the above algorithm was used only up to
row 8, at which stage we were very likely to have a subsquare free Latin rectangle. We
then tried to complete each such rectangle to an N2 Latin square, hoping that the N2
constraint would be strong enough to preclude the existence of larger subsquares. Using
the allowable cycle types (12), (6, 6), and (5, 7) a large number of 8 12 rectangles.were
constructed and tested for N2 completion. Eventually the following rectangle, which can
be N2 completed, was produced by the program. It turned out that its completion is
completely subsquare free, as we shall show.

2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 8 9 10 11 12 7
3 5 2 7 8 4 10 6 12 9 11
4 5 6 7 9 11 12 8 3 2 10
5 6 2 8 10 7 9 11 12 4 3
6 12 8 3 10 2 7 11 9 4 5’
7 8 10 12 11 5 4 2 6 3 9
8 9 11 3 4 12 10 6 5 7 2

If we denote the allowable cycle types as follows:

1: (6,6)

2: (12)

3: (5,7)
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then the row permutation cycle type structure of the above rectangle is denoted by the
following matrix C:

1: 2 2

2: 2 2

3: 3 3 3 2 2

4: 3 3 3 2 2

5: 3 3 3 2 2

6: 3 3 3 2 2

7: 2 2 2 2 2 2 3

8: 2 2 2 2 2 2 3

where Cij is the cycle type of the permutation formed by rows and j. From C it is
immediately clear that the rectangle contains no subsquares of order 5, since no row in
C contains more than three 3’s. Furthermore, although row forms 6-cycles with rows
2 through 6, these rows cannot contain a 6 6 subsquare since there are no 2 2 or
3 3 subsquares. Thus the rectangle is completely subsquare free. Furthermore, this
rectangle was able to be completed to the following N2 Latin square:

2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12 7

3 5 2 7 8 4 10 6 12 9 11

4 5 6 7 9 11 12 8 3 2 10

5 6 2 8 10 7 9 11 12 4 3

6 12 8 3 10 2 7 11 9 4 5

7 8 10 12 11 5 4 2 6 3 9

8 9 11 3 4 12 10 6 5 7 2

9 11 7 12 2 5 3 4 8 10 6

10 7 12 11 9 4 6 3 2 5 8

11 4 10 9 8 3 12 2 7 5 6

12 10 9 6 11 2 3 5 7 8 4
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with the following row permutation cycle structure:

l: 2 2 2 2 2 5

2: 2 2 2 2 4

3: 3 3 3 2 2 4 2 2 3

4: 3 3 3 2 2 2 2 2 6

5: 3 3 3 2 2 7 2 2 3

6: 3 3 3 2 2 2 2 7 3

7: 2 2 2 2 2 2 3 3 6 5 2

8: 2 2 2 2 2 2 3 3 3 2

9: 2 2 4 2 7 2 3 5 6 2

10: 2 2 2 2 2 2 6 3 5 5 2

11: 2 4 2 2 2 7 5 3 6 5 2

12: 5 3 6 3 3 2 2 2 2 2

where the cycle types are denoted as follows:

1: (6,6)

2: (12)

3: (5,7)

4: (3,4,5)

5: (3,9)

6: (4,8)

7: (3,3,6)

It is not immediately obvious that the above Latin square contains no subsquares. For
example, notice that row l0 forms 3-cycles with rows 9 and 11. However row 9 does not
form a 3-cycle with row l, so that rows 9, 10 and 11 cannot contain a 3 3 subsquare.
Similarly, a small number of other cases can be checked by hand to verify that in fact
the square is completely subsquare free.

To be quite certain, we constructed a series of graphs Gi, 2, 3, 5, in which the
vertices of Gi represent the rows of the above square, and in which two vertices h and k
are adjacent if and only if rows h and k form a permutation containing an/-cycle. A
clique analysis was performed on each such graph Gi to determine that it contained no
/-cliques, and therefore that the square contained no subsquares.

3. Conclusions. The search for subsquare free Latin squares raises questions of a
different nature from some of the standard ones. The usual Latin square questions are
of the form "Can a set of cells be completed to form an n n Latin square?", or "Can
a quasigroup in a given variety be completed to a quasigroup within the variety?". (The
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reader is referred to for details.) Our sort of restricted completion is much more
difficult to analyse. In fact we would propose the following two open questions:

(a) What is the optimal time for an algorithm that will check whether a given Latin
square is subsquare free? The complexity of such an algorithm must be at least
0(n3), as that is the time needed to check that it is N2. (It is possible to construct
Latin squares of prime order with only one 2 2 subsquare, and it takes O(n3)
time to find it.) A "naive" subsquare checker works as follows. Choose any pair
of cells in the same row and generate the smallest square containing them. This
involves O(n2) amount ofwork for each pair. There are O(n) pairs which means
that the naive subsquare checker has 0(n5).

(b) Is the question "Does this Latin rectangle have an N2 completion?" NP-
complete?

Acknowledgments. The authors would like to thank C. J. Colbourn for helpful
discussions relating to this paper. The comments of the referees are also appreciated.
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PROJECTIONALLY EXPOSED CONES*

GEORGE PHILLIP BARKERf, MICHAEL LAIDACKER:l: AND GEORGE POOLE

Abstract. Programming problems, based on the objective function and types ofconstraints, may be classi-
fied as linear, nonlinear, discrete, integer, and Boolean, just to name a few. These programming problems
represent special cases of the more general Abstract Convex Programming Problem given by: Find Min
f(x): g(x) K,xe fl where fl

_
"is convex, Kis aconvex cone, andf,gare convex functions. Characterizations

of optimality to the Abstract Convex Programming Problem are of paramount importance in the investigation
of optimization problems. A cone K in " is called projectionally exposed if for each face F ofK there exists a
projection PF of# such that PF(K) F. In particular, it has been shown that when the constraint function g
of the Abstract Convex Programming Problem takes values in a projectionally exposed cone, then certain
multipliers, associated with optimality, may be chosen from a smaller set (see 6 of [Borwein and Wolkowicz,
J. Math. Anal. Appl., 83 (1981), pp. 495-530]). This suggests that a study of such cones is both applicable and
intrinsically interesting. With this motivation, the authors have undertaken a project to characterize the cones
of# which are projectionally exposed.

Key words, cones, exposed faces, projections

AMS(MOS) subject classifications. 15A48, 15A04, 90C25

Introduction. In connection with their study of the (abstract) convex program Bor-
wein and Wolkowicz [2] introduce the notion of a projectionally exposed cone (see the
definitions in the next section). In particular when the constraint function takes values
in a projectionally exposed cone, then certain multipliers may be chosen from a smaller
set (see [2, 6]). This suggests that a study of such cones may be both applicable and
intrinsically interesting. Although Borwein and Wolkowicz do not restrict their cones to
be either closed or pointed, we shall do so in order to simplify the initial study. It is
hoped that later work can relax these assumptions.

1. Definitions. Let Vbe a finite dimensional real inner product space ofdimension
n. In the examples we shall take V to be n with the usual inner product. However, we
shall use functional notation, fx, in place of (f, x). That is, we shall use the inner product
to identify the dual space V* of linear functionals with V. A (convex) cone K in V is a
subset such that for any x, y K, a,/3 >_- 0 we have ax + y K. The cone K is pointed
iff it contains no subspace (i.e., K FI (-K) {0}); it is closed iffK is closed in the natural
topology of V; K is full iff it has nonempty interior.

IfK is a cone, the subspace spanned by K is K- K {x ylx, y K}. Since K is
full in its span we shall assume that K has nonempty interior. We shall also assume that
K is closed. This is a significant restriction and it is hoped that in subsequent work this
assumption can be relaxed. Finally, we shall work primarily with pointed cones, but this
hypothesis will be made explicit in the statements of the results.

For a cone K the positive dual K* is the set of all nonnegative linear functionals
on K:

K* {f[fx >= O all xeg}.

When K is closed we have K** K. Aface ofK is a (convex) subcone F ofK such that

xeK, yeF, and y-xeK imply xeF.

* Received by the editors April 8, 1985; accepted for publication (in revised form) March 19, 1986.
f Department of Mathematics, University of Missouri, Kansas City, Missouri 64110.
Department of Mathematics, Lamar University, Beaumont, Texas 77710.
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This is denoted by F <l K. Ifwe introduce an order relation in Vby x >= 0 iffx K, then
a subcone F is a face of K iff 0 _-< x _-< y and y F imply x e F. When K is pointed the
order is a partial order.

DEFINITION 1.1. A face F is exposed iff there is an f K* such that F
{x K[fx 0}. The cone K isfacially exposed iff every face ofK is exposed.

DEFINITION 1.2. Let F <1 K.
(a) F is p-exposed (projectionally exposed) iff there is a projection P such that

PK F. If every face is p-exposed we call K p-exposed.
(b) F is o.p.-exposed iff there is an orthogonal projection P such that PK F. If

every face ofK is o.p.-exposed, then K is o.p.-exposed.
If S

_
K, then the intersection of all faces containing S is a face of K which we

denote by (S). When S {x} we write o(x) for simplicity. If F <1 K and (F) is the
linear span of F, then dim F is defined to be dim (F). An extreme ray of K is a ray
which is a face. If 0 :/: x e F and F is a ray which is a face, we call x an extrema! of K.

A special class of cones arises in studying the solvability of finite systems of in-
equalities. These are the polyhedral cones. A cone Kis polyhedral iffit has a finite number
of extreme rays. An equivalent condition (cf. [4]) is that K should have a finite number
of maximal faces. A maximal (proper)face is, of course, a face different from K which
is contained in no other face of K.

2. Results and examples.
Remark 2.1. Since we are assuming that V is an inner product space, then K* c

V. Consequently, the statement K c K* makes sense. When it holds we call K subpolar.
PROPOSITION 2.2. Assume that closedfull cone K is neither {0 } nor V. Then every

extreme ray ofK is p-exposed. IfK K*, then every extreme ray is o.p.-exposed. Finally,
ifK is pointed and o.p.-exposed, then K is subpolar.

Remark. We shall see in the examples following the proof that o.p.-exposed faces
need not be exposed.

Proof. Let x be an extremal ofK. Without loss we may take V n. Choosef K*
such thatfx 1. If K K* we can normalize x so that xrx = where xrx (x, x). If
we then take P to be the rank one projection P xf(P xx r, respectively) where
xf(y) (fy)x we have PK (x) so that P is the desired (orthogonal) projection. For
the converse assume that K is pointed and that y is an extremal. If P is an orthogonal
projection onto 9(y), then P ayyr where a-1 yry > 0. But PK Kimplies yr K*.
Since K is the convex hull of its extreme rays, then K

_
K*. E]

Examples 2.3. Consider the cone in Fig. l(b) whose cross section is given in Fig.
(a). The line t/r is tangent to the circle (as is the symmetric line) and K K*. The face
(q) is not exposed but is o.p.-exposed. Also the next theorem will show there are p-
exposed cones which are not subpolar. The subpolar simplicial cone K c RE of Fig. 2
shows that the conclusion of the proposition cannot be strengthened to K K*. Note
that in this last example K* is p-exposed but not o.p.-exposed.

For a closed pointed cone if both K and K* are o.p.-exposed, then since K K**
we have K K*. But these are exactly the perfect cones of which the nonnegative
orthant and the positive semidefinite matrices are examples. The nonsimplicial perfect
cones are thus (cf. ]) nonpolyhedral examples offacially exposed cones (cf. our Definition
1.2(a) and [2, Def. 3.2]). Thus the only o.p.-exposed selfdual polyhedral cones are the
images ofthe nonnegative orthant under an orthogonal matrix. However, there are perfect
(i.e., o.p.-exposed selfdual) cones other than these examples which are homogeneous in
the sense of [5]. An extensive discussion ofselfdual cones in finite and infinite dimensional
settings is found in [3].
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(a) (b)

FIG.

THEOREM 2.4. Let K be a pointedful! polyhedral cone. Then K is p-exposed.
Proof We show first that there is a cone preserving projection onto any maximal

face. Let FI, ,Fm be the maximal faces ofK, and letf E K*, l, m be linear
functionals such that

Fi {xEglfx=O,i 1, ,m}.
We construct a projection onto F. To this end set

Ko {xe Vlfx<O, fx>-O,i 2, ,m}.

Ko 4: since if Xo is in the relative interior of Hi span F and if N(xo) is an open ball
around Xo which meets no proper face of K other than H, then N(xo) meets Ko. So
choose p e Ko, let L span {p} {ap[a } and let Q be the projection onto (F)
along L. Let k K. Then for some Cto E and h (F) we have k h + aop and h
Q(k). Now we have

h k- otop, f(h) =f(k)- aof(p).

For this becomes
o =f(h) =A(k)- ,oA(p).

FIG. 2
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But fl(k) >= 0, fl(P) < 0 so that ao - 0 or -a0 >= 0. Next for 2, ..., m we see that
f(k) >_- 0 since f e K* and f(p) >= 0 since p e Ko. Thus f(h) >- 0, 2, m. From
the choice ofthef this means that h e K, hence h e F. Since F was an arbitrary maximal
face we see that any maximal face is p-exposed.

Suppose H <1 K. We choose a chain

H= H0 <IHI <1... <lHp <IK,

where dim +1 dim + 1. Since each satisfies the hypothesis and/-/._ is a
maximal face of// there is a projection Oj of onto

_
along some Lj_ 1. Each

( can be extended to a projection Q of V onto (/-/._ l> if we define Q to be zero on
Lp_ + + Lj and extend by linearity. Then Q QI is the desired projection. E3

We continue the notation of the statement and proof of Theorem 2.4. We may
normalize thef/so that If, 1, where 151- (,5), for 1, m. For each face Fi
we define the complementary cone Ki by

Ki {xlfx<O andfx>_- 0 forj# i}.
With each pair of maximal support planes (Fi> and (F> we associate an angle 0 e (0, r)
determined by

cos 0 -(j5,)

(see Fig. 3). In the proof of Theorem 2.4 we showed that each point of Ki determines a
projection which takes K onto Fi. The next lemma shows that every cone preserving
projection arises this way.

LEMMA 2.5. Let P be a projection such that P(K) Fi. Then ker P f3 Ki # {0 }.
Proof Since dim Fi n then dim ker P 1. Let y be a nonzero vector in ker

P which satisfies fy < 0. Then y and Ki lie in the same open halfspace determined by
(Fi). We wish to show that y e Ki. Assume not. Then for some j 4: i, f y < 0. Let z F
be nonzero so that fz >= 0 for t 4: j andfz 0. Further we may take z Fi. Let Pz
w - Fi. Since ker P (y) we have w z + ky. On the one hand,

0 +
so that k >= 0. However, on the other hand we have

o <=w=z+ y= y

so that k =< 0. Thus k 0 and z w Fi N F, a contradiction. Thus

CONE K

/
/

F1

K2

Cos(O) -(fl, f2)

FIG. 3
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THEOREM 2.6. Let Kbe a pointedfullpolyhedral cone with maximalfacesF
Fm and correspondingfunctionalsf, fm. Then theface Fi is o.p.-exposed iff

0 =< 0 cos- (-f,f) =< r/2 for allj 4 i.

Proof Assume Fi is o.p.-exposed. Then by Lemma 2.5, -fi Ki. Hence -(f, f) >=
0 for all j 4 i. Therefore cos- (-f, j) _-< r/2 for all j 4 i.

Conversely, if cos- (-f,f) -< r/2 for allj i, then (-f,) >= O. Also (-f,f) < O,
hence -f Ki. Thus the orthogonal projection onto (F takes K onto Fi. []

Let V {Vl, "-, Vn} be a basis of Vwhich consists of pairwise obtuse vectors, that
is (vi, vj) <= 0 for all 4: j. Apply the Gram-Schmidt process to obtain an orthonormal
set q/= {u, un} defined by

where
Ul --/)l/[l)ll, WI 1)1, Ui--" Wi/[Wi[, IWil2 (Wi, Wi)

Wi-- l)i--(1)i, Ul)Ul (l)i, Ui- l)Ui- for 2, n.

THEOREM 2.7. Let cV and ql denote the two sets ofvectors in Vpreviously described.
Then for k 1, n

(i) vk H(uk) {xl(u, x) > 0};
(ii) there does not exist any vector w such that (w, vi) <-_ 0 for 1, k and

w U/= H(ui).
Proof We induct on k. The result is clear for k from the definition of H(u).

Suppose the result is true for all k =< m < n and let k m + 1. First note that by Bessel’s
inequality we have (Vm / , Wm / ) > 0 SO Vm / H(Um / ) which is (i). We shall establish
part (ii) for k m + by contradiction. Thus suppose there is a w for which (w, vi) -< 0
for 1, m + and w U 7’ H(ui). By the induction hypothesis with k m we
must have wU 7’= H(ui) so that w H(Um / ). Thus (w, Um/ ) > 0, and in the Gram-
Schmidt process we have

l)m+ 1--(/)m+ 1, Ul)Ul "-*’* -]"(1)m+ 1, Urn)Urn’4-]Wm+ 1]Um+ 1.

Taking the inner product with w yields

(,) (W, l)m+ 1)"--(1)m + Ul)(W, Ul) -]- -Jr" (1)m + 1, Um)(W, Um) 47 IWm + l(w, Um + 1).

The vectors in " are pairwise obtuse so in particular (I)m + 1, /)i) 0 for 1, 2, , m
so that for these we have Vm / gH(ui) by the induction hypothesis. Consequently, for

1, m (Vm + , ui) (w, ui) >= O. But also IWm + 1 > 0 and (w, Um+ ) > 0, hence the
sum on the fight side of (.) is strictly positive. This contradicts (w, Vm / ) <= O, and the
induction step is established. []

THEOREM 2.8. Suppose {w w2, v v2, vn} is a subset ofVfor which the
following are true:

(i) Any subset ofg ofcardinality n is linearly independent,
(ii) V= {Vl, "’, v,} and U= {u, ..., u,} satisfy the hypotheses of

Theorem 2.7.
(iii) WI, W2 ’ [.j/n= H(ui).

Then (w, w2) > 0.
Proof First we show that neither w nor w2 lies in the hyperplane L

{xl(u,, x) 0}. Suppose w L. Then from the orthogonality of the uj we have that w
L span (u,..., Un-) span (v, v,_ ) which contradicts (i). Similarly,

w2 L. Thus from (iii) we have for 1, 2, and k 1, n that (wi, u) =< 0.
Further, (w, u,) < 0 and (w2, u,) < 0. Thus there are coetficients 3’ such that
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W2 IUl -- 2U2 -{- -{- ’)/’nUn

where ’’i 0 (i 1, n 1) and qrn < 0. Consequently,

(WI, W2) "y I(WI Ul) -I’- ....--,yn(Wl,Un).O.

Let card denote the cardinality of a (finite) subset of V. We may rephrase the
conclusions of Theorems 2.7 and 2.8 as follows.

PROPOSITION 2.9. Let be afinite subset of V such that
(i) ifT and card q7 <= n, then the vectors in are linearly independent,
(ii) the vectors in are pairwise obtuse.

Then card _-< n + 1.
THEOREM 2.10. Let K be a pointedfull polyhedral cone in V. IfK is o.p.-exposed

then K has n dim V extreme rays,
Remark. A closed pointed full polyhedral cone K with n dim V extreme rays is

called simplicial.
Proof It suffices to show that K* has exactly n extreme rays since K is simplicial

iff K* is simplicial. Suppose K* has k > n extreme rays. If H is a maximal face of K*
we can find n linearly independent extremals in H, sayj], ,fn 1. Letfn be another
extremal ofK* which is not in H. Let L (f, ,J_ ,J + 1, ,L) be the subspace
spanned by all theJ exceptj. Then tA’= Lj is not a subspace so in particular since K*
has nonempty interior we can find an extremal f + of K* which is not in tAL. Let
{Mk} be the collection of all subspaces spanned by subsets of cardinality n of
{J, ..., f_ }. Again there are only finitely many such subspaces so there is a y e
interior K such that ytAMk. Let g { j], fn / 1, -Y}. From the construction of g
we see that any subset of cardinality _-<n is linearly independent. Also as in the proof of
Theorem 2.6 since kerJ 71 K is a maximal face of K we have that (f, j) -< 0 for 4: j.
Also since y e interior K we have -(y, J) (-y, J) < 0 for all k. But card 60 n + 2
which contradicts Proposition 2.9. Thus K* and hence K has only n extremals. []

COROLLARY 2.1 1. The closed pointedfull polyhedral cone K is o.p.-exposed ifK is
a subpolar simplicial cone.
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THE SPECTRA OF MATRICES HAVING SUMS OF PRINCIPAL
MINORS WITH ALTERNATING SIGN*

JORGEN GARLOFF AND VOLKER HATTENBACH

Abstract. We present an observation on the localization of the spectrum of a matrix having sums of
principal minors with alternating sign.

Key words, principal minors, PN-matrix, P-matrix, eigenvalues
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In the past fifteen years, considerable attention has been paid in the economic lit-
erature to the class of the so-called PN-matrices and semi-PN-matrices (see [3], [6],
[8, Chap. 7], [9]). A matrix is a (semi-) PN-matrix if every principal minor of odd order
is positive, and every principal minor of even order is negative (provided that the order
of the minors is greater than 1). We call a real matrix a SPN-matrix if all the sums of its
principal minors of odd order are nonnegative and all the sums of its principal minors
of even order are nonpositive. The class of the SPN-matrices obviously contains the
PN-matrices as well as the nonnegative semi-PN matrices.

Example. Let the n n matrix A (ao) be defined by

ifj>_-
aij (i,j= n),

aj ifj<i

see [7]. Then the principal minors oforder k + are ofthe form (1 aft) (1 ai2)
(1 aik), where -< i < i2 < < ik ----< n 1. Thus, A is a PN-matrix and a SPN-
matrix if and only if for all k, ak > and ak >= 1, respectively.

The purpose ofthis note is to present an observation on the spectra ofSPN-matrices.
We note that a matrix A with the sign of the sums of its principal minors of order k
equal to (-1)k or 0 can be transformed to a matrix having nonnegative sums of its
principal minors by considering -A. Theorems concerning the spectra of such matrices
may be found in ].

Let n _>- 2 and A be an n n SPN-matrix. The characteristic polynomial of A is
given by

(1) p(X) (--X) -- SI(--X)n- d" S2(--X)n- 2 q.. Sn- lX " Sn,

where Sk denotes the sum of the principal minors of order k ofA. By definition, we have
sign sk (-1)k+ , k 1, ..-, n. Without loss of generality we may assume that A is
nonsingular since otherwise we can divide p(x) by x, where/z is the multiplicity of the
eigenvalue 0, to obtain a polynomial of lower degree whose coefficients have the same
sign as the corresponding coefficients ofp(x). By using the companion matrix ofp and
the Perron-Frobenius theorem one obtains that A has a simple positive eigenvalue ,l,
say, equal to its spectral radius (see [4]).

Let the eigenvalues ofA which are different from ),1 be denoted by ,2, "’", ,. It
is easy to see that ,2 is negative if n 2. We therefore assume without loss of generality
that n >_- 3.

A matrix is called a P-matrix if all its principal minors are positive.

* Received by the editors August 7, 1985; accepted for publication (in revised form) April 21, 1986.

? Institute for Applied Mathematics, University of Freiburg i. Br., Freiburg i. Br., West Germany.
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THEOREM. Let A be a nonsingular SPN-matrix with spectral radius 1. Then
2, "", Xn are the eigenvalues ofa P-matrix.

Proof We divide the characteristic polynomial p(x), cf. (1), of A by x X1 and
denote the resulting polynomial by p(x). By the Homer scheme we obtain the following
recurrence formula for the coefficients ai ofp(x) aoxn- + axn 2 ._ 2I_ an

a0 (-1)
(2)

ak ak + (--1) kSk k=l, ,n-1.

From the equality an-l)kl + Sn 0 we conclude that sign an-1 (-1)n and by (2)
recursively, sign an-k (--1)n, k 2, n 1. Hence by Vieta’s formula, the kth
elementary symmetric function ak of the eigenvalues ,2, "’", Xn,

O’k()k2, kn) ki kik
2 il i2< <ik--n

k= 1, ,n- 1,

has the sign (- 1)k. Then O’k(--2, --)kn) is positive for k 1, n 1. By 1, Prop.
4] there exists a P-matrix such that -,2, -ha, "’", -,n are the eigenvalues of this
matrix. E]

This theorem enables the use of the results on the localization of the spectra of
P-matrices ], [2], [5] in order to localize the spectra ofSPN-matrices. The most important
conclusions are given in the following corollary.

COROLLARY. Let A be a nonsingular SPN-matrix with spectral radius . Then

(i) larg Xkl > k 2, n.

(ii) There is at least one eigenvalue with negative real part; ifthere & exactly one
such eigenvalue then

larg Xkl >, k 2, n;

th& bound is independent ofn and cannot be improved.
(iii) Ifn > 2m + 3 and there are exactly m + eigenvalues with positive real parts

or exactly m eigenvalues with negative real parts then there exists a satisfying

largXkl>a> k=2,.., n.
n-l’
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MATRICES WITH SIGN SYMMETRIC DIAGONAL SHIFTS
OR SCALAR SHIFTS*
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Abstract. We generalize the concepts ofsign symmetry and weak sign symmetry by defining k-sign symmetric
matrices. For a positive integer k, we show that all diagonal shifts of an irreducible matrix are k-sign symmetric
if and only if the matrix is diagonally similar to a Hermitian matrix. A similar result holds for scalar shifts, but
requires an additional condition in the case k 1. Extensions are given to reducible matrices.

Key words, matrix, Hermitian, sign symmetric, diagonal shift, scalar shift, diagonal similarity, graph,
cordless circuit

AMS(MOS) subject classifications. 15A 15, 15A57, 05C50

1. Introduction. A square complex matrix is said to be sign symmetric (weakly sign
symmetric) if it has nonnegative products of symmetrically located minors (almost prin-
cipal minors) (for detailed definition see Definition 2.11).

Weakly sign symmetric matrices were studied first by Gantmacher and Krein [8, p.
111 and by Koteljanskii 13]. That is why these matrices are also called GKK-matrices,
e.g., Fan [5]. One reason for the interest in these classes of matrices is that they contain
the important classes of the Hermitian matrices, the totally nonnegative matrices and
the M-matrices. Another reason is the strong linkage between weak sign symmetry and
the Fischer-Hadamard determinantal inequalities. This connection is studied in Gant-
macher and Krein [8], Koteljanskii [12], Carson [1], Green [9] and Hershkowitz and
Berman 10].

A sufficient condition for positivity ofthe principal minors ofa weakly sign symmetric
matrix in terms of leading principal minors is given by Koteljanskii [13].

Relations between weakly sign symmetric matrices and o-matrices are discussed in
Engel and Schneider [4] and in Hershkowitz and Berman [11 ].

Sign symmetry and weak sign symmetry are also related to stability. It was proved
by Carson [2] that sign symmetric matrices whose principal minors are positive are
stable, i.e., their spectra lie in the open right half plane. The same result is conjectured
to hold for weakly sign symmetric matrices too.

In this paper we generalize the concepts ofsign symmetry and weakly sign symmetry.
We define k-sign symmetric matrices, where k is a nonnegative integer (see Definition
2.11). In view of our definition an n n sign symmetric matrix is a k-sign symmetric
matrix whenever k >- (n 1)/2. The 1-sign symmetric matrices are those weakly sign
symmetric matrices whose principal minors are real. Since reality of principal minors is
assumed in all the results on weakly sign symmetric matrices quoted above, one may as
well consider those as assertions on 1-sign symmetric matrices.
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After giving graph theoretic preliminaries in 3, we characterize in 4 the matrices
all of whose diagonal shifts are k-sign symmetric, that is matrices A such that A + D is
k-sign symmetric for every real diagonal matrix D. Given a positive k, we show that an
irreducible matrix satisfies this condition if and only if it is diagonally similar to a Her-
mitian matrix. Thus, a matrix satisfies the above shift condition for some positive k if
and only if it satisfies the condition for every positive k.

For k >= 2, we prove in 5 a similar result for a matrix A all of whose scalar shifts
A + tI, where is real, are k-sign symmetric. If k then we need an additional graph
theoretic hypothesis, namely the reversibility of the chordless directed circuits of even
length in the directed graph ofA.

The extensions of our results to reducible matrices follow from a theorem in 6
that a matrix A is k-sign symmetric if and only if every diagonal block in the Frobenius
normal form ofA is k-sign symmetric.

2. Definitions and notation.
Notation 2.1. We denote

I1: the cardinality of a set a.
: the field of real numbers.
C: the field of complex numbers.
[x]: the maximal integer which is less than or equal to the real number x.

Notation 2.2. For a positive integer n we denote

(n): the set{1,2,...,n}.
Fn’n’. the set of all n n matrices over a field F.

Notation 2.3. For a (nondirected, simple) graph F we denote

V(F): the vertex set of F.
E(F): the edge set of I’.
[i, j]: an edge between and j, i, j e V(F). Observe that [i, j] [j, i].

DEFINITION 2.4. Let F be a graph. A sequence of edges in F which leads from to
j, [i, Pl], [Pl, P2], [Pm- 1, Pm], [Pm, j], is called a path in F between and j and is
denoted by [i, p, P2, Pm, J]- A path [il, it] in I’ is said to be a closed path if
it il. A closed path [i, ik, i] is said to be a circuit if i, ik are distinct. A
circuit is said to be of length k, or a k-circuit, if it consists of k edges.

Notation 2.5. For a (simple) directed graph (or digraph) A we denote

V(A): the vertex set of A.
E(A): the arc set of A.
(i, j): an arc from to j, i, j, e V(A). Observe that (i, j) (j, i) if and only if

DEFINITION 2.6. Let A be a digraph. A sequence of arcs in A from to j, (i, p),
(P, P2), (Pm- 1, Pm), (Pm,j), is called a directed path in A from to j and is denoted
by (i, Pl, P2, Pm, J)- A directed path (i, it) in A is said to be a closed directed
path if it i. A closed directed path (il, ik, i) is said to be a directed circuit (or
dicircuit) if i, ik are distinct. A dicircuit is said to be of length k, or a k-dicircuit, if
it consists of k arcs.

DEFINITION 2.7. A digraph A is said to be strongly connected if either v(zx)l= or
for every i, j e V(A) there exists a directed path in A from to j.

DEFINITION 2.8. A dicircuit (i, ik, i), k

_
3, in a digraph A is said to have a

chord if E(A) contains an arc (it, it) where
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{l- 1,l+ 1}, <l<k,
t {2, k}, 1 1,

(k- 1, 1), l=k.

A dicircuit of length greater than 2 in A is said to be chordless if it has no chord.
DEFINITION 2.9. (i) A directed path a (i, ik) in a digraph A is said to be

reversible in A if (ik, il) is also a directed path in A. In this case we denote the
directed path (ik, il) by a*.

(ii) A digraph A is said to be reversible or symmetric if every directed path in A is
reversible. Observe that A is reversible if and only if

(i,j)e E(A) => (j, i)e E(A).

Notation 2.10. Let A be an n n matrix and let a,/3
_

(n), a,/3 # . We denote

A[al/5]: the submatrix ofA whose rows are indexed by a and whose columns
are indexed by/5 in their natural orders.

A(al[3)

DEFINITION 2.1 1. (i) Let A Cn’n and let a,/3
_

(n>, lal I1 > 0. The submatfix
A[alt] of A is said to have dispersion k whenever k lal la n t[ (see also [12]).
Submatrices with dispersion are called almost principal submatfices.

(ii) Let k be a nonnegative integer. A square matrix A is said to be k-sign symmetric
if it satisfies

(2.12) det A[al/3] det A[flJa] >_- 0

for all submatfices A[aJ/3] of A with dispersion less than or equal to k. The set of all
k-sign symmetric matrices in C"m is denoted by SS,).

(iii) A square matrix is called sign symmetric if(2.12) holds for all square submatdces
A[a[/3] of A (see also [13]). The set of all sign symmetric matrices in Cn’n is denoted
by SS<,>.

(iv) A square matrix is called weakly sign symmetric if(2.12) holds for all submatriees
A[a[3] ofA with dispersion exactly (see also [13]). The set of all weakly sign symmetric
matrices in G"," is denoted by WSS<,>.

Remark 2.13. (i) Observe that for nonnegative integers k and m, the inequality
m > k implies SSn> SSn>

(ii) Let a,/3 (n>, [al 1/31 > 0, and let k lal- la n/31. Since

la] + It l -la n la u --< n
and since k -< it follows that k <= n/2. Thus, the dispersion of a square submatrix of
an n n matrix cannot exceed n/2. It now follows that for a nonnegative integer m,
m >= (n 1)/2 we have SS) SS(,,).

(iii) Since submatrices of a given matrix have dispersion 0 if and only if they are
principal submatrices, it follows from Definition 2.1 l(ii) that the 0-sign symmetric matrices
are just the matrices all of whose principal minors are real. Also, a k-sign symmetric
matrix has real principal minors for every positive integer k.

(iv) Observe that SS,,) is the set ofthose matrices in WSSo, that have real principal
minors.
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DEFINITION 2.14. Let A be an n n matrix. The graph I’(A) ofA and the digraph
A(A) ofA are defined by

v(r(A)) V(A(A))= (n),
E(I’(A)) {[i,j],i,j(n):aijq:O or ajiq:O},

E(A(A)) {(i,j),i,j(n):ai4:O}.
DEFINITION 2.15. Let A be an n n matrix and let a (i, i) be a directed

path in A(A). The corresponding path product is defined to be
k-I

II.(A)= YI a+ .
j=l

DEFINITION 2.16. An n n matrix A is said to be combinatorially symmetric if
A(A) is reversible.

DEFINITION 2.17. Let A.B. C"’. The matrices A and B are said to be diagonally
similar if there exists a nonsingular diagonal matrix D such that

B D-AD.
The matrices A and B are said to be permutationally similar ifthere exists a permutation
matrix P such that

B pTAp.

DEFINITION 2.18. (i) A square matrix A is said to be in Frobenius normalform if
A may be written in the block form

A A12 Alk
A_

A-

0 Akk
where Aii is an irreducible square matrix, 1, k.

(ii) Let A, B C’,’. The matrix B is said to be a Frobenius normalform ofA ifB is
in Frobenius normal form and ifA and B are permutationally similar.

Remark 2.19. Observe that by Definition 2.18 the Frobenius normal form of a
square matrix A is unique up to permutation similarity, and so Frobenius normal forms
ofA have the same diagonal blocks up to permutation similarity. Also, since, as is well
known, a square matrix is irreducible if and only if its digraph is strongly connected, it
follows that the diagonal blocks of the Frobenius normal form of A are the principal
submatrices ofA that correspond to the maximal strongly connected subgraphs (com-
ponents) of A(A).

DEFINITION 2.20. Let A Cn,n. A diagonal shift ofA is a matrix A + D where D is
a real diagonal n n matrix. A scalar shift of A is a matrix A + tI where t is a real
number.

3. Reversible digraphs
PROPOSITION 3.1. Let A be a digraph. Then every dicircuit in A is reversible ifand

only ifevery chordless dicircuit in A is reversible.
Proof. The "only if" part is trivial. Conversely we prove our assertion by induction

on the length ofthe dicircuits. Clearly, all dicircuits in A oflength and 2 are reversible.
Also all 3-dicircuits are chordless and hence reversible. Assume that all dicircuits in A
of length less than n (n > 3) are reversible, and let a (i, in, il) be an n-dicircuit
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in A. If a is chordless then it is reversible by the conditions of the proposition. Assume
that a is not chordless. Without loss of generality we may assume that (i, it) e E(A)
where 4: l, 2, n. Observe that/3 (i, it, h + 1, in, i) is a dicircuit in A of length
less than n and therefore, by the inductive assumption, fl is reversible. Thus we have

(3.2)

(3.3)

and

(3.4)

(ik, ik- )E(A), k= 1 + 1, n,

(il,in)eE(A),

(it, i)eE(A).

By (3.4), "r (i, it, i) is also a dicircuit in A. Since the length ofy is less than
n, it follows from the inductive assumption that y is reversible. Hence we have

(3.5) (ik, ik- )E(A), k 2, "’", l.

It now follows from (3.2), (3.3) and (3.5) that the dicircuit c is reversible.
COROLLARY 3.6. Let A be a strongly connected digraph. Then A is reversible ifand

only ifevery chordless dicircuit in A is reversible.
Proof. The "only if" part is again trivial. Conversely, since A is strongly connected

it follows that every arc (i, j) of A lies on some dicircuit a in A. By Proposition 3.1 the
dicircuit a is reversible and hence (j, i) E(A).

COROLLARY 3.7. Let A Cn*. Then every diagonal block in the Frobenius normal
form ofA is combinatorially symmetric ifand only ifevery chordless dicircuit in A(A) is
reversible.

Proof. Our claim follows immediately from Corollary 3.6 and Remark 2.19. [3

4. Irreducible matrices with sign symmetric diagonal shifts.
LEMMA 4.1. Let A Cn’n be diagonally similar to a Hermitian matrix. Then A

SSn)for every nonnegative integer k.
Proof. Let D be a diagonal matrix and B be a Hermitian matrix such that

A =D-BD.
For all a,

_
(n), [cl I1 > 0 we have

det A[c]B] det A[lc]

det D[a] det B[aIB] det D-[B] det D[B] det B[Blc] det D-[a]
det B[al] det B[flla] det B[a]{3] det B[alfl] >= 0.

LEMMA 4.2. Let a, b C and let

p(t) (t + a)(t + b).

(i) Ifp(t), p(t2) for two distinct real numbers t and t2 then either a or
a,b.

(ii) Ifb > a then p(t) < 0for all t, -b < < -a.
Proof (i) Ifp(tl), p(t2) for two distinct real numbers tl and t2 then necessarily

a + b, ab . Therefore, p(t) is a polynomial with real coefficients. Since the roots of
p(t) are -a and -b our claim follows.

(ii) Immediate, since for-b < < -a we have + a < 0 and t + b > 0.
COROLLARY 4.3. Let a, b C. If(t + a) (t + b) >= 0for all then a
Proof. By Lemma 4.2(i) we have either a / or a, b e . In the latter case, by

Lemma 4.2(ii) we have a b. Hence, in each case, a .
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In the following results we discuss k-sign symmetric matrices, k >= 1. As observed
in Remark 2.13(iii), a matrixA is 1-sign symmetric ifand only ifA is weakly sign symmetric
matrix with real principal minors. Note that a matrix A Cn’n may have nonreal principal
minors even if all its diagonal shifts are in WSS(n>. This assertion can easily be verified
for n 1, 2. However it holds for higher orders too as demonstrated by the following
irreducible 3 3 matrix

-1 0 01A
0 0

The following theorem relates weakly sign symmetric matrices to 1-sign symmetric
matrices.

THEOREM 4.4. Let A _n,n be a weakly sign symmetric matrix and suppose that
all the principal submatrices ofA oforder less than or equal to n 2 are nonsingular.
Then A has real principal minors ifand only ifthe diagonal entries ofA are real.

Proof. The "only if" direction is obvious. Conversely, assume that A is a weakly
sign symmetric matrix with real diagonal entries and nonsingular principal submatrices
of order less than or equal to n 2. We prove that the principal minors A are real by
induction on the order of A. The claim is clear for matrices in WSS(> and WSS(2).
Assume it holds for weakly sign symmetric matrices of order less than n, n >= 3, and let
A WSS(). Since every principal submatrix of a weakly sign symmetric matrix is also
weakly sign symmetric, it follows from the inductive assumption that all principal minors
ofA of order less than n are real. Thus, all we have to prove is that det A is real.

Let Cl (n)\{n} and a2 (n)\{n 1}, and define a 2 2 matrix B by

bij det A[otilotj] i,j 1,2.

Since A WSS(n) it follows that B WSS(2). Furthermore, bll and b22 are principal
minors ofA of order n 1, and hence bl and b22 are real by the inductive assumption.
Therefore, the determinant ofB is real. By Sylvester’s identity, e.g., [7, Vol. I, p. 33], we
have

(4.5) det B det A[(n 2] det A.

Since det A[(n 2)] =/= 0 and by the inductive assumption det A[(n 2)] is real, it now
follows from (4.5) that det A is real.

The assumption of nonsingularity of the principal minors ofA cannot be dropped
from Theorem 4.4 as demonstrated by the matrix

0

A= 0

2 -i 0

It is easy to verify that A WSS(3). However, det A i.
LEMMA 4.6. Let A C’, n >= 3. Assume that a is an n-dicircuit in A(A) and that

r(A) consists ofa single circuit. IfA + D SS)for all real diagonal matrices D then

H() 1-I.(A).

Proof. Without loss of generality assume that a (1, ..., n, 1). Notice that I’(A)
consists of the single circuit [1, n, 1]. Since A + D SSn> for all real diagonal
matrices D, it follows that
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(4.7) y(D) [det (A + D)(112)][det (A + D)(2I 1)1
[a21z(D) + (- 1)n 2anp][a2z(D + (_ 1)n 2anq >__ 0

where
z(D) det (A + D)(1,2),

and

n-I

p= ]-[ a,+,
j=2

n-1

q= I-[ a+,.
j=2

Since a is a dicircuit in A(A), it follows that

a2,P, an #0.

Since, as observed in Remark 2.13(iii), A has real principal minors, it follows that z(D)
attains every real value for suitable choices of D. Therefore, if a2 0 then for an ap-
propriate choice ofD we have y(D) < 0, which contradicts (4.7). Thus we have a2 # 0.
Similarly we show that aj + ,j # 0, j 1, n and an =/= 0. Since A SSn) we now
have ala2 > 0. Dividing (4.7) by aza2, we obtain

(4.8) [z(D) + (- 1)"- 2a,p/a_l[z(D) + (- 1)"- 2a,q/a2] >= O.

Since z(D) attains every real value, it follows from (4.8) and Corollary 4.3 that

(4.9) anP/a2 alnq/al2.

Notice that since a2a2 > 0 we have a2a2 a2a2. Hence, by multiplying the left and
the fight sides of (4.9) by a2a21 and aEa2, respectively, we obtain

II,,(A) 1-I,.(A).

LEMMA 4.10. Let A Cn’" have real diagonal entries and assume that

(4.11) aoajie for all i,je (n), #j.

Ifthe equality

(4.12) l-[,(A) I-[.(A)

holdsfor all chordless dicircuits a in A(A) then it holdsfor all dicircuits a in A(A).
Proof Since A has real diagonal entries, it follows that (4.12) holds for 1-dicircuits.

Also it follows from (4.11) that (4.12) holds for 2-dicircuits. Assume by induction that
(4.12) holds for dicircuits of length less than m, m >= 3, and let (i, im, il) be
an m-dicircuit in A(A). If a is chordless then by the lemma’s conditions (4.12) holds. If
a is not chordless, then necessarily m > 3, and without loss ofgenerality we may assume
that (i, it) E(A(A)), where l # 1, 2, m. Since A A(A[i, im]) is strongly connected
and since by the conditions of the lemma every chordless dicircuit in A is reversible, it
follows from Corollary 3.6 that A is reversible. Hence, (it, i) e E(A(A)) and hence/3
(i, it, it +1, i,,, i) and "y (i, it, i) are dicircuits in A(A) with length less
than m. By the inductive assumption we have

(4.13) lie(A) 1-Ia.(A),
and

(4.14) I-I,(A) I-[,.(A).
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Observe that

(4.15) I-I(A) II/(A)lI.r(A)/ailitaitil,
and

(4.16) 1-I,.(A) IIa.(A)l-I,.(A)/aiitaitil.
Since we have (4.11), it now follows from (4.13), (4.14), (4.15) and (4.16) that

H(A) H,(A).
We remark that Lemma 4.10 may be generalized. One can similarly prove the same

conclusion under the assumptions that (4.11) holds and that (4.12) holds for all the
dicircuits in an integral basis for the flow space of A(A), see 14].

THEOREM 4.17. Let A Cn’n be an irreducible matrix and let k be a positive integer.
Then thefollowing are equivalent.

(i) A + D SSn)for all real diagonal matrices D.
(ii) The matrix A is diagonally similar to a Hermitian matrix.

Proof (i) (ii). In view of Remark 2.13(i) it is enough to show this implication
for k 1. Assume that A + D SSn) for all real diagonal matrices D. Observe that since
A is irreducible, the digraph A(A) is strongly connected. Let a (i, in, i) be a
chordless m-dicircuit in A(A). By Definition 2.8 we have m >= 3. Let B A[i, im].
Notice that I’(B) consists of a single circuit. By Lemma 4.6 we have

(4.18) II(A) I-I,,(A).
It now follows from (4.18) that the chordless dicircuit a is reversible. By Corollary 3.6
the strongly connected digraph A(A) is reversible. Thus, since A is in SSn> it
follows that

(4.19) aij#O aijaji>O forall i,j<n>.
Furthermore, by Lemma 4.10 we have

(4.20) H(A) H,(A),
for every dicircuit in A(A). Therefore, by Corollary 4.20 of[3] it follows from (4.19) and
(4.20) that A is diagonally similar to a Hermitian matrix.

(ii) (i). Assume thatA satisfies (ii). Since A + D is diagonally similar to a Hermitian
matrix for all real diagonal matrices D, it follows by Lemma 4.1 that A + D is
in SS>. E]

5. Irreducible matrices with sign symmetric scalar shifts. In this section we discuss
matrices A all of whose scalar shifts are k-sign symmetric. Although the condition here
is weaker than A + D SSn) for all real diagonal matrices D, the results are similar to
those of the previous section.

The following lemma is well known and may be found in [8, p. 79, Remark 60].
LEMMA 5.1. Let A Cn’n be a tridiagonal matrix such that

and
ai,i+ lai+ 1,i>0, 1, ,n- 1.

Then A has distinct real eigenvalues. Furthermore, ifA < < An are the eigenvalues
ofA and l < < n- are the eigenvalues ofA(n) or ofA(1), then
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An easy well-known consequence of Lemma 5.1 is:
LEMMA 5.2. Let A C"," be a tridiagonal matrix such that

and
ai, + lai + 1,i O, i=1, ,n-1.

Then A has real eigenvalues.
LEMMA 5.3. LetA Cn’", n >- 3, andsuppose that ifn is even thenA is combinatorially

symmetric. Assume that a is an n-dicircuit in A(A)and that P(A) consists of a single
circuit. IfA + tI SSn)for all then

I’I,(A) 1-I,:(A).

Proof. Without loss of generality assume that a (1, n, 1). Notice that I’(A)
consists of the single circuit l, n, ]. Since A + tI SSn) for all e , it follows
that

(5.4) f(t) det (A + tI)(112) det (A + tI)(2l 1)
[azg(t) + (- 1)"- 2anp][a2g(t) + (- 1)n- 2a=q >= 0 for all te,

where

and

g(t) det (A + tI)(1,2),
n-I

P= ]-I a,+,
j=2

n-I

q= II aj+,j.
j=2

Observe that since A has real principal minors, if n is odd then g(t) attains every real
value and our proof follows as the proof ofLemma 4.6 where (5.4),f(t) and g(t) replace
(4.7), y(D) and z(D), respectively. If n is even then, since a9_ # 0 and since A is combi-
natorially symmetric 1-sign symmetric matrix, it follows that a2a2 > 0. Dividing (5.4)
by a2a2, we obtain

(5.5)

where

and

Since g(t) attains infinitely many real values, it follows from Lemma 4.2(i) that

(5.7) a, be.

If (5.6) holds, then we have (4.9) and we complete our proof as we do for Lemma 4.6.

or

(5.6) a b,

[g(t) + a][g(t) + b] >- 0 for all te

anPa-
a21

b =alnq.
a12

either
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If(5.6) does not hold, then we have (5.7) where a 4: b. Without loss ofgenerality we may
assume that

(5.8) b>a.

Observe that if g(t) attains the value x then g(t) attains every value which is greater than
x. Thus, it follows from (5.5), (5.8) and Lemma 4.2(ii) that

(5.9) g(t)>=-a>-b for all teE.

Given that A + tI e SSn) for all e E we have

(5.10) h(t)= (det (A + tI)( lln)][det (A + tI)(nl )]

[anr(t) + a2q][ar(t) + a2p] >= 0 for all tee

where
r(t) det (A + tI)(1, n).

Dividing (5.10) by the positive number a,a,, we obtain

(5.11) [r(t)+c][r(t)+d]>-O for all tee

where

and

Observe that (5.8) implies that

a21q
C

anl

d=a2p
aln

(5.12) c>d.

As before, by Lemma 4.2(ii) it follows from (5.11) and (5.12) that

(5.13) r(t)>=-d>-c for all teE.

Observe that (A + tI) (1, 2) and (A + tI) (1, n) are tridiagonal matrices which satisfy
the conditions of Lemma 5.1. Hence by Lemma 5.1 their eigenvalues are simple. Thus,
for appropriate choices of t, the determinants of these matrices, which are g(t) and r(t)
respectively, attain negative values. Hence, it follows from (5.9) and (5.13) that

(5.14) a,b,c,d>O.

Let a (n)\{ 1, n} and a2 (n)\{ 1, 2}, and define a 2 2 matrix B by

bij det (A + tI)[czi[tj], i,j 1,2.
Observe that

(5.15) b =r(t), b22=g(t), bl2=P, b2 =q.

By Sylvester’s identity we have

(5.16) det B= [det (A + tI)(1,2,n)][det (A + tI)(1)] for all te.

By Lemma 5.1 let , be the minimal eigenvalue ofA(1, 2, n), and choose to -. Thus

(5.1 7) det (A + toI)(1,2,n)=O.
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Furthermore, by Lemma 5.1 we have

(5.18) r(to),g(to) <O.

By (5.9), (5.13), (5.14) and (5.18) we now obtain

(5.19) r(to)g(to) < ac pq.

On the other hand, by (5.15), (5.16) and (5.17) we obtain

r(to)g(to) =pq,

which is a contradiction to (5.19). Therefore, our assumption that (5.6) does not hold is
false, and our proof is completed. I--1

Lemma 5.3 does not hold for even n when we omit the combinatorial symmetry
requirement as demonstrated by the following example.

Example 5.20. Let

0 0 0

0 0 0

0 0 0

0 0 0

Let a, (4), I1 I1 I c 1 + . To see that

det (A + tI)[al5] det (A + o for all t

observe that the left side of (5.21) is equal to zero whenever Icl -< 2, and is equal to t2

whenever I1 3.
We remark that it is possible that a condition which is somewhat weaker tl an

combinatorial symmetry will do in Lemma 5.3.
However, for matrices with k-sign symmetric scalar shifts, k > 1, we do not need

to state the condition of combinatorial symmetry.
LEMMA 5.22. Let A Cn’n, n >= 3, and let k be a positive integer, k > 1. Assume

that is an n-dicircuit in A(A) and that F(A) consists of a single circuit. IfA + tI
SSn)for all e then a is reversible in A(A).

Proof Without loss ofgenerality assume that a (1, n, 1). Thus I’(A) consists
ofthe single circuit 1, ..., n, ]. Assume that is not reversible. Without loss ofgenerality
we may assume that an 0. In view of Lemma 5.3 it is enough to consider the case
where n is even. Hence we may assume that n >= 4. Recall that

(5.23) A + tISS,) for allt

yields that A has real principal minors. Also, it follows from (5.23), that

h(t) det (A + t/)(1 In) det (A + t/)(nl 1)

where
=[+anlr(t)]>-_O for all te

r(t) det (A + tI)(1, n),

and

p= aj,j- l,

j=2
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Observe that h(t) is a polynomial in of degree n 2. Since it is nonnegative for all
e it follows that the leading coefficient anl must be nonnegative. In fact, since a is

a dicircuit in A(A) we have

(5.24) a.> 0.

We distinguish between two cases:
Case 1. n 4. By (5.23) we have

f(t) det (A + tI)(112) det (A + tI)(211)

(5.25) [a21g(t)+ a41a23a34]a12g(t)

where
[a2lazg(t)+aal]g(t)>=O for all t6

g(t) det (A + t/)(1,2).

If a43 4:0 then, since a34 4: 0, g(t) attains also negative values (for example for -a33).
Thus, in view of (5.24) we can choose to such that g(to) < 0 and

lazlazg(to)l < a41t.
But then f(to) < 0 in contradiction to (5.25). Therefore we must assume that a43 0.
Since k > we now obtain by (5.23) that

det (A + tI)(1,312, 4) det (A + tI)(2, 411,3) -a41a23a12a34 >= 0,

which is a contradiction to (5.24).
Case 2. n > 4. By (5.23) we have

f(t) det (A + tI)( 1, n 112, n) det (A + tI)(2, nl 1, n 1)

(5.26) [a2a.,._ (t)- a.l/alza.-l#.][alzan- 1,n(/)]

where
[azazla.- ,.a.,._ (t) a.]g(t) >= 0

(t) det (A + tI)( 1,2, n 1, n).

for all te

By Lemma 5.2 (t) attains every nonnegative value. Thus, in view of (5.24) we can
choose to such that (to) > 0 and

lal2a2,a,- ,.a.,._ g(to)l < anl.
But then f(to) < 0 in contradiction to (5.26).

In each case we obtain a contradiction, which means that our assumption that a is
not reversible is false.

We now state the theorem for the irreducible case.
THEOREM 5.27. LetA Cn’n be an irreducible matrix and let k be a positive integer,

k >= 2. Then thefollowing are equivalent.
(i) A + tI SSn) for all
(ii) A + tI SS.) for all and every chordless dicircuit in A(A) is

reversible.
(iii) A + tI SSn)for all and every chordless dicircuit ofeven length in A(A)

is reversible.
(iv) The matrix A is diagonally similar to a Hermitian matrix.

Proof (i) (ii). Lemma 5.22 yields that every chordless dicircuit in A(A) is re-
versible. The rest of the implication is trivial.

(ii) (iii). Obvious.
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(iii) (iv). The proof follows exactly as the proof ofthe part (i) (ii) in Theorem
4.17, where D is replaced by tI, and where Lemma 5.3 is used instead ofLemma 4.6.

(iv) (i). Since A + tI is diagonally similar to a Hermitian matrix for all t e , it
follows by Lemma 4.1 that A + tI SSn). U]

6. Reducible matrices with sign symmetric shifts.
THEOREM 6.1. Let A C"’" have the blockform

whereAll andA22 are square, and let k be a nonnegative integer. ThenA & k-sign symmetric
ifand only ifA and A22 are k-sign symmetric.

Proof Clearly, ifA is k-sign symmetric then so areA and A22. Conversely, assume
that At and A22 are k-sign symmetric and let a,/3

_
(n) be such that q la[ [/31 > 0

and

(6.2) q- la n/31 =< k.

We shall show that

(6.3) det A[IB] det A[BIM >-- O.
Let m be the order ofA. Denote by

Observe that

,’=,n (m), a"= a\c’, /3’=/3n (m), /3"=

(6.4)

and hence

la’l + I-"1 It’l + I"1 q,

(6.5) I-’1 + It"l + I’1 + I-"1 2q.

In view of (6.5) we need to consider only the following two cases.
Case 1. I’1 / It"l > q or I"1 / I’1 > q. Assume that

(6.6) I’1 + I"1 > q.

By (6.4) we have Icy’I, I"1 > 0. Since A[C"la’] 0 it follows from (6.6) by the easy direction
of the Frobenius-Krnig theorem [6] that A[/3la] is singular and hence

det Atalt] det AleXia] 0.

Case 2. I-’1 + I"1 I"1 + It’l q. If I-’l q [1"1 q] then I,"1 0 [1’1 01
and hence I’1 q [1"1 q]. In this case A[a]/3] and A[/3[a] are submatrices ofAll [A22]
and (6.3) follows. If I’1, I"1 < q then observe that a[l] and A[C/IM are reducible.
Furthermore, we have

(6.7) det A[a[/3] det Al[a’[/3’] det A22[a"[/3"]

and

(6.8) det A[#lal det

By (6.2), the sets a’ and a" contain at most k indices which are not in/3’ and/3", respectively.
Hence, since All and A22 are k-sign symmetric, inequality (6.3) follows from (6.7)
and (6.8). []
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In view of Remark 2.13(ii) we obtain the following immediate corollary to
Theorem 6.1.

COROLLARY 6.9. Let A Cn’n have the blockform

where AI and A22 are square. Then A is sign symmetric ifand only ifAll and A22 are
sign symmetric.

We remark that the "only if" part of Theorem 6.1 holds trivially also when we
replace "k-sign symmetric" by "weakly sign symmetric." On the other hand, weak sign
symmetry of At1 and A22 does not imply in general the weak sign symmetry of A for
matrices with nonreal principal minors, as demonstrated by the following example.

Example 6.10. Let

0 010 0

0 0

whereA1 is a matrix. Obviously, the matricesA 11 andA22 are weakly sign symmetric.
However, the matrix A is not in WSS(3) since

det A(312) det A(213) 1.

Since the class SSn) is invariant under permutation similarity, the following is a
corollary to Theorem 6.1.

COROLLARY 6.11. Let k be a nonnegative integer. A square matrix A is k-sign
symmetric ifand only ifevery diagonal block in the Frobenius normalform ofA is k-sign
symmetric.

Let A be a square matrix. Observe that every dicircuit in A(A) is a dicircuit in A(B)
where B is some diagonal block in the Frobenius normal form ofA. Thus, the following
theorem for the general case follows directly from Theorems 4.17 and 5.27 and Corollary
6.11.

THEOREM 6.12. Let A C’ and let k and m be positive integers, m >= 2. Then the
following are equivalent.

(i) A + D SSn)for all real diagonal matrices D.
(ii) A + t1 ss(m) for all .
(iii) A + tI SS,) for all t and every chordless dicircuit in A(A) is

reversible.
(iv) A + tI SS,)for all t and every chordless dicircuit ofeven length in A(A)

is reversible.
(v) Every diagonal block in the Frobenius normalform ofA is diagonally similar

to a Hermitian matrix.
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OF SYSTEMS OF LINEAR/NONLINEAR EQUATIONS*
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Abstract. With a view to obtaining an efficient procedure for solving large-scale systems of equations,
canonical block-triangular forms are defined for layered mixed matrices and for mixed matrices, and some
practical examples are presented. The canonical forms are obtained from a straightforward application of the
decomposition principle for submodular functions. The relation to the existing decomposition techniques for
electrical networks, as well as to the Dulmage-Mendelsohn decomposition, is also discussed.

Key words, block-triangularization, layered mixed matrix, submodular function, Dulmage-Mendelsohn
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1. Introduction. When solving a system of linear equations

(1.I) Ax=b

repeatedly for various values ofthe right-hand side vector b b(0) containing parameters
0, it is now standard to first decomposeA (possibly with permutations ofrows and columns)
into LU-factors as

(1.2) A LU,

and then solve the triangular systems Ly b, Ux y for different values ofb b(O). It
is most important here that the LU-factors ofA can be determined independently ofthe
parameters 0.

No less of interest are the cases where the coefficient A, as well as b, changes with
parameters, but with its zero/nonzero pattern kept fixed. Such situations often arise in
practice, for example, in solving a system ofnonlinear equations by the Newton method,
or in determining the frequency characteristic of an electrical network by computing its
responses to inputs ofvarious frequencies. In this case we cannot calculate the LU-factors
ofA in advance, so that we usually resort to the so-called graph-theoretic methods and
rearrange the equations and the variables to obtain a block-triangular form (see, e.g.,
[1 1], [21 ], [22], [24]). In particular, the block-triangularization based on the structure
theory of bipartite graphs has proved to be effective, and is known as the Dulmage-
Mendelsohn decomposition (abbreviated to DM-decomposition) [4], [5], [6], [7]. Then,
each time the parameter values are specified, the equations corresponding to the DM-
blocks may be solved either by direct inversion through LU-decomposition or by some
iterative method.

The above two approaches, the LU-decomposition and the DM-decomposition, are
two extremes in that the former admits arbitrary elementary row transformations on A
and the latter restricts itselfto permutations only. In other words, the LU-decomposition
regards the entries ofA as numbers belonging to a field in which arithmetic operations
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are defined, whereas the DM-decomposition treats them as if they were symbols, or
indeterminates if one prefers algebraic terms. It is often the case, however, that part of
the entries ofA are to be regarded as numbers and the remaining as symbols.

To be more concrete, suppose a system of linear/nonlinear equations

(1.3) f(x) 0

is to bc solved by the Newton method. The equations may be divided into linear and
nonlinear parts as

(1.4) f(x) Qx + g(x)

where Q is a constant matrix. Accordingly, the Jacobian matrix J(x) of f(x) is expressed
as

(1.5) J(x) Q + T(x)

where T(x) is the Jacobian matrix of g(x). Then we may regard the nonvanishing entries
of T(x) as independent symbols on which no arithmetic operations are expected, whereas
the usual elimination operations could be defined for the matrix Q.

Another typical example is a system of equations describing an electrical network,
which is made up of equations for conservation laws (i.e., Kirchhoff’s laws) and those
for element characteristics (see Example 3.1). The former, stemming from the topological
incidence relations in the underlying graphs, involve only +1 as the coefficients and
hence are amenable to elimination operations. The latter, on the other hand, consist of
coefficients which are contaminated by various noises and errors, and therefore may be
modelled as independent transcendentals.

The present paper aims at establishing a decomposition technique for systems of
linear/nonlinear equations such that the coefficients are classified into two groups as
explained above. A canonical form is introduced for a matrix A of the form

where the entries of Q belong to a subfield K and the nonvanishing entries of T are
transcendentals (in an extension field F) which are algebraically independent over K. A
uniquely determined block-triangular form is obtained with the diagonal square blocks
being nonsingular; for a singular A, rectangular blocks (corresponding to horizontal and
vertical tails in the DM-decomposition) also appear, both being of full rank. The decom-
position can be found by an efficient algorithm so that it can be applied to large-scale
practical problems, of which some examples are given in 4.

The relations ofthe canonical form ofthis paper to the decompositions for electrical
networks so far proposed (mentioned below), as well as to the combinatorial canonical
form of a matrix with respect to its pivotal transforms introduced by Iri in 14], is also
discussed in 5 and 7 with special reference to the admissible row transformations on
matrices.

There have been several combinatorial studies on the rank of matrices in relation
to splitting like (1.6); e.g., "2-block rank" of[ 13], matroidal characterization (see Theorem
3.1 below) of the rank of the matrix (1.6), and "Rank-Identity for mixed matrices" of
[28] (see [181 for their relations).

In the literature on electrical network theory, it has been known that a system of
equations describing an electrical network can be put into a block-triangular form if one
chooses appropriate bases (tree-cotree pairs) for Kirchhoff’s laws and rearranges the vari-
ables and the equations (for both Kirchhoff’s laws and element characteristics). As far
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as the present authors know, the decomposition of a pair of current-graph and voltage-
graph is investigated in [35], [36] in graph-theoretic terms for the networks involving
controlled sources. Based on the result of [42], a decomposition ofthose networks which
have admittance expressions was considered by Iri around 1979 16] (see 17] for explicit
illustration) using the notion of minimum-cover in an independent-matching problem.
An incomplete attempt has been made by Nakamura and Iri [30], [31 ], [32] to define a
block-triangularization for a system of equations describing the most general class of
networks with arbitrary mutual couplings (such as those containing controlled sources,
nullators and norators) following the theoretical framework ([15], [19], [20], [29], [33],
[40], [41 ]) for the principal partition of matroids, or the decomposition of submodular
functions.

Then it is shown by Murota in the unpublished report [25], which may be regarded
as a preliminary version ofthe present paper, that (i) the method proposed by Nakamura
and Iri in [30], [31 ], [32] produces too fine a partition for a useful block-triangularization
ofelectrical networks, as will be demonstrated in 5 below; (ii) nevertheless, ifone notices
an appropriate identity characterizing the rank ofthe matrix (1.6), the basic idea of [30],
[31 ], [32] can be modified to yield a block-triangularization for the electrical networks
treated there; and moreover (iii) the modified method can be used in obtaining a block-
triangularization for more general systems of equations like those mentioned above.

The canonical form defined in this paper has been obtained by establishing a new
identity (Theorem 4.2) for the rank of a matrix of the form (1.6) and by applying the
same decomposition principle as that in [30], [31], [32] to the relevant submodular
function appearing in the identity. However, once the canonical form is found for a
specific problem, it would be possible to describe it without explicit reference to sub-
modularity or the decomposition principle for submodular functions. In fact, it could
be described in a constructive manner in terms of an algorithm which is composed of
pivoting operations on a matrix and path-searching in a graph. It should be emphasized,
nevertheless, that the approach based on the general principle is heuristically effective,
affords a proper perspective, clarifies the relation among various techniques for block-
triangularization and suggests further meaningful extensions.

2. Preliminaries. Some results on the decomposition principle for submodular
functions [15], [19], [20], [29], [33], [40], [41] are briefly summarized here for later
references.

Let C be a finite set, and p:2c -- R be a submodular function defined on it, i.e.,

(2.1) p(Xt3 r) +p(Xfq r) <-_ p(X) +p( r)

for X, Y C C. (Throughout this paper, X C C does not exclude X C.) The family of
those subsets of C which give the minimum ofp will be denoted by L(p):

(2.2) L(p) (XIXC C,p(X) <-p(Y) for all rc c}.
From the submodularity (2.1), it follows that

Xt3 Y, Xf’) YeL(p) for X, YeL(p).

In other words, L(p) is a (distributive) sublattice [2] of the Boolean lattice 2c. Note that
the length ofa maximal chain in L(p) from min L(p) to max L(p) is uniquely determined.

By the structure theory of distributive lattices 1], [2], there exists a one-to-one
correspondence between sublattices of2c and partitions ofC into partially ordered blocks.
Furthermore, when a sublattice is derived from a submodular function as (2.2), "minors"
are induced on the blocks. To be more specific, the following is known as (a version of)
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Jordan-H61der type theorem for submodular functions. (The proof is straightforward;
see, e.g., [19].)

THEOREM 2.1. Let p be a subtnodularfunaion defined on a finite set C, and L(p)
thefamily ofminimizers ofp. Put X0 min L(p) and Xr max L(p).

(1) Any maximal chain in L(p)

XoX" "Xr
determines afamily ofintervals (difference sets)

{ Ci]Ci Xi\Xi-1, 1, r},
which is independent of the choice of a maximal chain, and hence provides a unique
partition ofC into disjoint subsets (blocks)

= {C0;Cl ,Cr;Coo }
where Co Xo and Coo C\Xr. (Co and Coo can be empty.)

(2) The "minors" ofp defined by

(2.3) Pi(Y)-p(Xi-, [,.J Y)-p(Xi-1) for YC Ci
(i 1, r) are uniquely determined independently ofthe choice ofa maximal chain
[32], [33].

(3) A partial order (-<) is defined on \{Co, Coo } by the relation

C ( C iffCCXL(p) implies CiCX
where <- i, j <= r. The partial order is trivially extended over to by

Co "< C "< Coo for 1, r,

ifCo and Coo are nonempty.
(4) The "’minors" defined in (2) above are expressed also as

(2.4) Pi(Y)=p((Ci)U Y)-p((Ci)), YC Ci,

for 1, r, where

(2.5) (C,) t_J{GIC "< C,, G4 C,}.
Note that a linear extension (_-<) of the partial order defined in (3) above can be

obtained by choosing a maximal chain in L(p) as in (1) and by defining the total order
on by

G-<Cj iff <-j.

We write G]’<C iff C/-< C and there exists no Ck(4:C/, C) such that C/-< C -< C.
3. Mixed matrices and layered mixed matrices. Let K be a field, which contains

Q, the field of rationals, and of which F is an extension field:

(3.1) QCKCF.

The set of rn n matrices over F is denoted as ’(F; m, n) or simply as ’(F).
A matrix A ///(F) can be expressed as

(3.2) A QA + Ta
in such a way that QA ’(K) and the nonvanishing entries of Ta are in F\K. To make
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the decomposition unique, we will assume that (Qa)o 0 if (TA)o : O. If, in addition,
the collection of the nonvanishing entries of Ta is algebraically independent [43]
over K, the matrix A is called a mixed matrix with respect to K. We denote by
d//d//(F/K; m, n) the set of m n mixed matrices over F with respect to K. The notion
of mixed matrix is introduced in [27], [28] as a mathematical tool for dealing with
structural aspects of physical/engineering systems. See [28] for detailed discussion of its
physical meanings.

A subclass of mixed matrices is defined here. We call a mixed matrix A e
/’d//’(F/K; m, n) a layered mixed matrix with respect to K, if the sets of nonzero rows
of Qa and Ta are disjoint in the expression (3.2) for a mixed matrix A, i.e., if A can be
put into a partitioned matrix of the form

where Q e .//(K; me, n), T e ./’(F; mr, n) (me + mr m), and the collection of
the nonvanishing entries of T are algebraically independent over K. The set of m n
layered mixed matrices consisting of me + mr rows as above will be designated by
.’(F/K; me, mr, n) or simply by ’./’(F/K). Obviously we have

(3.4) *9d/t’(F/K; mQ, mr, n) C d//d///(F/K; mo + mT, n).

Consider a system of equations (1.1) where the coefficient matrix A e
d//’d///(F/K; m, n) is of the form (3.2). Introducing an auxiliary vector w e Rm, we can
express it equivalently as

(3.5)
-Im TA x O"

It may be assumed that we can choose m numbers in F, say tl, "", tm, that are alge-
braically independent over the subfield of F to which the entries of Ta belong. Then,
multiplying each of the last m equations by the transcendentals tl, "-, tm, we obtain
an augmented system of equations

(3.6) ( Im Qa b

(3.7) D diag(t, ,tin),

which is still equivalent to the original system (1.1). The coefficient matrix of (3.6) is a
layered mixed matrix with respect to K since the nonvanishing entries of [-DmlDm Ta]
are algebraically independent over K. In the case ofa system oflinear/nonlinear equations
(1.4), the above transformation from (1.1) to (3.5) may be interpreted as assigning w to
the nonlinear part g(x) to obtain

(3.8) w + Qx 0, -w + g(x) 0,

which is equivalent to (1.4).
In general, with a mixed matrix A e d///d//(F/K; m, n) we will associate a layered

mixed matrix A e d//’(F/K; m, m, m + n):

(3.9) = ( Im Qa )-Dm Dm TA
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r 8=y8n4

r6

r3 <9:Y9n5
FIG. 3.1. A simple electrical network ofExample 3.1 rom [30]).

where Dm is given by (3.7). Note that the column-set of J has a natural one-to-one
correspondence with the union of the column- and the row-set of A. Since we have the
obvious identity

(3.10) rank rank A + m,

we may restrict ourselves to layered mixed matrices when we deal with the unique solv-
ability of a system of equations having a mixed matrix as its coefficient matrix.

For a matrix G over a field in general, we will denote by M(G) the linear matroid
[44] defined on the column-set ofG with respect to the linear dependence ofthe column-
vectors. The rank of a layered mixed matrix A of (3.3) is known [44] (cf. also [9]) to be
expressed as follows in terms of the rank of the union M(Q) V M(T) of two matroids
M(Q) and M(T). Both M(Q) and M(T) are defined on the column-set, say C, of the
matrix A, and their rank functions will be denoted by 0 and z, respectively.

THEOREM 3.1. Let A ///(F/K; mQ, mr, n) be a layered mixed matrix of the
form (3.3). Then

rank A rank (M(Q) v M(T))

min {p(X) + r(X)- IxlIxc C} + n.

Proof By the generalized Laplace expansion and the well-known identity for matroid
union. U]

Note that the rank ofthe union oftwo matroids can be found by an efficient practical
algorithm either for matroid union or for matroid intersection [3], [8], [20], [42].

COROLLARY 3.2 [28]. LetA ///g(F/K; m, n) be a mixed matrix oftheform (3.2).
Then

rank A rank (M(ImlQA) V M(Iml Ta))- m.

Proof Immediate from (3.10) and Theorem 3.1. q

Example 3.1 [30, Example 4.1.3]. Consider the free electrical network of
Fig. 3.1, which is taken from [30]. It consists of 6 resistors of resistances ri (branch i)
(i 1, 6), and 3 voltage-controlled current sources (branch i) with mutual con-
ductances "Yi (i 7, 8, 9); the current sources ofbranches 7, 8, 9 are controlled, respectively,
by the voltages across branches 2, 4, 5. Then the current i in and the voltage i
across branch (i 1, 9) are to satisfy the structural equations (Kirchhoff’s laws)
and the constitutive equations, which altogether are expressed as in (1.1) with x
( 1, 9; /1, n9), b 0 and
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 Y/7 8 9

(3.1 l) h-"

0 0
0
0 0
0 0 0
0 0

rl

0 0
0 0

0 0
0

0 -1 0 0
0 0 0
0 0 -1

0 0 -1

0 0
0 -1

-1 0
0 0
0 0

-1

0 0 0 0 0
0 0 -1 0 0

0 -1 0 0 -1 0
0 0 -1 -1 0 0 -1

-l

-l

r5

-1 ’Ys 0
-1 ’9 0

The unique solvability of the network reduces to the nonsingularity of the matrix A.
It may be justified for physical reasons (see, e.g., [28]) to regard ri (i 1, 6)

and ,; (i 7, 8, 9) as real numbers which are collectively algebraically independent over
the field of rationals. Then we have A e ///(R/Q; 18, 18), and the unique solvability
ofthe network can be determined efficiently by Corollary 3.2. Or alternatively 17], [31 ],
[32], [37], [38], [39], we may directly apply Theorem 3.1 with Q being the upper 9 rows
of A and T being the lower 9 rows of A, since we can put A in the form of a layered
mixed matrix by multiplying the lower 9 rows by independent transcendentals, just as
we did for (3.5) to get (3.6). This example will be taken up again in Example 4.2.

4. Combinatorial canonical form of layered mixed matrices. This section
defines a block-triangular canonical form for an m n layered mixed matrix A e
-q//(F/K; me, mr, n)ofthe form (3.3), where m me + mr. ForA of(3.3), we consider
the transformation of the form

where Se is an me me nonsingular matrix over K (i.e., Se GL(me, K)); Pr, P and
P are permutation matrices of orders mr, m and n, respectively. The transformed
matrix of (4.1) also belongs to .(F/K; me, mr, n) and is equivalent to A in the
ordinary sense in linear algebra. We will say that two matrices are LM-equivalent if they
are connected by the transformation above. In the following, we will look for a canonical
block-triangular matrix among the matrices LM-equivalent to A. The canonical form to
be considered should reduce to the DM-decomposition when m mr and me 0.

Let R and C denote the row- and the column-set of A, respectively; the former is
the disjoint union of the row-sets, say Re and Rr, of Q and T:

(4.2) R RQt3 Rr.
For I C R and J C C, A[I, J] means the submatrix of A with row-set I and column-
set J.
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Theorem 3.1 states that the rank of A[R, J] (J C C) can be expressed by o(X)
rank Q[RQ, X] and r(X) rank T[Rr, X] (X C J). On account of the algebraic inde-
pendence of the nonvanishing entries of T, the rank r(X) equals the term-rank [34] of
T[Rr, X], which is known [44] to be expressed by the adjacency associated with T;
namely we have

r(X)= min {’(Y)+IX\YIIYX}, XC,(4.3)

where

(4.4)

(4.5)

rz(Y) {iRrlT#O for somej Y), YC C,

(r) Ir(r)l, Yc.
We consider two functions:

(4.6) p,(X) o(X) + (X) -IXl, XC,

(4.7) p(X) p(X) + 3"(X)- [X[, XQ C.

Since -(X) =< 3"(X) by definition, we have the obvious inequality

(4.8) p(X) <= p(X).
These functions, however, share a common minimum value when restricted to 2 for
anyJQ C.

LMMA 4.1. For J C_ C, we have

min {pT(X)IXCJ} min {p(X)]XCJ}.

Proof. From (4.6) and (4.3) it follows that

min {pT(X)IXCJ}

min {0(X)-IXI / min {3"(Y) + IX\YII YX)IXJ)
min {p(X)+3"(Y)-IYIIYXJ)
min {p(Y) + 3’(Y) [Y YJ

min {p,(Y)IYCJ}.
Combined with Theorem 3.1, this gives a characterization of rank A in terms of and
3", instead of and r.

THEOREM 4.2 [25]. Let A Z’/’(F/K; me, mr, n) be oftheform (3.3). Then

rank A[R,J] min {p,(X)IXCJ} + I11,

for J C C, where p, is defined by (4.7).
The important fact is that p,:2c--. R of(4.7) is submodular, and hence, as explained

in 2, its minimizer L(p,) determines a unique partition of the column-set C ofA into
partially ordered blocks. To be specific, we choose (cf. Theorem 2.1 (1)) a maximal chain
in L(p,):

(4.9) XoX X
to get the blocks:

(4.10) Co=Xo; C=X\X._I (j=l,.-.,r); Coo-C\X

We define Co -< C (resp. C -< Coo) for j 1, r if Co (resp. C) is nonempty.
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A partition {RTj[j 0, 1, r, oo } of the row-set RT of T is induced from (4.9)
naturally as follows:

(4.11) Rro Y; Rrj YTj\Yr,j-1 (j= 1, ,r); Rr=RT\Yrr

where

(4.12) Y77 rr(Xj) (j=0, l, ,r).

By this construction, we have T[Rri, Cj] 0 for > j, i.e., the matrix T is already
essentially "block-triangularized" with respect to the partitions (4.10) and (4.11). Intro-
ducing permutation matrices Pc and Pr, we can make T PrTPc in an explicit block-
triangular form in the ordinary sense, where, however, the column-sets (resp. row-sets)
of T and T are identified with each other by the one-to-one correspondence through the
permutation Pc (resp. Pr), so that T[Rri, Cj] T[Rri, Cj] (0 <-_ i, j <= ). To be more
precise, we have the following.

LEMMA 4.3.
grj Fr((C> U G.)\rr((c.>)

r(cAr((G)) (j= 1, ..., r)

where (C.) is defined by (2.5), and therefore

T[Rri, C] 0 unless Ci "< C.
Proof Since X._ ,, X(=X_ O C.), (C) and (C) O C all belong to L(p.r), we

have p(X_ C.) p,(X._ l) p((C.) U C) p,((C)) (=0). This implies, by sub-
modularity, that

(4.13) o(X-1UC)- o(X-)= o((C) U C)-
(4.14) "y(Xj_ 1U q.)- "y(Xj_ 1) ((.) U) ((-)).

The latter is equivalent to ,)l which means Rv
r(q)r(()) since Rr r()r(_ ,) and rr(_

As for the matrix Q, it can be transfoed to a block-triangular matrix Q th
respect to the partition (4.10) by the usual elimination operations; that is, for some

Se e GL(me, K), the row-set of Q SQP is paitioned into disjoint subsets
{Rjlj 0, 1, r, } such that

IRool o(Xo),

(4.15) ]Roj[ O() O(@-,) (j 1, r),

IRoI IRoI- o(X3,

and

(4.16) Q[RQi,] 0 (0j< ).

By the same argument as the proof of Lemma 4.3 (by (4.13) in paicular), we see

and we may fuher assume that

(4.17) Q[Roi, C] 0 unless G
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We will put
J

(4.18) Yo.i= I,.J Rt2 (j=O, 1, ,r),
i=0

(4.19) Y= Your- YT (j=0, 1, ,r),

(4.20) Rj=RQt_JRr (j=0, 1,..-,r, ).

It may be noted that, if we require (4.16) only (not necessarily (4.17)), we can choose So
to be expressed as

(4.21) Se= LQPQ
where LQ e GL(mQ, K) is lower block-triangular and Pe is a permutation matrix.

Consider the matrix

(4.22) A
,PrTP

which is LM-equivalent to A (under the transformation (4.1)). The row-set R
Rot.JRr of A, as well as the column-set C, is now paitioned into blocks
{R Ij 0, 1, r, }, on which the paial order (<) on { IJ 0, 1, r, } can
naturally be induced.

THEOREM 4.4. LetA be as above, whose row-set R and column-set Carepartitioned
into partially ordered blocks.

(1) A[Ri, Q] 0 unless G Q (1 i, j r). In particular,

(4.23) A[Ri, Q] O ifi>j.
[R, ] O ifGI Q (1 i,j r).

(2) Io < IcolifCo ,
1 1 (>O)forj , r,
1 > Iclifc .
(From the last relation follows a more symmetric but weaker statement:
I > Iclif .)

(3) rank J[, .] rank [R, @.] I (j 0, 1, ..., r).
(4) rank 0[Yo, ] YoI (j O, 1, r),

rank [Y,] IY.I (j 0, 1, ..., r).
(5) rank J[Ro, Col IRol,

rank [Rj, ] IRI Il (>0) (j 1, ..., r),
rank J[R, C] IC].

(6) Forj O, 1, r, , the submatrix A[R, Q] ((F/K)) is irreducible in
the sense that the submodularfunction (defined on ), the correspondent of
p of(4.7), has no minimizers distinctom and ..

Proof (1): Immediate from mma 4.3 and (4.17).
(2): If Co , then 0 p,() > min p p(Co) o(Co) + y(Co) lCol

Iol- ICol.
For j 1, r, we have pv(_ ) p(), i.e.,

o(- ,) +-,)- I-, o() +()- I.
By (4.11 ), (4.12), and (4.15), this reduces to

If C , then p,(C) > min p p,(X), which implies IRI [CI o(C) +
(C) -IC[ > o(X) + (X3- [XI [YI- IXI. Hence IRI R[- Y, > ICI-
Ixl Icl.
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(3): From (1) above and Theorem 4.2, we have rank A[Yj, Xj] rank A[R, Xj]
rank A[R, Xj] min {p,(X)IX C Xj} + Ix-I p4Xj) + Ixjl (xj) + (xj) IYvl +
Yjl IY.I.

(4): Immediately from (3) above.
(5): The identities for j 0, 1, -.., r are immediate from (1) and (3) above. By

Theorem 4.2, we have

rank A[Roo, Coo] min {/oo(Z)lZC Coo } + Icl
where

/oo(Z) rank ([Reoo, Z] + II’RZ)Rrl- IZl.
On the other hand, this turns out to be nonnegative for Z C Coo, since

oo(Z) (p(XrlJ Z)- p(Xr) + ("Y(Xrl,.J Z)-"[(Xr) Izl
(4.24) p.(X 1.3 Z) p.v(Xr)

p(Xt3 Z)- min p.

(6): First consider the case ofj oo. Recalling Xr max L(p.,), we see from (4.24)
that/oo has the unique minimizer Z . The second case of j 0 is easy, since
o(Z) p.,(Z) has the unique minimizer Z Co. The other cases (1 --< j =< r) can be
treated similarly using the expression

/(Z) rank O_[Roj, Z + Ir(Z)C)Rrjl Izl
p(Xj_ I,..J Z)- min p,. H

This theorem shows that with suitable permutation matrix P, P is a block-tri-
angular matrix which is LM-equivalent to A. The ordering of the blocks is uniquely
determined in the sense of the partial order (-<). The following states that it is the finest
block-triangular form that is LM-equivalent to A.

THEOREM 4.5. The matrix PA constructed above based on is the finest block-
triangular matrix that is LM-equivalent to A and enjoys the properties (2) and (5) of
Theorem 4.4.

Proof Suppose that J is such a block-triangular matrix with the row-set R and the
column-set C being partitioned as

(4.25) R t_J{Rjlj O, 1, ..., r’, co }, C t3{ Cj.lj O, 1, ..., r’, },
where [R, C)] 0 for > j. Since J is LM-equivalent to A, we have from Theorem
4.2

(4.26) rank min {p(X)IXC C} + ICI
with the same p as for A. Put

J
(4.27) Xj t_J C (j 0, 1, -.-, r’),

i=0

J
(4.28) Y) t3 R (j 0, 1, ..-, r’).

i=0

Since 3 is block-triangularized and has the property (5) of Theorem 4.4, we have

(4.29) rank ICI- ]Xj.I + Yj[ (j 0, 1, r’).

Combining (4.26) and (4.29), we obtain

min p Yjl IxSI (j=0, 1, ,r’).
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This shows that

(4.30) XL(p),

since p(Xj.) (Xj.) + 3’(Xj) -Ixl--< 1.1- Ixl min p. Therefore, the partition
(4.25) is coarser than or equal to (or an aggregation of) { C-Ij 0, 1, .-., r, } determined
by L(p).

Thus, the matrix PrA with A constructed above provides the finest block-triangular
form among the matrices LM-equivalent to A. It is named here the combinatorial canonical
form ofa layered mixed matrix. It is obvious that it agrees with the DM-decomposition
whenA T(i.e., m 0). In parallel with the DM-decomposition, the rectangular blocks
corresponding to R0 Co and Roo Coo, if any, will be called the horizontal tail and the
vertical tail, respectively.

A comment on the algorithm will be in order. From the point of view of practical
application, it is important to note that this canonical form can be constructed by an
efficient matroid-theoretic algorithm that involves O(n3 log n) arithmetic operations [3]
in the subfield K and O((m + n)2n) operations for graph manipulations, as follows.

To be specific, with A e SF/’(F/K; me, mr, n) having the row-set R Re tA Rr
and the column-set C we associate a bipartite graph G (Rr tA Co, C; E) defined as
follows. The vertex-set V of G is given by

(4.31) V= RrU CO-U C
where C is a disjoint copy of C, and the arc-set E of G is defined as

(4.32) E {(i,j)RT C[To#O} U {(jo,j)Co)< CIjrC}

where jQ (CO-) denotes the copy ofj (C).
We consider the independent-flow problem 10] (see also [20]) on the network with

the underlying graph G (or an independent-matching problem [44]); the direct sum of a
free matroid on Rr and the linear matroid M(Q) on Co. is defined on the entrance-set
RT tA CQ, another free matroid is attached to the exit-set C, and each arc ofE has infinite
capacity. For U C Vwe put

(4.33) J= C\U, I= Rr\U, Ko.= Co.\U.

Then the capacity r(U) of U is given by

111+ (K)+ IC\JI if Yr(J)CI and JCK,
(4.34) r(U)= + otherwise,

where Ko. (CCo.) and K(CC) are corresponding copies. The family L(r) ofthe minimizers
of r, namely the family of minimum cuts, determines L(p) by

(4.35) L(p,) {JC C[J= C\U, UL(r)}.

This shows that the desired partition ofC for the combinatorial canonical form can
be constructed by first finding the maximum independent flow (or independent matching)
and then decomposing the auxiliary graph associated with it into strongly connected
components, among which the partial order can be induced. (To be more precise, the
column-sets Co and Coo are determined by those vertices of C (CV) which are reachable
to the exit and from the entrance, respectively.) See, e.g., [20] for detail. Example 4.1
below will illustrate this procedure.

Example 4.1. Consider the following matrix A fF’(F/Q; 3, 6, 7), where
{ ti[i 1, 13 } are indeterminates over Q and F is the field of rational functions in
ti’s over Q:
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(4.36) A

2 3 4 5 6 7

0 0
-2 0 -2

0 0

0 -1
0 0 2

-1

t t2
t3 t4

t5 t6 t7
ts t9 t0 t

tl2
t3

The graph G for the associated independent-flow problem is depicted in Fig. 4.1. The
auxiliary graph for a maximum independent flow is shown in Fig. 4.2, which provides
the partition (4. 0) of the column-set C ofA:

(4.37) c= cou c, ucU Coo
where Co , CI { 2, 4, 7 }, C2 { 3 }, Coo { 1, 5, 6 }; Co (resp. Coo) consists of those
vertices of C which are reachable to s- (resp. from s/), and C and C2 are determined by
the strong components ofthe subgraph ofthe auxiliary graph that is obtained by deleting
the vertices reachable to s- or from s/. Notice Ci -< Coo (i 1, 2), and that C and C2
have no order relation with each other. The combinatorial canonical form ofA is given

2 4 7 311 5 6
by

0 -1
t5 t6 0
t8 t9 t

t7
to

0 0
t 0 t2
t3 t4 0
0 0 t2
0 0 t13

(4.38)

RT C
1 CQ

Q

2

0 3 ; O 3Q

5Q

7

FIG. 4.1. Independent-flow problemfor Example 4.1.
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RT C CQ
1

Q

S
+ ()_

_
3Q

7Q
(R)s

FIG. 4.2. Auxiliary graph associated with a maximal independentflowfor Example 4.1.

Example 4.2. Recall the electrical network ofExample 3.1. With the understanding,
mentioned in Example 3.1, that the coefficient matrix A of (3.11) can be considered a
member ofed//(R/Q; 9, 9, 18), the combinatorial canonical form ofA is found as (4.39)
below.

It has empty tails (Co Roo ) and 9 square diagonal blocks with the column-
sets given by C {77}, C2 {71}, C3 {), C4 (78}, C5 (79}, C6 (76}, C7 6,
C8-- 75, 5, 9, C9 (2, 72, 3, 73, 4, 74, 7, 8. The partial order among them is
given by:

c-<c-<c3-<c9;c4-<c8-<c9;c-<c6-<c7-<c8.

(4.39)

-1

-1

--1

r 0

0 --1

-1

0 0
0

0 0
0 0 0
0 0 0

-1 0 0
0 -1 0

3"s 0 -1

0 0 0
0 0 0

0 -1 0 0

r2 -1 0 0 0
0 0 r3 -1 0
0 0 0 0 r4
0 "}’7 0 0 0
0 0 0 0 0

This example will be considered again in Example 5.2.
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We now consider how the combinatorial canonical form can be applied to an efficient
solution of a system of equations A(O)x b(O) for varying values of parameters O. We
express the coefficient matrix as

(4.40) A(O) Qa + TA(O)

and regard it as a mixed matrix, treating the nonvanishing entries of Ta(0) as ifthey were
algebraically independent. As discussed at the beginning of 3, we may introduce an
auxiliary variable w to obtain the augmented system of equations (3.5) or (3.6) with the
layered mixed matrix A of (3.9) as the coefficient matrix. The combinatorial canonical
form of.4 determines a hierarchical decomposition ofthe whole augmented system into
smaller subsystems; we may repeatedly solve the subproblems with the diagonal blocks
as the coefficient matrices.

For the subproblems to be solved, the diagonal blocks ofthe combinatorial canonical
form of must be nonsingular. If the assumption of the algebraic independence of the
nonvanishing entries of TA(O) is literally met, the nonsingularity of the diagonal blocks
is guaranteed by Theorem 4.4(5). It is obvious, however, from the block-triangular struc-
ture that even ifthe assumption is not satisfied, the diagonal blocks must be nonsingular
if the original coefficient matrix A is nonsingular at all. Therefore the decomposition
procedure above can be carried out successfully ifthe original system is uniquely solvable
at all.

Each subproblem may be solved as follows. Let Aj be the coefficient matrix of the
jth subproblem. Its row-set is divided as (4.20) into RQj and Rr. Its column-set C may
also be partitioned as

(4.41) C= CwUC
where Cw and Cxj correspond to part of the variables w and x, respectively. It is easy to
see, by the irreducibility of Aj, that

(4.42) IRaqi >-- ICwl ifRrj 4:

(and ICI if Rrj ) and that the submatrix A[Rrj, Cwj] is of the simple form

(4.43) .,j[Rr, Cwj]= (-OI)
ifRrj q: and Cwj 4: , where I is the identity matrix oforder ICw[. Thus the subproblem
can be expressed as

(4.44) RQ:fQIRr:-I0 Q-)(W)TaTlxj ()00
where bj bj(O) is to be computed from b(O) each time 0 is given. On eliminating the
auxiliary variables wj, we obtain the system of equations

(4.45) ( Q1 T + Q2

in ICxj] variables. The amount of computation needed to determine x in this way may
be estimated roughly by

(4.46) IRe llCw llCxl + IC13/3.
Another approach may be conceivable that makes no distinction between w and

x. We may assume that the subsystem is given by



138 K. MUROTA, M. IRI AND M. NAKAMURA

Rr" z2

where (z, z2) is a rearrangement of (wj, xj). The Gaussian elimination procedure applied
to (4.46), possibly with permutations of rows in RT, can be done with at most

(4.48) IRrI21RoI + [Rrj[3/3
arithmetic operations.

The above considerations reveal that the matrix A contains an identity matrix of
order no smaller than max (Icl, [Ro]) as a submatrix. Thus, we may adopt

(4.49) min (ICxl, IRrsl)
as a rough measure for the substantial size of the subproblem.

Example’ 4.3. This example is based on the reactor-separator model (EV-6) of[45].
The system of linear/nonlinear equations to be solved involves 120 unknowns and as
many equations. The Jacobian matrix, denoted as A, is sparse, containing 351 nonvan-
ishing entries. The ordinary DM-decomposition yields 4 nontrivial blocks involving more
than one unknown variable. The maximum size of the blocks is 25 (see Table 4.1).

Ofthe nonvanishing entries ofA, 172 numbers are rational constants (1 or 1) and
the remaining 179 entries are regarded here as algebraically independent numbers (in a
field F) over Q. That is, we consider A e ’//(F/Q; 120, 120). As explained above, we
may then resort to the combinatorial canonical form ofthe corresponding layered mixed
matrixA e St///(F/Q; 120, 120, 240) to obtain a decomposition ofthe augmented system
of equations with auxiliary variables (see (3.2) and (3.9)). The canonical form ofA has
empty tails and yields 5 nontrivial blocks, the maximum size of which being equal to
17. (The canonical form ofJ has been found by a slightly modified version of the FOR-
TRAN program originally coded by M. Ichikawa [12].) In Table 4.1, three different
decompositions are compared, where the number of rows of the T-part of each block,
i.e., IRrll of (4.11), is indicated in brackets. The third decomposition will be explained
in 5.

Example 4.4. The system of equations considered here is compiled in 12] from a
real-world problem that has arisen from the analysis of an industrial hydrogen produc-
tion system. It involves 544 variables and equations, and the Jacobian matrix A con-
sists of 1142 rational constants (1 or -1) and 322 other numbers which are regarded
here as algebraically independent transcendentals in F over Q. Then we have A e
’’(F/Q; 544, 544). The combinatorial canonical form of the corresponding layered
mixed matrix &t///(F/Q; 544, 544, 1088), computed as in Example 4.3, has empty

TABLE 4.1
Block-triangularizations for Example 4.3.

DM-decomposition
ofA Combin. canon, form ofA (by p) Decomposition ofJ by p,

size blocks size blocks size blocks

25
10
9

C= Cw + Cx [Rr] C= Cw + Cx [Rr]
17 8 +9 [91 16 8+8 [81
15 =6+9 [6] 14 =6+8 [5]

2 14 =4+ 10 [9] 13 =4 +9 [8]
8 0 + 8 [4] 8 0 + 8 [5]
5=0+ 5 [5]

67 181 189
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tails and contains 23 nontrivial blocks with more than one variable. The DM-decom-
position ofA and the combinatorial canonical form ofA are summarized in Table 4.2.
Note that the substantial sizes of the subproblems in terms of (4.49) are much smaller
than the block sizes of the subproblems obtained by the DM-decomposition.

5. Relations to other decompositions. The first subsection clarifies the relation of
the combinatorial canonical form to the decomposition considered in [30], [31 ], [32], as
well as to the ordinary DM-decomposition. The second subsection points out that for a
certain class of electrical networks considered in 16], 17], [42], the combinatorial ca-
nonical form gives essentially the same block-triangularization as the method proposed
in [16], 17] by way of the structure of minimum covers in an independent-matching
problem.

5.1. Decomposition by L(p.) and the DM-decomposition. It has been claimed in
[30], [31 ], [32] that a block-triangularization of systems of equations, such as (3.11), for
electrical networks is obtained by the principal partition associated with a matroid in-
tersection problem. The method of [30], [31], [32], which we term here the principal
partition of M(Q)* A M(T), is based on Theorem 3.1 and adopts the submodular function
p of (4.6) to obtain a decomposition of unknown variables (i.e., currents and voltages
of branches in the case of electrical networks) into partially ordered blocks; that is, the
principal partition of M(Q)* A M(T) for a layered mixed matrix (3.3) is the partition
of the column-set into partially ordered blocks produced by the lattice L(p) (the family
of minimizers ofp) according to Theorem 2.1. This method, however, provides too fine
a partition for a block-triangularization, as is demonstrated below (see also Example 5.2).

Example 5.1. Consider an electrical network consisting of two separate branches
with mutual coupling given in terms of admittances. This network is described by the
matrix (cf. (5.5)):

-1
-1

yll y12
y21 222

TABLE 4.2
Block-triangularizations for Example 4.4.

DM-decomposition
ofA

size blocks

Combin. canon, form ofJ (by p)

size blocks

104
28
23
14
10 5
8
6 7
4 2
3 9

240

C= C, + Cx [Rr]
114 75 + 39 [75]
24 15 +9 [151
18 10+ 8 [10]
14=8+618]
6 4 + 2 [4]
4=2+2[2] 15
2=1+111] 3

846
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where i and r/i are the current in and the voltage across branch (i 1, 2). The family
of minimizers ofPT is given by

L(p.)- (,(11}, {,2}, (,1, /2}, {1, /1,,2}, {2, Jl, T]2}, {1,2, 1,2}}
and therefore the principal partition of M(Q)* A M(T) based on p, yields the partition
of C { , 2, /, /2} into 4 singletons with the partial order given by {} -K {;}
(i,j 1, 2). However, it is clear by inspection that {/, /2} cannot be split. On the other
hand, the method using pv gives the partition C { } U {2} U {/, /2} with the partial
order {/, /2} -K (/} (i 1, 2).

In the following, we compare the decompositions induced by the two submod-
ular functions p of (4.6) and pv of (4.7) associated with a layered mixed matrix A
Fg(F/K; too., roT, n) of the form (3.3). Remember that L(p) is defined in (2.2) as the
family of minimizers of p:2c - R and that L(p) is a distributive sublattice if p is sub-
modular.

LEMMA 5.1.
(1) p(X) <= p,(X) for X C C.
(2) min p min p.
(3) L(pT) D L(p).
(4) For X L(p) there exists Y L(p,) such that YC X.
(5) min L(p) min L(p,).
Proof. (1) and (2): Given in (4.8) and Lemma 4.1.
(3): Immediate from (1) and (2) above.
(4): Let Y0(C X) be a minimizer of min {3’(Y) [YII Y x} r(s) Ixl. From

(2), we have min p, min p, p(X)+ "Y(Yo)- Yo[ >-- p(Yo) + "Y(Yo) -IYol P,(Yo),
i.e., Yo L(p,).

(5): This follows from (3) and (4) above. D
In view ofthe correspondence between the distributive sublattices and the partition

into partially ordered blocks (2), this lemma shows that the decomposition ofthe column-
set C (i.e., the set of variables) by the principal partition of M(Q)* A M(T) is finer
(including the partial order) than that ofthe combinatorial canonical form ofthe present
paper. In other words, the column-set of each block ofthe combinatorial canonical form
is an aggregation ofthe blocks ofthe principal partition ofM(Q)* A M(T). It is indicated
by Lemma 5.1(5), however, that the column-sets of the horizontal tail are identical in
both decompositions.

In Theorem 4.5 we have seen that the decomposition ofC based on p, provides the
finest block-triangular form under the equivalence transformation of the form (4.1). By
a similar argument it can be shown that the principal partition of C associated with
M(Q)* /x M(T) leads to the finest block-triangularization with the property (5) (as well
as (2)) of Theorem 4.4, under a wider class of transformations of the following form:

where SO GL(mQ, K); Sr GL(mr, F); and Pr and Pc are permutation matrices of
orders m and n, respectively.

This type oftransformation, however, does not seem natural and would be different
from what is intended in considering a hierarchical decomposition of a system into
subsystems. Recall, for instance, the matrix A of Example 5.1. Since its column-set is
decomposed into singletons by L(p), it can be put into a triangular form by the trans-
formation (5.1) with Sr (yij)-, which could be determined only after the parameter
values yV are fixed. This simple example would demonstrate that the transformation
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(4.1) is more suitable in practical situations than (5.1), and hence p, is more appropriate
than p.

Note that the transformed matrix (5.1) no longer belongs to qu/’(F/K; me, mr, n).
This suggests that the block-triangularization by the principal partition of M(Q)* /

M(T) is more adequate when considered for a broader class of matrices. This issue will
be discussed in 7.

Let I’a and I’a be defined as (4.4) respectively for A and Q. As is well known, the
DM-decomposition is induced by L(PoM), where

(5.2) PoM(X) IrAX)I- IXI (X C).

Since Ir(x)l Irdx)l + Ir(x)l o(x) + ,(x), we have

(5.3) p(X) <=POM(X) (xc c).

and

THEOREM 5.2. IfA (ef’’(F/K)) is nonsingular, then

min p, min p min PDM 0

L(p,.)DL(p/)DL(POM).

Proof The relations between p, and p follow from Lemma 5.1. By Theorem 4.2,
the assumption is equivalent to min p 0, which, combined with (5.3) and PoM()
0, yields min PDM 0. The inclusion L(p.r) D L(POM) is then evident from (5.3). V1

Example 5.2. This is continued from Examples 3.1 and 4.2. As given in [30], the
principal partition of C {i, i[i 1, ..., 9} associated with M(Q)*/k M(T) consists
of 10 blocks; the block C {r/5, 5, j9} ofthe combinatorial canonical form in Example
4.2 splits into two blocks {r/5} and {5, 9}. It should be mentioned that, as opposed to
the claim of [30], the unknown variables {5, j9} cannot be determined independently
of n5 even after the variables of C9 {2, 2, 3, 3, 4, 4, 7, 8} are fixed.

Example 5.3. For a singular matrix the canonical form is not a refinement of the
DM-decomposition. Consider, e.g., the matrix

2 3 4

(5.4) A
0 0
0 0

which may be thought of as a member of &’///(F/Q; 4, 0, 4) (F D Q). The canonical
form consists of tails only; Co { 1, 2, 3, 4}, [R0[ 2, Coo , [Roo[ 2. On the other
hand, the DM-decomposition evidently decomposes A into 2 square blocks.

Example 5.4. For the problem ofExample 4.3 the decompositions based on p, and
p are compared in Table 4.1.

5.2. Decomposition for electrical networks with admittance expression. In general,
an electrical network can be described by the structural equations and the constitutive
equations among currents i in and voltages i across the branches (cf. Example 3.1).
When the branch characteristics are given in terms of self- and mutual-admittances Y,
the coefficient matrix A of the system of equations in (/i, 1) takes the form:

(5.5) A
D 0
0 R
-I Y
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where D and R are the fundamental cutset and circuit matrices respectively. If the non-
vanishing entries of Y are assumed to be algebraically independent over Q, the trivial
transcendental scaling of the constitutive equations brings it into the class of
Q). In this extended sense, we will regard A as a member of’/g(R/Q) ofthe form (3.3)
with

(5.6) Q
R

The column-set C ofA of (5.5) is the disjoint union of two copies, say B and
of the set B of branches; i.e.,

(5.7) C BU B,.
This allows us to identify the Boolean lattice 2c with the direct product of 2B and 2B..
It may also be noted that the row-set of Y is identified with B, while its column-set
is B,.

The decomposition ofCproposed in 16], 17] is as follows. Let #(I) and u(I) denote
the rank and the nullity ofthe arc set I(CB) in the underlying graph. Obviously, we have

(5.8) u(n\J)- (J)-IJI + u(g).

The nonsingularity of A of (5.5) can be formulated [42] in terms of an independent-
matching problem on the bipartite graph representing Y, where the matroid with rank
function # is attached to both B and B,. Put

(5.9) {(LJ)IIB,JB,,,I
where I’r is defined for Y as in (4.4), and

(5.10) pu(/, J) u(I) + u(B,\J)- u(B) (ICB,JC_B,).

Note that (L J) iff (I, B,\J) is a cover of Y, and then p,(I, J) + u(B) is the rank of
the cover in the independent-matching problem. The set of minimizers of Ple, the
restriction ofp to Jog, is denoted simply as L(p,), i.e.,

(5.11) L(p) {(I,J)g/g’lp,(I,J)= min p,},

which is a sublattice of 2n 2n. - 2c (cf. (5.7)), and hence determines a decomposition
ofCinto partially ordered blocks. We call this the decomposition by the minimum covers
of the admittance matrix.

The rest of this subsection is devoted to establishing Theorem 5.4 below, which
implies that the combinatorial canonical form for A ofthe particular form (5.5) gives an
essentially identical block-triangularization with the one provided by the decomposition
by the minimum covers of the admittance matrix.

From (5.8) and (5.10) we see that

(5.12) p,(I,J) #(I)+ u(J)-IJI (ICB,JCB,).
On the other hand, p of (4.7) for A of (5.5) is written as

(5.13) p,(It_J J) p(It.J J) + IIU rr(J)l lit0 JI
U(I) + ,(J) IJI + Vr(J)\I[ (ICB,JCB,),

since the rank p of M(Q) is equal to # + u. Combining (5.12) and (5.13), we obtain

(5.14) p.(It-JJ)=p,(LJ)+ II’r(J)\II (ICB,JCB,).
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LEMMA 5.3.

p.(I ID J) p,(I, J) for (I, J)

p(IU J) >p(I, J) for (I,

Proof From (5.14) it follows that p>-_p, where the equality holds iff
rr(J) c L

THEOREM 5.4.
(1) min {p(I U J)lI C B, JC B,} min {p,,(L J)I(L J) s a}.
(2) L(p.0 2) L(p.).
(3) {J C B,II C B, I tO J e L(p,)} {J C B,I(I, J) L(p,)}.
Proof 1): By (5.13), we have

minp min {min {u(I) + IFr(J)\IIIIC-B} + u(J)-(5.5)
min {u(I’r(J)) + u(J)- IJIIJn,},

since min {u(I) + Ir,,(J)\IIII Be} min {u(I) + II’,(J)\IIlI (J)} ,((J)).
This establishes (1) when combined with the rather obvious relation

min p, min {u(I) + u(J)-IJIII
(5.16)

min {u(I’r(J)) + v(J)- IJIIJCB,,}.
(2): Immediate from Lemma 5.3 and (1) above.
(3): From (5.15) and (5.16) it is easy to see that the families on both sides of (3)

agree with the minimizers J(CB,) of (rr(J)) + v(J) IJI.
Theorem 5.4(2) shows that the decomposition method of the present paper applied

to (5.5) yields a finer partition of the variables {/i, 1} than the decomposition by the
minimum covers of the admittance matrix. However, the difference is not substantial,
since, as indicated by Theorem 5.4(3), they provide the identical partition for the voltage-
variables 1 which play the primary role in (5.5); the current-variables/j are only secondary
as they are readily obtained from 1 by means of the admittance matrix Y. In this way,
we may say that they give essentially the same decomposition. The following exemplifies
that the inclusion in Theorem 5.4(2) is proper in general.

Example 5.5. For the following matrix

l 2 nl ?]2

A
-1 .l’ll 0

y21 y22

the combinatorial canonical form based on L(p,) decomposes ( , 2, , 72) into 4
singletons with the partial order:

{/2} "< {1} " {1}, {/2} " {2}.
The decomposition by the minimum covers of Y, on the other hand, gives the partition
into two blocks as

6. Block-triangularization of mixed matrices. In this section, we consider the block-
triangularization of a mixed matrix A Qa + Ta /////(F/K; m, n) of (3.2) under the
transformation

(5.17)
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(6.1) saP s(Q+ T)Pc,

where S GL(m, K), and Pc is a permutation matrix. It is derived from the combinatorial
canonical form of the associated layered mixed matrix , e &’/(F/K; m, m, m + n)
of (3.9).

Let Cw { Wl, ", Wm} and Cx {Xl, ", xn} be the row-set and the column-set
ofA, respectively; the column-set C ofA is then identified with Cw LI Cx. Suppose that
the transformation (4.1) with So GL(m, K),.and Pr, Pr and Pc permutation matrices
gives the combinatorial canonical form of A with the partition of column-set C
t_J{Clj 0, 1, ..., r, o} and the row-set R U{Rlj 0, 1, ..., r, o }. As in 4, O
So[IIQA]Pc and P Pr[-IlTa]Pc are block-triangularized, i.e., [Roi, C.] 0 and
T[Rri, C] 0 for > j, where Rj

Put Cw Cw fq C and Cx Cx f3 C., and notice that the row-set Rr of T is in one-
to-one correspondence with Cw. With this correspondence in mind, we have seen in
(4.44) that Rr D Cwj ifRr # J.

LEMMA 6.1. Suppose Wk Rrg\Cwg(CCw). Then { Wk}, as a subset ofC, constitutes
a block, say Ci, in the combinatorial canonicalform, where Rr , IRoil 1, and it
is an immediate successor ofC., that is, CI’< Ci { Wk}.

This lemma shows that
{ill <= j <= r, RTg tA Cx q: }, gives a partition of C, which is coarser than
{CIj 0, 1, .--, r, } and on which the partial order is induced from that on { C.} by
the natural order homomorphism. Let us denote by {/lJe J*} the corresponding partition
of R; i.e., 1 Roj tA {RailCi C Rr\Cw} t.J Rr. Then, by the construction, we have

Iksl 10wl and

(6.2) [/-, (wj] -I

where krj. Rrg and (w Cw f"l .
Since {} and_{} are aggregations of {C} and {R}, respectively, we have

O[tQi, ] 0 and T[RTi, ] 0 for > j. If we choose Sr O[RQ, Cw], we see that
the matrix 0 + Sr7 is block-triangularized with respect to {} and {/2}, and that its
submatrix corresponding to column-set Cw is the zero matrix. Denote byA the submatrix
of Q + SrT corresponding to the column-set Cx. In view of the identity:

T -Pr PrT

this means that the block-triangular matrix A is obtained from A by the ad-
missible transformation of the form (6.1), since we have So SrPr, and
(SoQ + SrPrT)lhc So(Qa + Ta)lc SoAlhc, where Pc is a permutation matrix.

Thus we have obtained a block-triangular form of a mixed matrix A under the
transformation of the form (6.1). Note that the partition of the column-set Cx of A is
induced from that of the combinatorial canonical form of the corresponding layered
mixed matrix A. It is easy to see from Theorem 4.5 that this is the finest block-triangu-
larization under the transformation (6.1). Note, however, that the obtained matrix no
longer belongs to ///(F/K; m, n) in general. See [24] for more details.

It has been shown in [23] that ifA e //’(F/K; n, n) satisfies det A e K\{0}, then
there exist permutation matrices Pr and Pc, a lower triangular matrix L GL(n, K) and
an upper triangular matrix U over F such that PrAPc LU. This result can be derived
easily from the present construction if one notices (4.21).

Example 6.1. Consider the mixed matrix A Qa + Tae ’’(F/Q; 5, 5) given by
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(6.4)

WI:
w2:

A=w3
w4:
W5

x xz x3 x4 x5

t t2
-1 -1 t3 0
0 0 t4 ts t6
0 0 0 0

t7 t8 0 0 0

where {tili 1, 8} are indeterminates over Q, and F Q(t, ts). By the
combinatorial canonical form of the associated layered mixed matrix J e
//(F/Q; 5, 5, 10) of (3.9), we see that

IPrIo I

(6.5)

W5"

WI.
W2"

W3"

X2 W5 WI W2 X3 X4 W3 X5 W4

t7 t8

-1 0 t 0

0 -1 0 t3

where

(6.6) S

0 0 0 0
0 0 0 0

0 0 0
0 0 0 0
0 0 0 0

The column-set C of., identified with {Wl, W5} [J {Xl, X5} is divided into
six nonempty blocks: C {x, x2}, C2 {ws}, C3 {w, w2, x3, x4}, Ca {w3},
C5 {x5 }, C6 { w4} (Co C ) with the partial order:

C1- C2; C3-<( C4; C1- C3- C5- C6

The aggregated partition {lj J*} is given by J* {0, } tO {1, 3, 5, 6}, ,
C1 tO C2 {Xl, x2, Ws}, 3 C3 tO C4 {x3, x4, Wl, w2, w3}, 5 C5 {x5}, 6
C6 {w4} (and 0 o ).

Then the following block-triangular form is obtained, where Pc =/:

(6.7) SAPc

x xz
t7 ts

X3 X4 X5

t t2
tl+l

t4
t2
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7. Extensions and remarks. It has been mentioned in 5.1 that the principal partition
ofM(Q)* A M(T), which corresponds to the transformation (5.1), should be considered
in a wider class of matrices than ’/(F/K). Let Fo be an intermediate field of F/K,
K C Fo C F, and consider a matrix A e d//(F; m, n):

such that (i) Q e ’(K; me, n), (ii) T Q1 T d///(F; mT, n) where QI d///(Fo; mT, n)
and Tl is a diagonal matrix of order n with its diagonal entries being algebraically
independent numbers in F over F0. The class of such matrices A will be denoted by

’(F/F0/K; ma, mr, n). It should be noted that A d///(F/K; mo, roT, n) belongs to
ecg(F/Fo/K; me, mT, n) for some Fo, but not conversely.

It is known that the identity given in Theorem 3.1 still holds for A e c(F/Fo/K)
with 0 and z being the rank functions of da’(Q) and d///(T) for the submatrices in (7.1).
Therefore, the partition of the column-set C based on L(pT), followed by appropriate
row transformations, brings about a block-triangular form with the properties (1) to (5)
of Theorem 4.4. Note that the block-triangular form is obtained from A by means of
the transformation (5.1), where we may assume without loss of generality that Sr
GL(mr, Fo), and hence the transformed matrix remains in c(F/Fo/K).

The considerations above naturally suggest an extension to multi-layered matrices
of the form

A0
(7.2) A= A,

Ak
such that

A0 d//(K; mo, n),

Ai Qi Ti-.///l(Fi; mi, n) (i= 1, ,k),

where

(7.3) KCFoC. CFk
is a sequence of field extensions, Qi d///(Fi_ 1; mi, n), and Tie d/l(Fi; n, n) is a diag-
onal matrix with its diagonal entries being algebraically independent over Fi-1
(i 1, ..., k). Then, by Theorem 3.1, the rank ofA is expressed in terms of the rank
functions oi of the associated matroids M(Ai) (i 0, 1, k) as

(7.4) rank A min {p(X)IXC. C} + n

where

(7.5) p(X)- po(X) + p(X) + + p(X)- IXl,

Based on L(p), we can obtain a block-triangular canonical form with the properties (1)
to (5) of Theorem 4.4 under the transformation

(7.6)

Sl
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where So GL(mo, K); Si GL(mi, Fi- 1) (i 1, k); and Pr and Pc are permutation
matrices.

The canonical form for multi-layered matrix introduced above seems to have a
natural meaning for electrical networks involving multi-ports, which have been inves-
tigated in [37], [38], [39]. To be specific, consider an electrical network consisting of k
multi-ports, each of which is described by a set of equations with coefficient matrix Ai
(i 1, .., k). Let A0 denote the matrix (over Q) for Kirchhoff’s laws. Then the coefficient
matrix for the whole system is written as (7.2) (cf. Example 3.1), and the permissible
transformation (7.6) reflects the locality in the sense that we can choose an appropriate
description for each device. Furthermore, the assumption ofthe algebraic independence
among different devices would be fairly realistic.

Without the hierarchy of fields (7.3), we may likewise consider the block-triangu-
larization based on p of (7.5) for a matrix of (7.2). That is, we may define a canonical
form for a matrix A of (7.2) with Ai //(F; mi, n) (i O, 1, k) under the transfor-
mation (7.6) with Si GL(mi, F) (i 0, 1, k). In this case, however, the diagonal
blocks are no longer guaranteed to be nonsingular. Two special cases may be worth
mentioning. The one is the case where k and A0 Al. Then the transformation
(7.6), in which we may assume So Sl, yields the combinatorial canonical form of a
matrix with respect to its pivotal transforms introduced in 14]. The other is where A is
nonsingular. Then it has empty tails and the square blocks must necessarily be nonsingular.

The combinatorial canonical form introduced in this paper should prove to be a
useful tool in the structural analysis of systems. For example, it is reported in [26] that
it plays a central role in deriving a necessary and sufficient combinatorial condition for
the structural controllability ofa dynamical system described in the so-called "descriptor
form": Fdx/dt Ax + Bu, where the entries of F, A and B are assumed to be classified
into accurate and inaccurate numbers in the sense of [28].

Finally, we mention the possibility of parametrizing the function p as

XCC.

According to the general framework 19], we then obtain a finer partition ofthe column-
set ofa layered mixed matrix. The significance ofsuch a decomposition is yet to be made
clear.
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BOUNDS ON THRESHOLD DIMENSION AND
DISJOINT THRESHOLD COVERINGS*

PAUL ERDOSf, EDWARD T. ORDMANf:I: AND YECHEZKEL ZALCSTEINf

Abstract. The threshold dimension (threshold covering number) of a graph G is the least number of
threshold graphs needed to edgecover the graph G. If tc (n) is the greatest threshold dimension of any graph of
n vertices, we show that for some constant A,

n A f log n < tc (n) < n r+ 1.

We establish the same bounds for edge-disjoint coverings of graphs by threshold graphs (threshold partitions).
We give an example to show there exist planar graphs on n vertices with a smallest covering ofAn threshold
graphs and a smallest partition of Bn threshold graphs, with B 1.SA. Thus the difference between these two
coveting numbers can grow linearly in the number of vertices.

Key words, threshold graph, threshold dimension, threshold partition, graph partition

AMS(MOS) subject classifications. 05C, 68E

1. Preliminaries. By a graph G (V, E) we mean a finite set V of vertices and a
collection E of edges: distinct unordered pairs of distinct vertices. A subgraph of a graph
G is a subset V’ of V together with a subset E’ ofE that consists only of edges between
vertices of V’. An induced subgraph of a graph is a subset of the vertices together with
all edges of the original graph that connect those vertices. For further notation see [6].

Ifx is a vertex of a graph G, the star ofx is the subgraph consisting of x, the edges
containing x, and the other vertices contained in those edges. A stable set of vertices
(also called an independent set) is a set ofvertices which induces no edges. A dominating
set of vertices is one such that every vertex in the graph is connected to at least one of
them by an edge. If a single vertex is a dominating set, it is called a dominating vertex.
To build a cone on G means to add a new vertex to Vand connect it to all other vertices
by edges.

Threshold graphs were introduced in [2], [3], [8]. A graph is a threshold graph if it
meets one of the following equivalent conditions:

a) It does not have as an induced subgraph a square (C4), two disconnected edges
(2K2) or a path of three consecutive edges (P4).

b) The vertices can be labelled with integers l(v), and there is an integer constant
(the threshold) such that a set {Vl, v2, vk} of vertices is stable if and only if

l(v) + + l(v) < t.
c) The vertices can be labelled with integers l(v), and there is an integer constant

(these numbers may be different than those in (b)) such that any two vertices x and y
are connected by an edge if and only if l(x) + l(y) >= t.

d) Every induced subgraph of G, including G itself, has at most one nontrivial
component (there may be isolated vertices) and this component has a dominating vertex.

Since every edge of G is, taken by itself, a threshold graph, every graph G may be
covered by threshold graphs. The smallest number ofthreshold subgraphs (not necessarily
induced subgraphs) ofG that cover G is called the threshold dimension of G; we will also
call it the threshold covering number of G and denote it by tc (G). From an applied
perspective, tc (G) is the smallest number ofsemaphores needed to synchronize a system
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of parallel processes definable by the graph G using PV-chunk synchronizing primitives
[8]; alternatively, it is the smallest number of 0-1 simultaneous linear inequalities which
can replace such a system oflinear inequalities represented by G; see [3], [7], or [6, Chap.
10]. For other prior results on tc (G), see [3].

Two subgraphs of G are called edge-disjoint (or simply disjoint) if they have no
edges in common. Since the covering of a graph G by its edges is a coveting by disjoint
threshold graphs, it follows that for every graph there is defined a unique integer tp (G),
the disjoint threshold dimension or thresholdpartition number of G, the smallest number
of edge-disjoint threshold graphs that will cover G.

Since every threshold partition is a threshold covering, tp (G) >- tc (G). One goal of
this paper is to begin exploring the questions, when is tp (G) tc (G)? How different can
they be? For example, for some corresponding results for clique coverings and clique
partitions, see ].

It should be noted that while it is easy to determine if G is a threshold graph (that
is, if tc (G) 1), determining tc (G) is in general NP-complete [3]; in fact, it is NP-
complete to test if tc (G) 3 [10] or even if tc (G) 2 [4].

LEMMA 1. IfG is a triangle-free graph, tc (G) tp (G).
Proof. As observed in [2], if G contains no triangle, every threshold graph con-

tained in G is a star. Suppose G is covered by k stars St, $2, Sk. Define S’ St,
S $2 St, and in general Sj. S/- (St t3 t3 S_ t) for j 2 to k. Clearly the
various Sj are disjoint stars and cover G, so tp (G) -< tc (G) as required.

2. The size of a required threshold covering. In [3], Chvhtal and Hammer raise the
issue: how big need tc (G) be? They prove [3, Thm. 3] that if a(G) is the size ofthe largest
stable set in a graph G with n vertices, then tc (G) -< n c(G) with equality holding if
G is triangle-free (and in some other cases). They also observe [3, Cor. 3A] that for every
positive e, there is a graph G on n vertices with tc (G) > (1 e)n. In fact, the proof of
their Corollary 3A shows more than this. We restate it as follows:

THEOREM 1. There is a constant A such thatfor large enough n there is a graph G
with n vertices and

tp (G)= tc (G)> n-A ]/r log (n).

Proof In [5], Erd6s shows that for a sufficiently large fixed constant A, there is an
integer N such that for n > N there is a graph G on n vertices with no triangle and with
no stable set ofA fn log (n) vertices. Thus tp (G) tc (G), and

a(G)<A fn log (n) and tc (G)> n-A n log (n)
as desired.

This shows that there are graphs with relatively large values of tc (G). We now turn
to improving the upper bound on tp (G).

THEOREM 2. Let G be an arbitrary graph on n vertices. Then

tp (G) <n- fn+ 1.

Proof. Suppose there is a stable set A in G of size Vn or larger. Then Theorem 3 of
[3] points out that the stars on V- A provide a covering of G by no more than n
threshold graphs; Lemma above shows how to make this a threshold partition.

Now by contrast suppose that no stable set in G has as many as n elements. Pick
a vertex z in G; let xt, "", Xk be a maximal stable set in the star of z; hence k < f.
For each xi, in turn, we construct a graph Ti consisting of all edges starting at xi together
with any triangles including the edge (z, xi); omit from this any edges included in a
previous T/to keep the Ti’s disjoint. (To see that Ti is threshold, use definition (c). Label
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xi with 4; z with 3; any vertex which neighbors z and xi but no previous xj, j < i, with
2; other points adjoining x with 1. Let t 5.)

We have now constructed k edge-disjoint threshold graphs which cover the union
of the stars of the k + vertices z, xl, "", Xk. Delete the covered edges from G. This
eliminates at least k + vertices. Since it deletes an edge only when deleting at least one
vertex on it, the reduced graph G’ cannot have a bigger independent setthan G had.

Reduce G’ by choosing a new z. At each stage, we eliminate k + vertices by
coveting them with k threshold graphs;

kk<l/- so --<fn+l
and the total number of graphs needed to cover all n vertices is not greater than

nV
<n-1/-++

which completes the proof of Theorem 2.
We now let tc (n) denote the largest tc (G) for any G with n vertices; tp (G) is defined

similarly. The above results show that

n A fn log (n) < tc (n) < n f+
and

n -A f log (n) < tp (n) < n fn + 1.

It remains of interest to tighten these bounds, and to know whether the limits for tc (n)
and tp (n) are actually the same. A private communication from Jfinos Pach [9] improves
the upper bound in each case to n /n log n for triangle-free graphs only.

3. The difference Ietween tc (G) and tl (G). Since the bounds we have established
for tc (G) and tp (G) are identical, it is reasonable to ask whether tc (G) and tp (G) are
ever very different. Our object in this section is to show that tp (G)-tc (G) can grow
proportionally to the number of vertices n in G, even if G is a planar connected graph
or a very highly-connected graph of low diameter.

We will make heavy use of a threshold graph H constructed as follows: consider six
vertices Xl, , x6 and connect x and xj if + j -< 7. Note that the deletion ofthe single
edge x2x3 would make it cease to be threshold since then xsx2xax3 would be an in-
duced path.

Example 1. Let Gl0 be the graph made by taking two copies ofH and identifying
the two copies of x2, x3, and the edge between them. This graph is shown in Fig. 1; it is
planar. Clearly tc (G0) 2, since it is covered by two copies ofH. The reader may verify
that tp (Go) 3; two graphs in the partition are a copy of H and a path XaX3X The
proof that there is no partition into two threshold graphs hinges on the fact that XEX3
would have to be in the same graph as one "wing" XXr; the side of G0 lacking XEX3
cannot then be covered by one threshold graph.

The reader may also wish to verify that Go is a critical example; deleting an xx6
from Gl0 results in tc tp 2, deleting any other edge yields tc tp 3.

The graph G0 may be used to build various examples in which thedifference between
tc (G) and tp (G) grows linearly in the number of vertices or edges of G. For example, if
G is the disjoint union of r copies of G10, tp (Gr) 3r and tc (Gr) 2r. This example
may be made planar and connected by joining successive copies Gto together at the
"wingtips" (identify an x6 of one G0 with an x6 from another). To build more highly
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X X5

X6 X1
t Xl,

X3

FIG. 1. The graph Go.

connected (but nonplanar) examples, we use the following lemma motivated by a dis-
cussion with V. Chvtal:

LEMMA 2. Let G’ denote the cone on the (arbitrary) graph G. Then

tc (G’)= tc (G) and tp (G’)= tp (G).

Proof Any threshold coveting of G’ induces a (no larger) threshold coveting of G
since an induced subgraph of a threshold graph is a threshold graph. Given a (disjoint)
threshold cover of G, we obtain a (disjoint) threshold cover of G’ by picking any threshold
graph D in the cover of G and enlarging it to include the new vertex of G’ and its star in
G’. That the enlarged D remains a threshold graph is easily seen by definition (d) of
threshold graphs; the new vertex of G’ is a dominating vertex in the enlarged version
of D.

Using this lemma, we can create an arbitrarily highly connected graph with
tc 2r, tp 3r, by taking G and erecting a cone on it as many times as desired (that
is, add 5 new points all connected to all original points and each other, to make it
5-connected).

It is now clear that there is a constant cl such that a graph G on n vertices can have
tp (G) tc (G) >_- cln. How big can c be? Example G0 shows it can be at least 0. What
upper bound can be put on tp (G) tc (G)? We know it cannot exceed n f l, but
we believe this can be improved. Finally, can tp (G)/tc (G) ever exceed ? If so, how big
can it be?
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ORTHOGONAL POLYNOMIALS*

STEPHEN BARNETT

Abstract Given two sets oforthogonal polynomials 8 p(X)} and {qi(,)}, simple procedures are given
for expressing the products Xipj(X), Xqj(,), p(,)qi(,) and qi(X)q(,) in terms ofthe basis 8. The main computations
involved are multiplications of vectors by a tridiagonal matrix. The results are based on a previous theorem for
determining the product of two polynomials both expressed relative to 8.

Key words, orthogonal polynomials, matrix methods
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1. Introduction. Consider a set 3 {pi(,)} of orthogonal polynomials defined by
the usual formulae

(1.1) po(X) 1, Pl(k) o/I x "]" 1,

(1.2) pi(k)--(o/ik "-I- fli)Pi-1(k) --7iPi-2(k), 2, 3,

with ai > O, and let

(1.3) a(X) p,,(X) + ap,,_ l(k) "1- + a,,po(X)

be an nth degree generalized polynomial expressed relative to the basis 3. It has been
shown in a previous paper [2] that if

(1.4) b(,) Pm(,) + blPm l(,) +"" + bmPo(X), m <= n
is a second generalized polynomial, then the product a(k)b(k) can be determined relative
to 3 by carrying out some very simple operations involving the N Ntridiagonal matrix

-ill

72 --f12
0/2 0/2 0/2

0
0/3 0/3

(1.5) A

0 0

0 0

--fiN-
O/N- O/N-

O/N O/N

It is convenient here to record this result in the following form:
LEMMA. The product of(1.3) and (1.4) is

(1 6) a(,)b(X)
0/10/2 o/m

m +

Pn+m(k) q" bliPi(X)
o/n+lO/n+2 o/n+m i=O
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where

(1.7) [Uo, Ul, ,Um + n 1] Rm + "t- bl Rm + + bmRl
and Ri is the ith row ofthe matrix a(A), in which A has order N m + n. Furthermore,
these rows are given by

(1.8) Rl [an, an- l, a, 1,0, 0]

and

(1.9) Ri Ri- 1(Oi- 1./1 at- i- I) "Yi- 1Ri- 2, 2, 3,

where I denotes the unit matrix oforder N, and 3/1 O.
In this paper it is shown how the products Xipj(X), Xqj(X), p(X)q(X) and qi(X)q(X),

where {qi(X)} is a second set of orthogonal polynomials, can all be expressed in terms
of. The results (Theorems to 5) are all derived from the lemma, and so involve only
simple vector-matrix multiplications ofthe type occurring in (1.9). Throughout, no con-
versions ofpolynomials to power form are required. Some numerical examples emphasize
the simplicity ofthe approach and also illustrate how sequences ofproducts ofincreasing
degrees are obtained.

The methods presented in this paper are more straightforward than those of Salzer
[9]-[ 11 ], and form part of a continuing programme on the algebraic manipulation of
generalized polynomials using matrix techniques 1]-[7].

2. The product klpj()k). In the lemma set a(X) k and b(X) p(X) to obtain:
THEOREM 1. Let the (j + 1)th row ofA be

(2.1) o+ l,i [/)0,/)1,/)2, ,/)N- 1]"

Then the product Xipj(X) is given by
i+j

(2.2) Xp/(X) /)kPl()k), +j <--_ N
k=O

where/)i+j 1/cj + lOlj + 2 OlN if + j N.
Notice that when + j N the leading coefficient in (2.2) has to be modified from

that in (1.6) with m j, n since a(X) xi is not monic relative to . Note also that
the case is trivial, since the expression for Xp(X) can be obtained directly by rear-
ranging (1.2) in the form

(2.3) Xpy(X) [pj + l()t) [j + lpj()k) -I- "yj + IPj- l(X)l/otj + 1.

The rows in (2.1) can be computed iteratively by a formula ofthe type (1.9), which
here becomes

(2.4) p./+ l,i p:i(a.:A + I)-39p- l,i, j>=

and the first row ofA can be conveniently determined from the following scheme. Write

(2.5) Xi= , tikPi- k(k)
k=O

in which tio l/Riot2 cti. Then

(2.6)
k=0
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and substituting (2.3) into (2.6) and equating coefficients of terms in Pi(),) gives

(2.7) [ti + l,i + 1, ti + l,i, ti + 1,1] [tii, ti,i- 1, tio]Ai +

where A denotes the leading principal submatrix ofA. Since from (1.1)

repeated use of(2.7) enables the coefficients t in (2.5) to be determined for 2, 3, .
By Theorem with j 0, we then have

(2.8) pi [tii, ti.i- 1, tio, O, 0].

Example 1. Throughout the illustrative examples in this paper the basis 0 will
consist of the Legendre polynomials Pi(,), for which

2i-1 i-1
(2.9) ai 3i O, ’t’i >

Let N 5, so that from (1.5) and (1.9) we can write

(2.10) A

0 10

I o,
o o
o o
0 0 0

0 ,0

0 0

0

o 7’-
_1

o

The submatrices A2, A3, A4 are indicated within (2.10) by dashed lines. Since
PI(),), (2.7)with gives

[t2, t2] [0, ]A2 , 0]

so that

and from (2.8)

O102
e(x) eo(X) +

,,= [-,o, ],o, ol.
Applying (2.4) with 2 produces_

,A [0,}, 0,, 0],

P32 P22(A) 21-P12 [5,0, i., 0,],1112

042 p32(-53A)- ]pv_:z [0, ,0,6 ",23 0],
so that from Theorem with 2, j -< 3 we obtain

),2PI(X) el(x) + e3()k),

11 12A2P2(),) Po(),) +iP2(X) +-
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232p3( P(h) +-P3(k) +
45

20and 1/c4c5 63.
For the next step, return to (2.7) with 2 to obtain

[t33, t32,/31] [,0, ]A3 [0,,0]
so that

and hence

3

010203

2
e3(x) e,(x) +  e3(x)

Applyin (2.4) with 3 produces p and p, leadin to the expressions for hP()
and XP(X); and so on.

3. Change of basis. Suppose that a second set of orthoonal polynomials qo(X),
q(k), q2(), is defined by

(3.1) q0(X) 1, q(h)

(3.2) qj X t3jX -t- .j qj X) qbjqj e X j >= 2
with 0 and 6 > O. We wish to express a given generalized polynomial

f(h) E fqi(X)
i=0

in terms of the basis 3. This has applications to the evaluation of integrals [8], 12]. It
is sufficient to consider the case f(h) qi(,):

THeOreM 2. Thefirst row ej ofqj(A) is generated by

(3.3) elj el,j- I(6jA + ejI)- Cjed_ 2, j>= 2

with eo e, thefirst row ofI. Moreover, if
ej= [Wo, W, WN_ I]

then
J

(3.4) qj(X) ., wkP(h), j <= N
k=0

where wj 12 N/OtlOt2 OtN ifj N.
Proof Replace X by A in (3.2), multiply the resulting identity on the left by e, and

use the fact that q1_ (A) commutes with A, to obtain

eqj(A) eqj_ (A)(6A + ejI) .ieqj- 2(A)

which is the desired expression (3.3), since eu eqj(A). The formula (3.4) then follows
by setting a(h) qj() and b(,) in the lemma. Again, a modification is necessary
when j N since qN(k) is not monic with respect to 3. Vl

Notice that e is the first row of 6A + /, namely

(3.5)

which corresponds to the obvious expression

qx(X) (ex 631/a)po(X) + (6/ot)p(X).
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Example 2. Let the set {qi(X)} be the Hermite polynomials Hi(X) for which
HI(X) 2X, 6i- 2, i 0, bi 2(i 1). From (3.5) the first row of Hi(A) is

e [0, 2, 0, 0, 0].

From (3.3) the first row of H2(A) is, using A in (2.10),

(3.6) e2 e (2A)- 2eo [-3z, 0, , 0, 0]

whence by (3.4) H2(X) -Po(X) + P2(X). Continuing this process gives

el3 el2(2A)- 4el [0,-, 0,, 0],

H3(k) -el(x) + P3(X),

el4 el3(2A)- 6el2 [-, 0,- __o, 0, 3-],
128n4(,) eo() 76---qe2(k) + --e4(k);

and finally
el5 el4(2A) 8e3 [0, 24,0, 494-8 0],

256H(X) Z-P(X)- P3(X) + --Ps(X)

since for Hs(X), w5 12345/0/10/20/30/40/5----36, where the O are defined in Ex-
ample 1.

In fact, if we write

J
(3.7) qj(X)= qjkPX)

k=0

then it is easy to obtain a recurrence formula for the coefficients qjk. Comparing (3.4)
and (3.7) shows that

(3.8) ej qjoel + qjle2 + + qjjej +

where ej denotes the jth row of I. When (3.8) is substituted into (3.3), we need the fact,
seen by inspection of (1.5), that

(3.9) ekA 2("ykek- kek+ ek + 1), k >- 1.
Olk

Now replace elj, e,j_ and el,j-2 in (3.3) by the expressions obtained from (3.8). On
using (3.9) and equating coefficients of ek / we obtain

(3.10) qjk
j

qj_l,k +J’Yk+2 (jk+l)qj- 1,k + Cjqj- 2,k + e.j qj- l,k
Olk Olk + 2 Olk +

and this five-term recurrence formula is identical to one given in [12]. However, our
rederivation of (3.10) is interesting since it implies that Theorem 2 can be regarded as a
convenient form of (3.10) for computational purposes.

4. Change of basis for products. The original lemma shows how the product
pi(X)pj(X) can be expressed in terms of #3. We now extend this to the products Xiqj(X),
pi())qj()k) and qi(A)qj(X).

THEOREM 3. Ifeu is as defined in Theorem 2, and

eljA [Xo, xl XN- 1]
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then
i+j

(4.1) iqj(,) E XkPk(X), +j <= N
k=0

where xi+j i162 5j/ala2 aN if + j N.
Proof. In the lemma set a(X) Xiqj(X) and b(,) to obtain (4.1) from 1.6), again

taking care that when + j N the leading coefficient in the sum is appropriately
modified. V1

THEOREM 4. The ith row ofeU ofq(A) satisfies the relation

(4.2) eo=ei_l,(ai_lA+i_lI)-,ri_lei__., i>-2

with elj defined in Theorem 2. Moreover, if

then
ei + 1,j [Y0, Yl, Yu- 1]

i+j

(4.3) pi(,)qj(X) YkPk, +j <= N
k=O

where Yi/j 612 j/oli + lOli + 2 OlN if + j N.
Proof Since qj(A) is a polynomial in A, the recurrence formula (4.2) eollows im-

mediately from (1.9). Setting a(,) q(X) and b(X) pi(k) in the lemma reduces (1.6)
to (4.3), with an appropriately modified leading coefficient when + j N. Vq

THEOREM 5. Let e’i denote the row vector consisting ofthefirst + elements of
eli, and let B denote the (i + 1) N matrix consisting ofthefirst + rows ofq(A). If

then

e’iB [z0, ZI, ZN- 1]

i+j

(4.4) qi(X)qj(X) 2kPk(k), +j <- N; <-j
k=O

where zi+j (12 i)(12 j)/OflOf2 OlN if + j N.
Proof. Setting a(X) qi(X)qj(X) and b(h) in the lemma shows that the desired

expression (4.4) for qi(h)qj(h) is obtained from the elements in the first row ofthe matrix
qi(A)q1(A), in other words from eliqj(A). However, since qi(h) has degree i, Theorem 2
implies that only the first + elements of eli are nonzero, so that product eliqj(A) can
be replaced by that in the statement of the theorem, where B consists of the rows eli,
e2j, ei + l,j. [--]

Notice that to construct eli in Theorem 5 required (i 1) applications of the re-
currence formula (3.3), and to construct the rows of B requires (j 1) applications of
(3.3), followed by applications of (4.2). The recurrence formulae thus need to be used
a total of 2i + (j 2) times, which explains why in general in Theorem 5 it will be
preferable to take =< j.

The results in Theorems 4 and 5 are particularly appealing because of the rather
nice way in which the recurrence formulae for the two sets of orthogonal polynomials
are intertwined via (3.3) and (4.2). As with all the procedures presented in this paper,
the main computational effort arises only from the multiplication of row vectors by the
tridiagonal matrix A, and the algorithms are simpler than those in 11 ].
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Example 3. Continue with the Hermite and Legendre polynomials of Example 2.
Using el2 in (3.6) and A in (2.10) we can readily compute

el2A2 [5,0, 20)-i’, 0, 3132
so by (4.1)

and similarly

giving

20 32,2H2(,1 P0(,) + rP2(X) +e4()

el2A3 [0, 18 44,0,zs,0]

x3n2(k) 18 44 32PI(,) + 3P3(X) +
since in Theorem 3 x5 dildi2/otla2a3a4ot5 32, where the ai and/ii are defined in Examples
and 2, respectively.

Next, from (4.2) and (3.6) we obtain the second row of H2(A)

e22=e,2A=[O,,O,,O]
so from (4.3)

P(,)H2(,) P(),) + 58-p3(k).

Returning to (4.2) with 3, 4 and j 2 we obtain

e32=e22A-1/2e2 [fi, 0,, 0, 48’1,

e42 e32A- 32-e22 [0, 24

so by Theorem 4 we obtain, respectively,
48P:(X)U:(X)  Po(X) + +  P4(X),

P3(,)H:(X) 24 80P(X)+P3(X) + 3Ps(X)

where the last term comes from tlt2/a4C 80

The procedure can be continued, using (4.2) with j 3 and e3 in Example 2, to
obtain e23 and e33 and hence the expressions for PI(X)Ha(X) and PE(X)H3()0.

Finally, to illustrate Theorem 5 we consider the product Hz()H3(X). We need to
evaluate

(4.5) Iel3 1e’_ e:3
e33

where from (3.6) e’: [-, 0, -], el3 is given in Example 2 and e23 and e33 are determined
as just described above. The product (4.5) is then found to be [0, --’,24 0, 52, 0], SO

from (4.4)
n2(t)n3(x 243P(X) 5P3()) + Ps(,)

where the last coefficient is l2l23/Cla203a4a5.
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Abstract. The four problems considered are: the Chinese postman problem, the co-postman problem, the
odd cut problem, and the odd circuit problem. Relationships are developed between these problems using results
from dual matroids and blocking clutters. Connections with Gomory’s group problem are shown. The notion
of representations of these binary group problems on augmented graphs is developed along with a discussion
ofthe class of augmented graphs having the same solution set. After some blocking and duality results, we give
forbidden augmented minors for problems of one type (e.g., Chinese postman) to be also a second type of
problem (e.g., odd cut). Some results are given on b-regular problems and are used in the forbidden augmented
minor characterizations.
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1. Four problems. A graph is an undirected graph, G (F, E), which may not be
connected and which may have duplicate edges, loops, and isolated nodes. That is, an
edge e E is an unordered pair of nodes e [i, j] with i, j F but with no restrictions
on what pairs of nodes constitute the edge set. Let c:E -- R/ be a nonnegative cost
function. We refer to c(e) as the cost ofedge e. The cost ofa set S of edges is defined to
be E c(e) summed over e S.

Problem 1. In the Chinese postman problem we are given a cost function c and a
given subset of the nodes U c F, called odd nodes. Before stating the problem, let us
define the degree di(S) of a node for a subset S of edges to be the total number of times
an edge e S includes the node i. A loop e [i, i] includes the node twice. Then, the
Chinese postman problem is to find a minimum cost subset S of edges such that di(S)
is an odd integer for U and an even integer otherwise. A set S of edges satisfying the
above condition on di(S) is called a postman set. In order that there exist a postman set,
every connected component must be even, that is, must contain an even number of odd
nodes. We make that assumption in order to avoid having to consider infeasible problems.

The original version ofthis problem came from the problem of finding.a minimum
cost postman tour in a graph. A tour of a graph is a path, not necessarily simple, which
returns to its origin. A postman tour is a tour which uses every edge at least once. The
problem of finding a minimum cost postman tour, following the Mei-Ko Kwan devel-
opment 10], is equivalent to the special case of the above described problem where the
graph G is connected and odd nodes U are those nodes having odd degree for the entire
edge set E. Then, the edges e e S in a postman set are the edges which have to be traversed
twice in a postman tour. In fact, if the edges in a postman set are duplicated in the graph,
then the resulting graph has an Euler tour, because it has even degree and is assumed to
be connected, which is the desired postman tour of the original graph. There is a good
algorithm [1 for solving this problem.

Problem 2. The odd cut problem has the same data given as for the Chinese postman
problem: a cost function c(e), e E, and a designation of a subset U of the nodes as odd
nodes. Define a cut to be a set ofedges whose removal from G would increase the number
ofconnected components and which is minimal with respect to this property. Define an
odd cut to be a cut which has a nonempty intersection with every postman set, for the
same designated set ofodd nodes. Otherwise, a cut is an even cut. Alternatively, we could
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call a cut an odd cut if its removal leads to an infeasible Chinese postman problem, that
is, one with an odd connected component (an odd number of odd nodes). Then, there
are necessarily two odd components. The odd cut problem is to find a minimum cost
odd cut. Padberg and Rao [12] gave a good algorithm for solving this problem. Their
method involves finding a minimum cut and then changing it to an odd cut.

Problem 3. For the co-postman problem, we are given a subset D of the edges E,
called odd edges. The edges in E\D are even edges. The problem is to find a minimum
cost subset S of edges such that in the remaining graph, with edge set E\S, there are no
odd circuits, where a circuit is a node-simple tour and an odd circuit is one containing
an odd number of odd edges.

When every edge of G is considered to be odd, then the co-postman problem is to
remove a minimum cost set ofedges so that the remaining graph is bipartite (has no odd
length circuits). This problem is equivalent to finding a maximum weight bipartite
subgraph of a graph and is known to be an NP-complete problem [5].

Problem 4. The odd circuitproblem is, simply, to find the minimum cost odd circuit
in a graph, where odd circuit is defined as in Problem 3. This problem has a good algorithm
[5] by contrast with the co-postman problem.

The main purpose ofthis paper is to establish connections between these four problem
classes and to investigate their intersections. As a preliminary, the Chinese postman and
co-postman problems can be restated in a more symmetric fashion.

Let us consider first the Chinese postman problem. The degree constraints as given
in Problem can be thought of in terms of cuts. Each node defines a cut, namely the
edges meeting the node, provided the node is not a cut node. The degree constraints,
then, say that the subset S of edges must meet certain odd cuts (those given by one odd
node) an odd number oftimes and must meet certain even cuts (those given by one even
node) an even number of times. The set S will then meet every odd cut an odd number
oftimes and every even cut an even number of times. However, there is another way to
define a postman solution. Take any spanning forest, that is, a spanning tree of each
connected component. Then each edgefof the spanning forest can be associated with a
cut consisting ofthe edgefand every edge in that connected component whose insertion
into the tree causes a circuit containing the edge f. The edgesfwhose associated cut is
an odd cut form a postman set, but in fact the problem can be defined as a problem of
finding a set ofedges which meets these odd cuts an odd number oftimes and these even
cuts an even number of times. The edgesfof the spanning forest whose associated cut
is odd form a particular postman solution, and the odd cuts are precisely those cuts
containing an odd number of the edges of the particular postmen solution.

In a similar way, for any spanning forest the edges out of the forest form a circuit
when adjoined to the forest. Some of these circuits are odd (if they contain an odd
number of odd edges) and the rest are even. The out-of-forest-edges which form odd
circuits are a co-postman solution, and we obtain an equivalent co-postman problem by
considering them to be the odd edges. That is, every odd circuit (using the original odd
set of edges) will contain an odd number of edges of this particular co-postman set and
every even circuit will contain an even number of edges of this particular co-postman
set. The co-postman solutions are those sets of edges which intersect correctly (even or
odd) these circuits formed by out-of-forest edges.

Thus, we see a duality in that the Chinese postman problem requires an even or
odd intersection with a fundamental set ofcuts whereas the co-postman problem requires
edge sets having even or odd intersections with a fundamental set of circuits. However,
the Chinese postman problem is better understood both from an algorithmic and poly-
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hedral point of view, and in fact the co-postman problem is, in general, hard to solve.
Somehow, intersections with cuts give an easier problem than intersections with circuits.

Mei-Ko Kwan 10] showed that one can get from one Chinese postman solution to
any other by a sequence of interchanging edges in the solution and not in the solution
around a circuit. In the previous terminology, we can interchange odd and even edges
around a circuit and get the same problem, and any designation of odd edges giving the
same solutions can be reached in this way. For co-postman problems [3], odd and even
edges are interchanged on a cut.

2. Binary group problems and binary clutters. Gomory’s development [4] of the
group problem relates to these problems in that each ofour four problems can be viewed
as special cases of the group mc2. They were posed in that way by Gastou and Johnson
[3]. We first review their development.

A binary group is the group mC2 whose elements can be represented as all 0-1
vectors of length m with addition taken modulo 2. For a subset /’ of the elements of
mCg2, let Mbe the 0-1 matrix with m rows and a column corresponding to each element
g /’. The binary group problem is to minimize ct subject to

Mt =- b(mod 2), t >- 0 and integer,

where c is a nonnegative real n-vector of costs, Mis an m n 0-1 matrix, b is a m-vector
of O’s and l’s, and t is an n-vector of variables.

A binary group problem is a Chinese postman problem when M is the node-edge
incidence matrix ofa graph. In order to pose the other problems as binary group problems,
we need to develop some duality notions.

Any binary matrix M can be brought to standardform [I N] by pivot steps using
modulo 2 addition; that is, by elementary row operations consisting here ofadding (mod-
ulo 2) some rows to other rows. Any rows consisting of all O’s can be deleted. For an
augmented matrix [MI b], we bring it to standard form without pivoting on the b-column:
[IN b]. The columns in I are called basic columns. If any row is all O’s except in the
b-column, then the corresponding binary group problem is infeasible. Thus, for any
feasible binary group problem, we can bring it to this standard form. For a Chinese
postman problem in standard form, the columns in the identity I correspond to edges
ofa spanning forest of G, the right-hand side b tells which ofthose edges in the spanning
forest should be equal to one in a postman solution, and the columns ofN have entries
of one corresponding to edges in the spanning forest in the circuit formed by adjoining
an edge out of the forest to the forest.

The dual matrix to M [I N] is the matrix M* [Nr I] of size m* n where
m* n m. It has the property that every row has inner product zero with every row
ofM.

A matrix M is graphic if it can be brought to the form of a node-edge incidence
matrix of graph by elementary row operations. Alternatively, it is graphic if in standard
form [I N] there is some forest with edges corresponding to column of I such that the
columns ofNcorrespond to paths in the forest. There is a forbidden minor characterization
of Tutte 15] for graphic matrices. A matrix is co-graphic if it is the dual of a graphic
matrix. The co-postman problem is precisely the binary group problem with constraints

M*t * =- b*

where M* [Nr I] is cographic. The columns in I correspond to edges out ofa spanning
forest and the columns ofNr correspond to cut sets in the graph. We thus obtain a co-
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postman problem by taking the dual ofa graphic matrix and any right-hand side unrelated
to the odd nodes of a postman problem.

The dual of an augmented matrix [Mlb] [I N lb] is the matrix

[M*lb*l r 0

In this form, the right-hand side b* (0, 0, 1)r is basic, and the binary group
problem

M’t* b*

is feasible if, and only if, the original b is not all 0’s. The form above, with the fight-hand
side b* is the basis, is called right-handform, as compared to standard form. Of course,
we could pivot on the bottom row to bring the right-hand side out of the basis.

For a given binary group problem with constraints

>- 0 and integer, Mt- b(mod 2),

we get another problem, called its blocking problem:

t* -> 0 and integer, M’t* - b* (mod 2),

where [M* b*] is the dual matrix of [MIb]. The odd cut problem is the blocking
problem of the Chinese postman problem, and the odd circuit problem is the blocking
problem of the co-postman problem [2].

We now turn to another way of representing these problems: binary clutters. A
clutter is simply a family ofnonnested sets. Given any family of sets, we can always form
a clutter from it by removing all sets which are supersets of other sets in the family. That
is, the minimal sets in any family form a clutter. Given a clutter Q of subset of E, its
blocking clutter [2] is Q* defined by

Q* {A* _EIA*fqA 4: for all Ae Q,
and A* is minimal with respect to this property}.

It is clear that the blocking clutter of the blocking clutter is the original clutter.
A clutter Q is called a binary clutter if the cardinality of A f3 A* is odd for every

A e Q and A* e Q*, its blocking clutter. Obviously, Q is a binary clutter if and only if
Q* is. Lehman [7] gave several results on binary clutters, and Seymour 13] named them
binary clutters and gave additional characterizations ofthem including a forbidden minor
characterization. Lehman’s prototype was source-to-sink paths as members of Q and
source-sink separating cuts as member of Q*. Lehman [8] refers to the members of the
clutter as ports ofa matroid.

Lehman’s results [7] are in terms of binary matroids, not binary group problems.
His results can be restated as follows. Given a binary group problem with augmented
matrix [M[ b], form the 0-1 matrix Q of the minimal rows among all rows that are
formed as row sums ofM, taken modulo 2, such that the corresponding sum in the fight-
hand side column b is I. This Q is a 0-1 matrix whose rows are incidence vectors of a
binary clutter and every binary clutter is formed in this way. The blocking clutter is the
clutter formed in this way from the blocking problem of [M b]. These results are due
to Lehman [7], but a development of them in this form can be found in [3].

We now give an example illustrating the four problems and their binary clutters.
Consider the graph shown in Fig. 1. The Chinese postman problem (for odd nodes l, 2,
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FIG.

4, 5) has constraints Mt b where [MI b] is the augmented matrix in Fig. 1. In standard
form, it and its blocking problem (in fight-hand form) are

0 0
0 0

0

Their associated binary clutters Q and Q* have incidence matrices

Q*=

The above binary clutters are blocking clutters that are the odd cuts and the postman
sets (solutions to the Chinese postman problem). We see that the rows of the clutter
matrix Q of odd cuts are solutions to the blocking problem [M* b*], i.e., the odd cut
problem, and the rows of the clutter matrix Q* of postman sets are solutions to the
original problem [MI b], i.e. the Chinese postman problem.

The co-postman problem and its blocking problem are defined by the augmented
matrices [MIb] and [M* [b*]

0
0
0
0

We take a fight-hand side giving as odd circuits those circuits with an odd number of
edges. The blocking binary clutters Q and Q* of odd circuits and co-postman sets are



168 E. L. JOHNSON AND S. MOSTERTS

We conclude this section with a brief review of some polyhedral results. Given the
two binary group problems

t >_- 0 and integer, t* >_- 0 and integer,

Mt= b(mod 2), M’t* =- b* (mod 2),

min z ct, min z* c’t*,

where [M* b*] is the blocking matrix of [MI b], we can form the two blocking clutters
Q and Q* with their corresponding incidence matrices Q and Q* as in the previous
section. Gomory’s comer polyhedra [4] are given by (see [3])

P(M, b) =conv {t >- 0 and integer IMt=- b(mod 2)}
=conv {q* [q* a row of Q*} + R,

P(M*, b*) =conv {t* >= 0 and integer M*t* -= b* (mod 2)}
=conv {qlq a row of Q} +R.

Define [MIb] to have the Fulkerson property [3] if

P(M,b) {t>=O[Qt>= 1}.
Fulkerson [2] showed that [MI b] has the property if and only if [M* b*] does, and he
refers to P(M, b) and P(M*, b*) as blocking pairs of polyhedra. We refer to a given
problem, or simply the associated augmented matrix [MI b], as having the Fulkerson
property. Fulkerson’s work was based on the earlier work ofLehman [9], which concerned
itself with the clutters rather than the polyhedra. Lehman [9] gave several equivalent
conditions on the clutters Q and Q* for [M[ b] to have the Fulkerson property. In general,
co-postman problems and odd circuit problems do not have the Fulkerson property, but
Chinese postman problems do and hence so do odd cut problems [2].

3. Minors and majors. Given a binary matrix M, a minorMofMis another binary
matrix obtained by sequentially performing two operations:

Deletion of a column ofM means simply leaving it out;
Contraction of a column of M is performed by pivoting on a column and then
deleting the row and column pivoted on.

In case we are trying to contract a column of all O’s, we obviously cannot pivot on the
column, and in that case contraction of the column means just deleting it. On the other
hand, if we delete a column which has the only nonzero in some row, then we could
delete the resulting row of O’s and deletion is the same as contraction.

For our purposes and in order to be precise, let us first bring M to standard form
M [I IN]. For a matrix in standard form, the columns in I are called basic columns
and the columns in N are called nonbasic columns. We get the same minors ofM by
restricting deletion to nonbasic columns and contraction to basic columns. To contract
basic column i, we leave out the ith row and the ith column. If we want to contract a
nonbasic column, we must first bring it into the basis by pivoting on any l, which can
be done unless the column is all O’s in which case it can be deleted rather than contracted
but with the same effect.

For a graphic matrix M, deletion of a column gives a minor whose corresponding
graph is formed by deleting the edge corresponding to the deleted column. Contracting
a column ofMcorresponds to contracting an edge: identifying its two nodes as one node.
If we contract an edge in a triangle, we cause duplicate edges to appear in the minor; if
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we contract an edge having a duplicate edge, then a loop appears in the minor. However,
a loop has a column of all O’s in the matrix.

Our convention is to delete loops but not to contract them and to contract cut edges
(one edge cut sets) but not to delete them. This convention has no effect on the matrices
M which can be obtained as minors ofM.

Define afeasible minor of an augmented matrix [MI b] to be a minor [3rl ] such
that

(i) b is not deleted or contracted;
(ii) The image b of b in the minor is not all O’s;
(iii) There is a 0-1 solution t to Mt b (mod 2).

Afeasible contraction is a feasible minor formed by contractions and no deletions, and
a feasible deletion is a feasible minor formed by deletions only. We have two special
forms of binary matrices, the first of which is standard form [MIb] [I N lb]. In this
form, we form a feasible minor by contracting a subset of the columns ofI and deleting
a subset of the columns ofN (but not b) such that not all of the rows where bi have
the corresponding column I contracted. Condition (iii) is automatically satisfied. For a
feasible deletion, both conditions (ii) and (iii) are always satisfied.

In fight-hand form

[M* b*] br 0

a feasible minor is performed by deleting nonbasic columns or by contracting columns
of I. In contracting basic columns, the right-hand side should not be contracted, and in
deleting nonbasic columns not all columns of br having bf can be deleted in order
that condition (iii) is satisfied. Condition (ii) is always satisfied in this case.

Given a feasible minor [Ar[ ] ofan augmented matrix [M[ b], the blocking matrix
[3r* I*] of [Ar ] is a feasible minor of the blocking augmented matrix [M* b*] of
[MI b] (see [14], also [3]). This result should be clear from the previous discussion and
the well-known corresponding theorem 16] for minors ofdual matrixes. The latter theo-
rem follows from the fact that deletion (contracting) of a column in M gives a minor of
M whose dual is obtained by contracting (deleting) the same column of M*, the dual
ofM.

Our interest is in augmented matrices [MI b] which are either graphic or co-graphic
after deleting or contracting b. The graph can be augmented as follows. For [Mlb]
graphic after deleting b (the Chinese postman problem), we can bring M to the form of
a node-edge incidence matrix and indicate b by designating the node to be even if
bi 0 and odd if bi 1. However, while the Chinese postman problem and its blocking
odd cut problem can be treated in this way, the co-postman and odd circuit problems
cannot be represented by a graph with some odd nodes and the rest even nodes. A more
general procedure is to bring Mto standard form [IN b], so that the edges in/, forming
a spanning tree, for which bi are called odd edges and indicated in figures by being
drawn darker than the other edges. That is to say, take any particular Chinese postman
solution and consider its edge set to be the odd edges. This way of viewing the problem
was discussed at the end of 1. A cut is even or odd depending on whether it includes
an even or an odd number ofedges ofthe particular postman solution, i.e., ofodd edges.
Any spanning forest including the odd edges determines a fundamental set of cuts, some
of which are even and some of which are odd. A set of edges is a postman solution if,
and only if, it intersects every odd cut of this fundamental set an odd number of times
and every even cut ofthis fundamental set an even number oftimes. Thus, for a Chinese
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FIG. 2

postman problem and its associated blocking problem, an odd cut problem, the problem
can be represented either by designating some subset of the nodes as odd nodes or by
designating some subset of the edges as odd edges. The odd edge set should not include
a circuit, i.e., should be a forest, and if it contained a circuit we could just remove the
edges in the circuit to obtain an equivalent problem.

For co-postman and odd circuit problems, we only know the second way ofspecifying
the problem. That is, given a graph and a subset ofedges called odd edges, an odd circuit
is a circuit containing an odd number of odd edges. The odd edges can now be assumed
to be in the complement of some spanning forest, and each odd edge induces an odd
circuit when adjoined to that spanning forest. The even edges outside of the spanning
forest induce even circuits. The set of circuits, some odd and some even, formed in this
way constitute a fundamental set of circuits ofthe graphic matroid. The co-postman sets
are the sets of edges meeting the odd circuits of this fundamental set an odd number of
times and the even circuits an even number of times. Thus, a co-postman problem and
its blocking odd circuit problem are specified by a graph and a subset of edges outside
of some spanning forest, i.e., not containing a cut set. If the set of odd edges included a
cut set, then we could remove the cut set from the odd edge set and obtain an equivalent
problem.

The first question we address is: which graphs and odd subset ofedges give the same
problem? To be specific, let us discuss Chinese postman problems. The remarks apply
equally to the other three problem classes. When we say "the same problem" we mean
that the clutter Q* of solutions is equal under permutation of the rows and columns.
For example, all three graphs in Fig. 2 give the same problem. This example illustrates
the fact that strongly connected components can be treated separately. When we take
the odd edge representation ofthe problem, the odd edges stay the same and the strongly
connected components can be connected or disconnected in any manner provided they
are not connected so as to change the strongly connected components.

Graphs that are strongly connected and not isomorphic may have the same Chinese
postman solutions. It should be dear that the graphs in Figs. 3(a) and (b) are not isomorphic
because one has a degree four node and the other does not. However, they do have the
same Chinese postman solutions. Whitney 17] called such graphs 2-isomorphic. The
construction is to take any two node cut set (the two middle nodes of Fig. 3) and "turn
over" one of the two disconnected pieces. More precisely, if and j disconnect G into
H1 and HE, then in HE connect all edges that were connected to to j instead, and vice

(a) (b)

FIG. 3
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versa. Define this operation to be a 2-flip on i, j. Two graphs are 2-isomorphic if one can
be reached from the other by a finite sequence of such interchanges. He showed, as is
easy to see, that 2-isomorphic graphs have the same circuits. Since we have preserved
one particular Chinese postman solution and since the graphs have exactly the same
circuits and by Mei-Ko Kwan’s result (see [10]), 2-isomorphic graphs have the same
Chinese postman solutions. Whitney 17] showed the converse as well; a result that seems
to be deep and not easy to prove: every two strongly connected graphs with the same
sets of circuits (allowing reordering the edges) are 2-isomorphic. Thus, the class ofgraphs
that represent a graphic matrix M is those graphs obtained from one by moving around
strongly connected components and substituting any 2-isomorphic graph in place of a
component.

Lehman [7, (46)] gives the result that the clutter Q determines the matrix [MIb]
provided that Q has no zero columns, which can be shown to be equivalent to the matrix
[MI b], including the right-hand side b, being nonseparable, i.e. [MIb] is not block
diagonal when brought to standard form. Note that M could be separable, but then the
fight-hand side column b must have nonzero entries for each separable component. A
Chinese postman problem is nonseparable if and only if there is no strongly connected
component with no odd edges. Since circuits are completely contained in a strongly
connected component, interchanging odd and even edges around a circuit will always
maintain some odd edges in every strongly connected component. When we "move
around strongly connected components," i.e. connect or disconnect the strongly connected
components in such a way that the strongly connected components remain the same,
the odd and even nodes may change, but the odd and even edges remain the same. In
essence, one must fix a particular Chinese postman solution before moving around the
strongly connected components, and the odd and even nodes are determined so as to be
consistent with that particular solution. Similar remarks apply to the co-postman problem.

THEOREM 3.1. Two augmented graphs (graphs with odd edges) have the same sets

of Chinese postman solutions (allowing reordering the edges) if and only if one can be
brought to the other by sequences ofthefollowing three operations:

(i) Interchanging the odd and even edges around any circuit;
(ii) Moving around any strongly connected component;
(iii) Making a 2-flip on any two-node cut set.

Proof. Let us emphasize that the odd edges do not change (but odd nodes might)
under a 2-flip (see Fig. 3). The "if" direction should be clear from the previous discussion,
so we only prove the other direction.

Let G and H be any two augmented graphs with the same clutter Q of Chinese
postman solutions. By Lehman’s result [7], they have the same sets of circuits as well.
Since they have the same circuits, they are 2-isomorphic, by Whitney’s theorem 17].
Since G and H have the same Chinese postman clutters Q, we can bring the odd edges
of one to be the same as the other using step (i). Since G and H are 2-isomorphic, we
can bring one to be the other by steps (ii) and (iii), completing the proof.

Since the blocking clutter Q* is uniquely determined by Q, the same results hold
by replacing Chinese postman by odd cut in the statement. For the odd circuit problem,
there is one obvious difference: we interchange on cuts rather than circuits. Otherwise,
the theorem is the same because the circuits uniquely determine the cuts. Thus, we have
the theorem below.

THEOREM 3.2. Two augmented graphs have the same sets ofodd circuits (allowing
reordering of the edges) ifand only ifone can be brought to the other by a sequence of
thefollowing three operations:

(i) Interchanging the odd and even edges in a cut;
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(ii) Moving around any strongly connected component;
(iii) Making a 2-flip on any two-node cut set.
By the same remarks applied to the odd cut problem, the same theorem holds for

"odd circuits" replaced by "co-postman solutions."
When we say that a problem is, e.g., a co-postman problem, we are really talking

about an augmented matrix [MIb] which is co-graphic after deleting b. The graph ve
draw for it is the graph that M is co-graphic with respect to. An odd set of edges is the
subset of basic edges ofM (i.e., in a co-basis ofthe graph) which have a one in the right-
hand side position when brought to standard form. When we form the blocking odd-
circuit problem [M* b], the augmented matrix is graphic after contracting b*. The odd
edges (the same as for the co-postman problem) can now be thought of as the nonbasic
edges having a one in the row that is deleted after bringing b* into the basis (or b* may
already be in the basis if the problem is in right-hand form).

That is to say, when we refer, for example, to a class of problems that is odd cut
but not Chinese postman, we are not referring to the graph, but to the augmented matrix
[MI b] that, in this case, must be graphic after contracting b but not graphic after deleting
b. An augmented graph only becomes meaningful when we say which problem class it
represents because the same augmented graph is used for both the Chinese postman
problem and its blocking odd cut problem, and could even represent an odd circuit and
a co-postman problem if the odd edges do not contain a cut.

Consider now taking a feasible minor of an augmented matrix and what happens
to its augmented matrix. For a Chinese postman (and odd cut) problem, the problem
can be represented by an augmented graph having some nodes odd and the rest even.
For this type of augmented graph, minors are formed by just deleting any edge not a cut
edge, by our convention, or by contracting any edge not a loop. When contracting an
edge, the new node is odd ifthe edge met one odd node and one even node, and the new
node is even otherwise. By not allowing deletion ofcut edges, the problem cannot become
infeasible.

When the augmented graph is represented by having the edges in a particular solution
be designated as odd edges and the other edges are even, any even edge other than a cut
edge can be deleted since it can be made nonbasic. Any odd edge or even edge not a
loop can be contracted. However, in this case we also allow changes ofthe type in Theorem
3.1 (i), i.e., interchanging even and odd edges around a circuit. In fact, any ofthe changes
in Theorem 3.1 can be made because we are really thinking of the augmented graph as
representing an augmented matrix. Theorem 3.1 is stated for this representation of an
augmented graph, i.e. with some odd edges forming a particular solution. When operation
3.1 (ii) is done, strongly connected components can be moved around orjust made separate
connected components. In drawing forbidden minors we resolve the ambiguity of how
to connect up the strongly connected components by drawing them as separate connected
components. What we are saying is that these are Chinese postman problems on these
connected components so that putting together, in any way, one solution for each com-
ponent gives a solution to the Chinese postman problem. For example, in Fig. 2 the three
problems, are equivalent. Note that the odd node designation may change but the odd
edge set does not.

DEFINITION 33. An augmented minor ofthe graph ofChinese postman problem is
a graph obtained from a given augmented graph, with odd edges representing a particular
Chinese postman solution containing no circuits by the following five operations:

(i)-(iii) As in Theorem 3.1;
(iv) Deleting any even edge that is not a bridge;
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(V) Contracting any odd edge that is not the only odd edge; or
(vi) Contracting any even edge that does not form a circuit when adjoined to the

odd edges.
Condition (iv) requires that the edge not be a bridge (an edge whose removal increases
the number of connected components) because of our convention of not deleting edges
in every basis. Similarly, condition (v) insures that we keep a nonzero right-hand side
and that we contract edges in a basis. One could, ofcourse, interchange odd edges around
circuits as in (i) before doing (v).

The graph for an odd cut problem is the same as for its blocking Chinese postman
problem so 3.3(i)-(v) also define augmented minors of graphs representing odd cut
problems.

DEFINITION 3.4. An augmented minor of the graph ofa co-postman problem is a
graph obtained from a given augmented graph, with odd edges representing a particular
co-postman solution containing no cut, by the following five operations:

(i)-(iii) As in Theorem 3.2;
(iv) Contracting any even edge not a loop;
(v) Deleting any odd edge that is not the only odd edge;
(vi) Deleting any even edge that is not a bridge in the subgraph of even edges.

4. Duality relationships between four problems. In this section we introduce the
relationships between the four problems defined in the previous sections. We study their
blocking connections and begin to show the dualities between them. In the next sections
this subject will be discussed in more detail.

Let us consider the class of group problems with an associated augmented binary
matrix [Mlb] which is graphic or co-graphic after deletion or contraction of the fight-
hand side b. This class can be split into fifteen regions which represent all ofthe possible
intersections between postman, odd cut, odd circuit and co-postman problemsit is
dear that for every problem belonging to any region there is a one-to-one correspondence
with its blocking problem that might, or not, belong to the same region. However, all of
the blocking problems of problems in any one region belong to only one region. If the
blocking problems are in the same region as the original ones, we refer to this class as a
self-blocking region.

THEOREM 4.1. The self-blocking regions are those defined by the following inter-
sections ofproblem classes:

1) Postman, odd cut, odd circuit, and co-postman;
2) Co-postman and odd circuit but neither postman nor odd cut;
3) Postman and odd cut but neither odd circuit nor co-postman.
For example, if the augmented matrix is graphic but not co-graphic after deletion

of b and co-graphic but not graphic after contraction of b then the blocking matrix
[M* b*] is co-graphic but not graphic after contraction and graphic but not co-graphic
after deletion.

We give here an example for each of the two first cases. The augmented matrix

1
is K4 after deleting b so is both graphic and co-graphic, and it is K,3, the dual of K2,3,
after contracting b. The four augmented graphs associated with it are shown in Fig. 4.
Thus, this augmented matrix is all four problems but on four different augmented graphs.
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CHINESE
POSTMAN

CO-POSTMAN ODD ODD
CIRCUIT CUT

FIG. 4

A matrix giving case 2 is

2 3 4 5 6 7 8 9 10

0
0
0
0
0

As an odd circuit problem, its associated augmented graph is shown in Fig. 15 and is
called G13 there. As a co-postman problem we must pivot column six into the basis in
place of the fight-hand side. The associated augmented graph is K5 with two odd edges.
Since neither of the two graphs is planar, it should be clear that [M[b] is neither a
Chinese postman nor an odd cut problem. An example of Case 3 is an odd K3,3 graph
as discussed after Theorem 6.5.

In general it is well known that the class ofChinese postman problems is the blocker
of the class of odd-cut problems and that the class of the co-postman problems is the
blocker ofthe class ofthe odd circuit problems. Theorem 4.1 is a refinement of this fact.
For example, a problem that is neither postman nor odd cut must have a blocking
problem that is neither postman nor odd cut.

The problems belonging to the first region could be called b-planar problems because,
whether we delete the fight-hand side b or contract it, we get a matrix that is the incidence
matrix of a planar graph.

We now turn our attention to planar problems after deletion or in other words to
problems that are both Chinese postman and co-postman. This region can be clearly
split into four subregions corresponding to odd circuit problems, or odd cut problems,
or neither of them or both of them. This last region is the b-planar region already men-
tioned. The blocking region to the problems that are neither odd cut nor odd circuit is
the odd cut and odd circuit problems. Examples of such problems are given by the
Chinese postman problem on G’, G’, or G’. Examples of the other two classes are
given by

The corresponding planar graphs are shown in Figs. 5(a) and (c). They are G’0 and G’
in Figs. 16 and 10. The black nodes represent the odd nodes associated with the corre-
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(a) (b) (c) (d)

FIG. 5

sponding Chinese postman problem, and the darker edges correspond to postman sets,
which are, in these two cases, spanning trees. Since the graphs are planar, the problems
are also co-postman problems on the dual graphs in Figs. 5(b) and (d). Note that odd
edges correspond in the primal and dual graphs. Contracting the fight-hand side of the
first matrix gives K3",3, so it is an odd cut problem but not an odd circuit problem.
Contracting the fight-hand side of the second matrix gives Ks, so it is an odd circuit
problem, but is not an odd cut problem.

It is easy to find examples for the remaining six regions. We give here only the
blocking relationships: only odd circuit problems have blocking problems that are only
co-postman problems; odd-circuit and postman problems have blocking problems that
are co-postman and odd cut problems; only postman problems have blocking problems
that are only odd cut problems.

5. Regular problems. A matrix M is regular if it does not contain an F7 or F’
minor. Define an augmented matrix [Mlb] (and its associated binary group problem)
to be deletion regular ifM is regular and contraction regular if [MI b], after contracting
b, is regular. Define [MIb] to be b-regular if it is both deletion regular and contraction
regular. Clearly, a Chinese postman problem or a co-postman problem is deletion regular,
while an odd cut problem or an odd circuit problem is contraction regular.

Consider first the case ofan F7 minor in M. It is interesting, for cases to be considered
later, to ask what augmented minors of [MIb] might be present. There are only two.
The first is

0
0
0

which we call an even F7 minor of [M[ b]. The fourth column cannot be contracted
because it would lead to a zero fight-hand side. Neither can it be deleted because a zero
row with a nonzero right-hand side would result. The other possibility is that

b2
b3

is an augmented minor of [MI b], where b, b2, b3 are not all zero. However, by pivoting
and reordering rows and columns, we can bring the minor to the form M below:

M1

In fact, any fight-hand side can be assumed, other than all zeros.
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The case ofF is similar but there are three forbidden augmented minors:

even F

M2

M3

0
0
0

0
0
0
0

The minor ME includes the case of either one or three of the fight-hand side elements
bl, bE, b3, b4 equal to one. The minor M3 includes the case of either two or all four of
the bi’s equal to one. Thus we have proven the first assertion of the theorem below.

THEOREM 5.1. The problem [M[b] is deletion regular if, and only if, it does not
include any even F7 or even F minor or any ofMl, ME, M3 as augmented minors. It is
contraction regular if, and only if, it does not include any even F7 or even F minor or
any of

M

M=

M=

0
0
0
0

0
0
0

0
0
0

as augmented minors. It is b-regular if, and only if it does not include any even F7 or
even F minor or any ofMI, M2, M3, M, M, M.

Proof The proof is obvious from the preceding discussion and from duality.
THEOREM 5.2. A Chinesepostman problem is b-regular if, and only if the associated

graph does not contain any ofthe three augmented minors in Fig. 6.
Proof Because it is a Chinese postman problem, it is deletion regular. Hence, it

cannot contain an even F7 or even F’ minor or any of MI, M2, M3. The graphs given
are derived from M, M, andM by pivoting to standard form.

THEOREM 5.3. An odd cut problem is b-regular ifand only if its blocking Chinese
postman problem is b-regular, i.e. if and only if its associated augmented graph does
not contain G, G, or G as augmented minors.
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C 0 C 0

GI G2

FIG. 6

For an odd cut problem [M* b*], the augmented matrix

MI

is an example of one that can be an augmented minor of [M* b*] but is forbidden in
order for [M* b*] to be a Chinese postman problem. The associated augmented graph
for the odd cut problem by contracting the fight-hand side ofMI is G’. The augmented
matrix M1 could not be an augmented minor of a Chinese postman problem [MI b].
However, its dual matrix M’ could be, and that matrix is forbidden for the Chinese
postman problem to be an odd cut problem. But the graph associated with M]" as a
Chinese postman problem is exactly the G’ associated with MI as an odd circuit problem.

Thus, we see that the forbidden augmented matrices are the duals ofthose in Theorem
5.2, but the graphs forbidden as augmented minors are the same. Theorem 5.3 is, thus,
a duality result once the framework is understood.

THEOREM 5.4. A co-postman problem is b-regular if, and only if, the associated
graph does not contain any ofthe three augmented minors in Fig. 7.

Proof As for the Chinese postman problem, a co-postman problem is deletion
regular. The augmented matrix [M] b] can, therefore, only contain M’, M’, M’. How-
ever, the graph we now draw is the dual because for the co-postman problem we draw
the graph with respect to which the matrix is co-graphic.

THEOREM 5.5. An odd circuit problem is b-regular if and only if the associated
graph does not contain any ofthe three augmented minors G, G2, G3.

6. Problems not co-postman. For [M[ b] a Chinese postman problem, it is easy to
say when it is not a co-postman problem: if, and only if, the associated graph is not
planar, i.e., contains a K5 or a K3,3 minor. By duality, the same answer applies to when
an odd cut problem is an odd circuit problem. That is, let [M* b*] be an odd cut
problem, let [MI b] be its blocking Chinese postman problem, and let G be the augmented
graph of the Chinese postman (and the odd cut) problem. Then, [MIb] is also a co-
postman problem if, and only if, G is planar, and then [MI b] is the co-postman problem

G G2 G
FIG. 7
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on the dual augmented graph. Its blocking problem is, thus, an odd circuit problem on
the dual augmented graph.

These two cases were relatively easy because we were considering the intersection
of classes of problems that both involve deletion of b or both involve contraction of b.
The other intersections require more work.

A problem [MI b] is not a co-postman problem if, and only if, M is not co-graphic,
i.e., M contains an FT, F, Ks, or K3,3 minor. Again we look for critical aug-
mented minors of [MI b]. Clearly, [MIb] must be b-regular, i.e., have no F7 or F’ in
M as considered in 5.

Consider next Ks. The matrix M contains a K5 minor means that [MI b] contains
as a minor either

even K5

where not all of the bi’s are equal to zero.

0
0
0
0

b
b2
b3
b4

or

For the second of these two augmented matrices, there is an associated aug-
mented graph. The question is how many and which are not isomorphic. Here, iso-
morphic means simply changing the odd edges by interchanging on a circuit. Clearly, all
b (bl, b2, b3, b4) with exactly one or exactly two bi’s equal to zero give isomorphic
problems. Furthermore, all b with exactly three or all four bi’s equal to zero give isomorphic
problems.

Consider next K3,3. The matrix M contains a K3,3, minor if, and only if [MIb]
contains as a minor one of the following two:

even g3,3
0
0
0
0
0

where not all bi’s are equal to zero.

bl

b4
b5

For the second of these two above augmented matrices, there is an associated aug-
mented graph. There are five different fight-hand sides bi given in the following theorem.
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THEOREM 6.1. A problem [M[ b] is a co-postman problem if, and only if, it satisfies
all ofthefollowing:

(i) [M[b] is deletion regular;
(ii) [M[b] contains no even K or K3,3 minor;
(iii) [M b] contains none of the following seven augmented minors (indicated by

the different right-hand sides):

b b2

0
0
0

b3 b4 b b6 b7

0
0 0
0 0
0 0
0 0 0

Proof. From the previous remarks, we need only prove that the seven different bi’s
are the only ones needed. Since M is either K5 or K3,3 the question is equivalent to the
question: what are the different (not 2-isomorphic) Chinese postman problems on K5
and on K3,3 ? We give a lemma completing the proof.

LEMMA 6.2. There are two different Chinese postman problems on Ks: one having
two odd nodes and the other having four odd nodes. On K3,3, there are five different
Chinese postman problems with odd nodes as given in Fig. 8.

Proof. There must be an even number of odd nodes, and no matter which even set
of nodes is odd, we can renumber the nodes to be one of the augmented graphs given.

THEOREM 6.3. An odd circuit problem is also a co-postman problem if, and only if,
the associated augmented graph G ofthe odd circuit problem satisfies

(i) G is b-regular, i.e. contains no G1, G2, G3 augmented minor;
(ii) G contains no even K5 or K3,3 minor;
(iii) G contains none ofthefour augmented minors in Fig. 9.
Proof. Condition (i) ofTheorem 6.1 implies that [MI b] must be b-regular because

it is contraction regular by being an odd circuit problem. By Theorem 5.5, an odd circuit
problem is b-regular if, and only if, it contains no G, G2, G3 augmented minor.

Condition (ii) of Theorem 6.1 could occur because being an odd circuit problem
only requires [MIb] to be graphic, but not co-graphic, after contracting b.

Condition (iii) here is obtained from condition (iii) of Theorem 6.1 by drawing the
augmented graphs for the matrices there with fight-hand sides b, b3, b4, b5. The rest of
the proofconsists ofshowing that the fight-hand sides b2, b6, and b7 need not be considered.

FIG. 8
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G4 G5 G6 G7

FIG. 9

Contracting b2 gives an F7 minor, contracting b6 gives an F’ minor, and contracting b7

gives a K3",3 minor in their respective augmented matrices. Since [MI b] is an odd circuit
problem, it can have no F7, F, K3",3 minor after contracting b, completing the proof.

The augmented graph corresponding to an odd circuit problem is obtained by con-
tracting b giving a graph G whose edges are even if the row deleted, after pivoting on b,
had an entry equal to one. We draw the same graph for the odd circuit problem and the
blocking co-postman problem. Thus, we have the following theorem.

THEOREM 6.4. A co-postman problem is also an odd circuit problem if, and only if,
the associated augmented graph G ofthe co-postman problem satisfies

(i) G is b-regular, i.e., contains no G, G2, G3 augmented minors;
(ii) G contains no even K5 or K3,3 minor;
(iii) G contains no G4, Gs, G6, or G7 augmented minor.
THEOREM 6.5. An odd cut problem is also a co-postman problem if, and only if, the

associated augmented graph G ofthe odd cut problem satisfies:
(i) G is b-regular, i.e. contains no G, G, G augmented minor;
(ii) G contains no odd K3,3 minor;
(iii) G contains none ofthefour augmented minors in Fig. 10.
Proof. The proof is similar to that ofTheorem 6.3. Condition (iii) is as in Theorem

6.3 (ii), and the graphs listed are the augmented dual graphs there.
The reason that the even K5 and K3,3 need not be forbidden is that the corresponding

augmented minor, e.g., for an even K as a minor of an odd cut problem would be

-1 0"-1
0
0
0
0
0

G4 G5 G6 G7
FIG. 10
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and that augmented matrix is not forbidden for a co-postman problem because it is co-
graphic after deletion of the right-hand side.

The odd K3,3 minor arises from b7 as a right-hand side in Theorem 6. l(iii). That
case was excluded for an odd circuit problem but cannot be excluded for an odd cut
problem. However, b2 and b6 can be excluded as before. The odd K5 minor does not
arise but is, in fact, excluded by G, which is an augmented minor of an odd K5 minor.
That is, an odd K5 minor is not b-regular, but an odd K3,3 minor is b-regular.

THEOREM 6.6. A Chinese postman problem is also an odd circuit problem if, and
only if, the associated augmented graph G ofthe Chinese postman problem satisfies

(i) G is b regular, i.e. contains no G, G, G augmented minor;
(ii) G contains no odd K3,3 minor;
(iii) G contains none ofthefour augmented minors G, G, G, G.
7. Problems not Chinese postman.
THEOREM 7.1. A problem [Mlb] is a Chinese postman problem if, and only if, it

satisfies all ofthefollowing:
(i) [MIb] is deletion regular;
(ii) [Mlb] contains no even K or K3",3 minor;
(iii) [M b] contains none ofthefollowing augmented minors indicated by the dif-

ferent right-hand sides

0 0
0 0

0 0
0 0

b b2 b b6

0 0 0 1-
0 0 0
0 0 0
0 0
0

b3 b4

0 0
0 0
0 0
0

b7 b8

0
0 0
0 0

Proof The proof is similar to that ofLemma 6.2 except for the proofthat the right-
hand sides given in (iii) suffice. That proof is provided by Lemmas 7.2 and 7.3.

LEMMA 7.2. There are six different co-postman problems on K5 given by the aug-
mented graphs in Fig. 11.

Proof The proof is given by Fig. 12. In that figure, we start with one of the six
augmented graphs in Fig. 11 and show what cuts to interchange to get the next graph.
In Fig. 12, the six augmented graphs are across the bottom, and the changes are from
bottom to top.

LEMMA 7.3. There are two different co-postman problems on K3,3 given by the aug-
mented graphs in Fig. 13.

FIG. 11
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0 (N0
0 0 0 0

o o

FIG. 12

Proof. The proof is similar to that of Lemma 7.2 and is given by Fig. 14. The two
different problems are on the left and changes are made from left to right. The assertion
here is that every co-independent subset of edges of K3,3 is present here.

THEOREM 7.4. An odd circuit problem is also a Chinese postman problem if, and
only if, the associated augmented graph G ofthe odd circuit problem satisfies

(i) G is b-regular, i.e., contains no GI, G2, G3 augmented minor;
(ii) G contains none ofthe six augmented minors Gs, G9, Go, GI, G2, G3 given

in Fig. 15.
Proof An even K or K3",3 could not be present in an odd circuit problem so need

not be excluded.
b4The fight-hand side b in Theorem 7 l(iii) gives Gs, b2 gives G9, b3 gives GI3,

gives Gl0; b5, after contraction, gives a K3",3 minor, and so does b6. The fight-hand sides
b7 and b8 give GI and G2. The reason that G3 is listed last is that it is the only one that
is not planar.

THEOREM 7.5. A co-postman problem is also an odd cut problem if and only if the
associated augmented graph G ofthe co-postman problem satisfies

(i) G is b-regular, i.e., contains no G, G2, G3 augmented minor;
(ii) G contains none ofthe six augmented minors: Gs, G9, G10, GII, G2, or Gl3.

FIG. 13
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o o o

0 0 C 0

0 0 , 0

FIG. 14

THEOREM 7.6. An odd cut problem is also a Chinese postman problem if and only
if the associated augmented graph G ofthe odd cut problem satisfies

(i) G is b-regular, i.e. contains no G, G, G augumented minor;
(ii) G contains no even K5 or K3,3 minor;
(iii) G contains none ofthe six augmented minors G, G, Go, GI, G_, GI4 in

Fig. 16.
THEOREM 7.7. A Chinese postman problem is also an odd cut problem if and only

if, the associated augmented graph for the Chinese postman problem satisfies
(i) G is b-regular, i.e. contains no G, G, G augmented minor;
(ii) G contains no even K5 or K3,3 minor;
(iii) G contains none ofthe six augmented minors G, G, Go, GI, G2, GI4 in

Fig. 16.
Proof The proof is similar to that of the previous theorems. Here, contracting b

in Theorem 7.1 (iii) gives a matrix which is co-graphic with respect to G’. Similarly, b2

b7 gives G’ and b8 gives G2 The other right-handgives G, b4 gives G0, b gives GI4,
sides give augmented matrices that could not be odd cut problems because contracting
b3 or b6 gives a K3,3 minor.

8. Some special cases and examples. Define a graph to be outer planar if it can be
drawn so that every node is on the outside of the graph. A graph is outer planar if, and
only if, it has no K4 or K2,3 minor [6]. Define a graph to be inner planar if it has no
g(=g4) or K2",3 minor. By duality, a graph is inner planar if, and only if, it can be
drawn so that some one node is in every region.

THEOREM 8.1. A Chinesepostmanproblem [M b] on a graph G that is outerplanar
is also a co-postman problem and an odd cut problem.

0 0
G8 G9 GIO GII

FIG. 15

GI2 GI3
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C O C

FIG. 16

Proof. Since the graph must be planar, [MIb] is also a co-postman problem. It is
an odd cut problem because all of the forbidden augmented minors in Theorem 7.7
include K4 or K2,3 minors.

The Chinese postman problem on G’0 is an example ofthe theorem. The co-postman
problem over the same matrix was given in Fig. 5(b). As discussed in 4, the same matrix
is an odd cut problem on K3,3, which is not planar, so the problem is not an odd circuit
problem.

THEOREM 8.2. A co-postman problem on a graph G that is inner planar is also a
Chinese postman problem and an odd circuit problem.

There are corresponding results from duality for odd cut and odd circuit problems:
an odd cut problem on an outer planar graph is also an odd circuit problem and a Chinese
postman problem; and an odd circuit problem on an inner planar graph is also an odd
cut problem and is a co-postman problem. These results apply regardless of the right-
hand side.

We remark that the problems given as forbidden minors provide the following ex-
amples ofintersections ofproblems: only Chinese postman--Ks with 4 odd nodes; Chinese
postman and co-postmanmM’, M, M; Chinese postman and odd cutmodd K3,3;
Chinese postman and odd circuit--M’4, even Ks; Chinese postman, co-postman, and
odd cutM, *M2; Chinese postman, co-postman, and odd circuitM, ...,
M; co-postman and odd circuitM3; only co-postmanK5 with all odd edges. The
other intersections are blocking to one of these except for all four problems for which
an example was given in 4.

The problem M13 is neither Chinese postman nor odd cut yet does have the Fulkerson
property. The facets of the associated polyhedron have been explicitly calculated and
verified to be equal to the facets given by the appropriate clutter. Thus, we have a counter-
example to the conjecture that every binary group problem satisfying the Fulkerson
property is either a Chinese postman problem or an odd cut problem. We conjecture
that the only problems among these problems for which the Fulkerson property does
not hold are the problems that are only co-postman or only odd circuit. Since the Fulkerson
property is known to hold for Chinese postman and odd cut problems, this conjecture
is equivalent to saying that the Fulkerson property holds for problems that are both odd
circuit and co-postman problems.

There are only three known critical cases where the Fulkerson property does not
hold [3], [14]. One involves F’ so is not among the problems considered here, and the
other two are the blocking pair: the co-postman and odd circuit problems on K5 with all
edges odd (the first case in Fig. 12). There are six different odd circuit (or co-postman)
problems on K5 (Fig. 11). For these six odd circuit problems, the six right-hand sides
give a Chinese postman problem (on G, G, G’0, and GI4) for four different right-hand
sides; one right-hand side gives the augmented matrix M3 that has the Fulkerson property
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and is both co-postman and odd circuit (on GI3 and Ks, respectively); and the sixth right-
hand side gives Ro when deleted, and this problem does not have the Fulkerson property
and is only an odd circuit problem. Thus, no Ks minor is sufficient for the Fulkerson
property to hold but seems to be far from necessary.

Seymour’s results [14] on matroids having the max-flow min-cut property show
that a Chinese postman problem has that property if and only if it has no odd K4 minor
(K4 with all odd nodes). The forbidden augmented minor for the odd cut problem is K2,3
with four odd nodes including all of the degree two nodes. For the odd circuit problem,
the forbidden minor is K2",3, i.e. a doubled triangle. It is interesting to note how frequently
those minors occur as augmented minors ofour forbidden minors here. Both the Chinese
postman and its blocking odd cut problem have the max-flow min-cut property on the
outer planar graphs previously discussed.
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QUADRATIC CONES INVARIANT UNDER SOME LINEAR OPERATORS*
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Abstract. A (solid) quadratic cone K in a finite-dimensional vector space V (over R, C, or H) is the set of
all x e Vsatisfying f(x, x) >_- 0, wheref is a fixed indefinite hermitian form. Given such a cone K, we characterize
the linear operators A for which AK c K, and also those for which AK K. We also show that if p(A) v(A)
for some (multiplicative) norm v on the algebra of linear operators (p denotes the spectral radius) then there
exists an A-invariant quadratic cone of specified signature. For this purpose we strengthen a result of Mott and
Schneider characterizing the operators A for which p(A) v(A) is possible.

Key words, spectral radius, multiplicative norm, semisimple operator, Jordan decomposition, ice-cream
cone, hermitian form, real quaternions
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1. Introduction. If A is a linear operator on a finite-dimensional complex vector
space V and v is a (multiplicative) norm on the algebra /of operators on V then it is
well known that p(A) <= v(A), where p denotes the spectral radius. Mott and Schneider
[8], see also [5, 2.3], have shown that

0(A) inf v(A).

Furthermore they have shown that there exists a v such that 0(A) v(A) iffevery eigenvalue, ofA with IxI p(A) is a simple root of the minimal polynomial ofA.
The above results remain valid (Theorem 5) when the class of all (multiplicative)

norms on is replaced by the class of norms on induced by inner products on V;
such norms we call Hilbert norms. We also show that the same results are valid for real
and quaternionic spaces.

The problem of characterizing linear operators A on Rn which leave invariant a
fixed proper cone K (or alternatively, which leave invariant a proper cone K belonging
to a specified class of cones) has been extensively studied, see for instance [7], 10], 11
and the references mentioned therein. The class of quadratic cones K in V Dn (D

R, C, or H) is of special interest. Such a cone consists of all x V satisfyingf(x, x) >- 0
wherefis an indefinite hermitian form on V. Our Theorem 7 shows that two theorems
of Loewy and Schneider [7, Thms. 2.3 and 2.4] generalize to arbitrary quadratic cones.

Theorem 7 admits a nice geometric interpretation. Namely let P be the projective
space attached to Vand let S be the hermitian hyperquadric in P defined by the equation
f(x, x) 0 (f is an indefinite hermitian form). The complement of S in P has two
connected components and let P+ be the closure of one ofthem. Then Theorem 7 gives
a characterization ofthose projective transformations ofPwhich leave P/ invariant, and
of those which map P+ onto itself.

As an application of Theorem 5 we show that if p(A) v(A) for some norm v and
if p(A) is an eigenvalue of A then A leaves invariant a quadratic cone of signature
(n- 1, 0, 1).

We conclude with an improvement of a result of Vandergraft 11] characterizing
operators A, in the case D R, for which there exists a proper cone K such that A maps
K (0) in the interior of K. We show that his characterization remains valid when K is
restricted to be an ice-cream cone.
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2. Notation and terminology. We denote by D one of the three classical fields R,
C, or H and by F the center of D. By a we denote the F-algebra of n n matrices over
D. When convenient we shall view a as the algebra of linear operators of the right D-
vector space V D’. The elements of V are viewed as column vectors.

For A e s and X e C we define Ax e a by

A-Mn ifXeRorD=C,
Ax- a2- (X + X)A + Ixl2I otherwise

where I. is the identity matrix.
For A a we define its spectrum a(A) c C by

a(A) { X e C:Ax is singular}.
Observe that a(A) is a finite subset of C and its cardinality is at most n if D R or C
and at most 2n ifD H.

The spectral radius p(A) ofA is defined by

p(A) sup (Ixl:x (a)).
We say that A is semisimple at X C ifAx and (Ax): have the same rank. Clearly A

is semisimple at X if ), Z" a(A). If A is semisimple at X, V), e C, then A is said to be
semisimple. It is well known that every A e can be written uniquely as A S + N
where SN NS, S is semisimple, and N is nilpotent. This is known as the Jordan de-
composition ofA.

A norm on is a map v:a -- R satisfying the conditions
1 v(A) >-_ O, VA
2 v(A) 0 , A O,
3 v(XA) IXlv(A) VA a, VX e F,
4 v(A + B) <- v(A) + v(B) VA, B e
5 v(AB) <- v(A)v(B) VA, B
Let f: V V-- D be an inner product on V, i.e., fis a positive definite hermitian

form. Then (V, f) is a finite-dimensional Hilbert space over D. The norm in V induced
by fwill be denoted by If; thus Ix[} f(x, x), Vx V. The norm [Ton V induces
a norm vf on which is defined by

vf(A) sup .-TW-: V- {0}

Such norms vf will be called Hilbert norms.

3. Norm and spectral radius. Let v be a norm on a and let U be the closed unit
ball in , i.e.,

(3.) u= {xe d:(x)-< }.
It is well known that U is a compact subset of. Lemma is a simple consequence of
the compactness of U.

LEMMA 1. For A we have p(A) =< v(A). Furthermore ifp(A) v(A) then A is
semisimple at every X such that IX[ o(A).

Proof The case D R (resp. D H) can be reduced to the case D C by com-
plexificatio (resp. restriction of scalars). Thus we assume that D C. Then the first
assertion was proved by Mort and Schneider [8, Thm. 2].

To prove the second assertion, we may assume (without any loss of generality) that
v(A) p(A) 1. Let X (A) with IX[ 1. Assume that A is not semisimple at X. Then
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there exists linearly independent vectors v, w e V such that Av vX and Aw wh + v.
It follows that Akw wXk + xk- kv for each k >= 0. Since Akw Uw and Uw is compact,
the sequence wXk + xk-kv must be bounded. Since ]l 1, this implies that v 0,
which is a contradiction. Hence A must be semisimple at X.

LEMMA 2. Let A S + N be the Jordan decomposition ofA 1. Ife F, e 4 O,
then S + eN is similar to A.

Proof IfD C or H this follows immediately from the existence of the canonical
Jordan form. The case D R reduces to the case D C via complexification.

LEMMA 3. Let g be an inner product in V, T 1 a nonsingular matrix andfa new
inner product defined byf(x, y) g(Tx, Ty). Then uf(A) ug(TAT-), VA

Proof This follows from the fact that ]x]f Txlg, Vx V.
Mort and Schneider [8, Thm. 1] have shown that (in the case D C) for all A

we have to(A) inf v(A) where inf is taken over all norms on . A similar statement is
valid when inf is taken over all transform absolute norms. This stronger result is stated,
without proof in [3], and is attributed to Saunders and Schneider [9]. The next lemma
is a consequence ofthis stronger result. For the convenience ofthe reader we shall include
its proof.

LEMMA 4. For A 1 we have to(A) inf vf (A) where inf is taken over all inner
productsfon V.

Proof In view of Lemma it suffices to show that if r > to(A) then there exists an
inner product fort V such that uf(A) < r. Let A S + N be the Jordan decomposition
of A (with S semisimple and N nilpotent). There exists an inner product g on V such
that S is a normal operator of the Hilbert space (V, g). Hence

vg(S) to(S) to(A) < r.

Choose e > 0 small enough so that vg(S + eN) < r. By Lemma 2 there exists an invertible
matrix T such that TAT- S + eN. Define a new inner product f on V by
f(x, y) g(Tx, Ty). Then by Lemma 3 we have

vf(A) vg(TAT-) vg(S+ eN)<r. QED

In the case D C, Mott and Schneider [8, Thm. 2] have characterized the operators
A e for which there exists a norm v on such that v(A) 0(A). This is contained as
the part (ii) (iii) of the next theorem. This theorem is probably not new but for the
lack of reference we shall include a proof.

THEOREM 5. For A thefollowing are equivalent:
(i) inner productfon V such that vr(A) o(A);
(ii) norm v on such that v(A) o(A);
(iii) A is semisimple at every X r(A) with IX[ o(A).
Proof (i) (ii) is trivial.
(ii) (iii) is contained in Lemma 1.
(iii) (i) We may assume that A 4 0. Then (iii) implies that o(A) > 0. Replac-

ing A by o(A)-A, we may assume that o(A) 1. There is a unique decomposition
V V (R) V2 into A-invariant subspaces such that the restrictions Ak AI Vk (k 1, 2)
satisfy:

In view of Lemma 4 and Lemma 6 (below) it suffices to consider the case V VI.
Then (iii) implies that A is semisimple and consequently there exists an inner product
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f: V V -- D such that A is a unitary operator of the Hilbert space (V, f). In particu-
lar f(A) 1.

This concludes the proof of the theorem.
LEMMA 6. Let A 1 and let V V (R) V2 be a decomposition into A-invariant

subspaces. Letfbe an inner product on V such that V _l_ V2 and let fk (resp. Ak) be the
restriction off(resp. A) to Vk Vk (resp. Vk). Then writing Vk vA (k 1, 2) we have

f(A) max (v(A), v2(A2)).

Proof. Observe first that if a,/3, % ti > 0 then

+B-<max,y+-
This implies that (we write Ixl instead of Ixif)

IA,x, 12 + IA2x212sup 12
< max (vl(Al)2, v2(A2)2),... x=) (0. o) Ix + Ix212

where XkeVk (k= 1,2). For x eV we can write x=x+x2 (XkeVk) and so
Ax Ax + A2x2 and

Iaxl2= laxl2 + la2x212, Ixl2= Ix[2 + Ix212.
Hence the above inequality implies that uf(A) <= max ((A), 2(A2)). On the other hand
the inequalities f(A) >= Uk(Ak) (k 1, 2) are obvious.

Remark 1. Lemma 4 and the equivalence (i) (iii) of Theorem 5 as well as their
proofs are reminiscent of two theorems of W. Givens [4]. For A e , in the case
D C, and for an inner productfon Vthe field ofvalues ofA is defined as

u(A) {f(x, Ax):lxlf }.
It is well known that a(A) c <by(A). Givens showed that if A(A) is the convex hull of a(A)
then A(A) f’l <by(A), where the intersection is over all inner products fon V. He also
showed that there exists an inner product fsuch that A(A) <by(A) ill" A is semisimple
at every , on the boundary of A(A).

4. Invariant Quadratic Cones. Letf:V V-- D be a hermitian form. Its signature
sign (f) is the triple (n_, no, n+) where n_ (resp. n+) is the maximum dimension (over
D) of a subspace of V on which the restriction off is negative definite (resp. positive
definite) and n_ + no + n+ n. Thus n_ + n+ r is the rank off, and no is the dimension
of its radical Rad f. We say that f is indefinite if n_ 2_ and n+ >_- 1. If n_ 0
(resp. n+ 0) we writef>- 0 (resp. f-_< 0).

A (solid) quadratic cone in V is a subset

V] {xe V:f(x,x)_O}
wherefis an indefinite hermitian form on V. We say that this cone has type (n_, no, n+)
if sign (f) (n_, no, n/).

We raise two problems about linear operators preserving quadratic cones.
PROBLEM 1. Characterize linear operators A e which leave invariant a fixed

quadratic cone K in V.
PROBLEM 2. Characterize linear operators A e which leave invariant some qua-

dratic cone K in V of fixed type (n_, no, n/).
In the case D R the first problem was attacked by Loewy and Schneider [7] for

the cones of type (n 1, 0, 1). Some of their results are generalized in the following:
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THEOREM 7. Letfbe an indefinite hermitian form on V, A e 1, and let g be the
hermitian form on V defined by g(x, y) f(Ax, Ay). Then for the statements

(i) A. V V],
(ii) t >= O, g- tf>-_ O,
(iii) A. V V,
(iv) it>0, g=tf

we have (i) , (ii) and (iii) (iv). IfA is invertible then (iv) (iii).
Proof (i) (ii) From (i) we have f(x, x) >- 0 g(x, x) >= O. Hence (ii) follows

from [2, Thin. 5].
(ii) (i) If x e V then (ii) implies that f(Ax, Ax) g(x, x) >= tf(x, x) >= O, i.e.,

Axe V.
(iii) (iv) It follows from (iii) that A is invertible and that it maps the boundary A

of Vf onto itself. Thus f(x, x) 0 g(x, x) 0. By applying a result of Krein and
gmul’jan [6] (see also [2, Thin. 3]) we conclude that g tf for some t e R. Since f is
indefinite, (iii) implies that > 0.

The proof of the last assertion of the theorem is straightforward.
Remark 2. If H is the matrix off(with respect to the standard basis of V D’)

then (ii) and (iv) can be written as: 3t >= O, A’HA tH >= O, and 3t > 0, A’HA tH,
respectively, where A* denotes the conjugate transpose ofA.

Our next theorem deals with Problem 2. By K we denote the interior of the
cone K.

THEOREM 8. Let n >-_ 2 and A e . Then we have thefollowing"
(i) Assume that p(A) e a(A) and that A is semisimple at every with ]] p(A).

Then A leaves invariant a quadratic cone K oftype (n 1, O, 1).
(ii) Assume that p(A) is a simple eigenvalue ofA and that Il < p(A) for all other

e (r(A). Then there exists a quadratic cone K of type (n- 1, 0, 1) such that
xeK-{0} AxeK.

Proof We shall prove (i) and (ii) simultaneously. Let a V, a 4: 0, satisfy
Aa a o(A). The hypotheses imply that there exists an A-invariant hyperplane Wsuch
that a , W. If B is the restriction of A to W then o(B) <= o(A) with strict inequality in
ease (ii).

If o(A) 0, which is possible only in case (i), then A 0 and (i) trivially holds. Thus
we may assume that o(A) > 0. Multiplying A by a suitable positive scalar we may assume
that

(4.1) p(B) _-< _-< p(A)

with strict second inequality in case (ii).
By Theorem 5 there exists an inner product g on W such that p(B) <= vg(B) <= 1.

Hence for x e Wwe have

(4.2) IXlg<-_ IBxlg <- 1.

For x, x’ e V we can write x y + at, x’ y’ + at’ where y, y’ e W and t, t’ e D.
We define a hermitian formfon Vby

(4.3) f(x,x’) f(y + at, y’ + at’) tt’- g(y, y’).

It is clear that sign (f) (n 1, 0, 1) and so K V is a quadratic cone of type
(n-1, 0, 1).

Let x y + at e K- {0}, y e W, e D. It follows from (4.3) that Itl >-- lYlg and so
t 4: 0. Using (4.1) and (4.2) we obtain that
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(4.4) Itlao(A)Z Itlz ly12 inyl2.
Since Ax A(y + at) By + ap(A)t, it follows from (4.4) and (4.3) thatf(Ax, Ax) >= 0,
i.e., Ax K. Thus A leaves K invariant. In the case (ii) the first inequality in (4.4) is strict
and consequently Ax K. This completes the proof.

Remark 3. Let D R and let K be a quadratic cone of type (n 1, 0, 1). Then K
has two connected components. IfK is one ofthese components then its closure K will
be called an ice-cream cone. Furthermore K is a proper cone, i.e., it is a closed convex
cone with nonempty interior satisfying K f3 (-K) {0}. It is easy to see that both
assertions of Theorem 8 remain valid for ice-cream cones.

THEOREM 9. When D R then for A 1 thefollowing are equivalent:
(i) p(A) is a simple eigenvalue ofA, greater than the magnitude ofany other

eigenvalue;
(ii) proper cone K such that x K- {0} Ax K;
(iii) ice-cream cone K such that x K- {0} Ax K.
Proof (i) ,, (ii) is a result of Vandergraft 11, Thm. 4.4].
(i) (iii) follows from Theorem 8 (ii) and Remark 3.
(iii) (ii) is trivial.

Acknowledgments. I would like to thank S. Campbell, H. Schneider, and a referee
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DISCRETE TIME-BAND LIMITING OPERATORS AND
COMMUTING TRIDIAGONAL MATRICES*

RONALD KEITH PERLINEf

Abstract. Time-band limiting operators, corresponding to classical discrete orthogonal families, admit
commuting second order difference operators. A new proof is presented.

Key words, time-band limiting operators, commuting tridiagonal matrices
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1. Introduction. Let pi(x) {i, x 0, 1, 2, N} be a collection of linearly inde-
pendent discrete functions orthogonal with respect to some weight w(x). Following [G2],
[P1] and [P2], we consider the analogue of "time limiting" and "band limiting" for
ordinary Fourier analysis on the line. Let f(x) be any discrete function; denote by Mr
the operator which multiplies fby the characteristic function of the set {0, 1, K}.
We call M: a "time limiting" operator. Similarly, denote by PL the operator which
projects f onto the span of the functions {P0, Pl, pL}. P is a "band limiting"
operator. The self-adjoint composition M:PzMr we call a "time-band limiting" operator.

These operators are analogues of the finite convolution operator T:L2 -. L given
by

Tf(x) 1- sin B(x- y)
f(y) dy,

a-A x--y

which was subject to intensive study in the celebrated series ofpapers by Slepian, Landau
and Pollak [S1 ], [$2], [$3], [$4], [$5]. The analysis of this operator was facilitated by a
fortunate "accident": the existence ofa commuting, self-adjoint, second order differential
operator.

In the case of our (matrix) operator MrPMr, we could similarly hope for the
existence of a commuting tridiagonal matrix. Perlstadt, motivated by the work ofGrun-
baum in [G1] and [G2], has shown that such a commuting tridiagonal matrix does
indeed exist ifthe polynomial family { pi(x) } is ofclassical type: Poisson-Charlier, Meix-
ner, Krawtchouk and Hahn (see [P1 ]). This result was generalized in [P2] to include the
q-Racah polynomials of Askey and Wilson [A1], which include the classical families as
special cases.

The proofs in [P1 and [P2] are strongly patterned after the proof given in [G2]. In
particular, the properties that the q-Racah polynomials enjoy that appear in the proof
are

(i) The pi’s are eigenfunctions of a second order difference operator;
(ii) Existence ofa Christoffel-Darboux formula (equivalent to a three-term recursion

relation);
(iii) Existence of a first order difference formula for Pi in terms ofPi and Pi- 1o

The proof in [P2] is combinatorial and rather involved. This is due to the fact that
the q-Racah polynomials appear in the calculations explicitly; and formulas involving
the q-Racah polynomials tend toward the baroque, to say the least. It came as a pleasant
surprise, therefore, when we discovered a simple, direct, constructive proofofthe existence
of a commuting tridiagonal matrix for the time-band limiting operator whenever the
orthogonal family { pi(x)} satisfies properties (i) and (ii). At first glance, this result might

Received by the editors March 3, 1986; accepted for publication June 4, 1986.
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seem more general than that of [P2]; but according to [L ], any orthogonal family with
these properties is in fact of q-Racah type.

2. The lroof. First we establish some notation, and state our hypotheses in a manner
that facilitates the proof of our theorem. As stated in the introduction, let { pi(x) } be our
family of linearly independent discrete functions, orthogonal with respect to the weight
w(x). We assume that

(i) D(pi)(x) X(i)pi(x); the functions {Pi} are eigenfunctions for some second
order difference operator D, self-adjoint with respect to the weight w;

(ii) There exists a discrete function O(x) that satisfies a three-recursion relation
with respect to the functions { pi(x)}:

O(X)Pi(X) aiPi + l(x)d- biPi(x) d- ciPi- l(X).

Because we assume that the index has the finite range 0 _-< _-< N, we impose the
conditions that as 0, Co 0.

For example, the Hahn polynomials hi(x) (see [A2]) are defined by

hi(X)=EF(-i,-x,i+a+i3+ 1;-N,a+ 1;1), a,/3> 1, x,i=0,1, ..-,N,

where 2Fl is the generalized hypergeometric function. If we use C(n, k) to denote the
standard binomial coefficient, the weight associated with the family {h } is

C(a + x, x)C(13 +N- x,N- x)
w(x)

C(N+ a + + 1,N)

The Hahn polynomials satisfy
(i) Second order difference equation

(1/w(x))A+[-w(x- 1)(a + x)(N+ x)A_hg(x)] (i)(i + a + + 1)h(x),

where
A+f(x) f(x + 1) f(x), A_f(x) f(x) f(x 1);

(ii) Three term recursion relation: if p h/llhl], then the normalized p satisfy
xpi(x) aiPi + (x) + bipi(x) + cipi- (x); where ai- ci, and

(i+ 1)(i+ +i3)(i+a++N+Z)(i+a+i3+ 1)(i+a+ 1)(N-i)) ’/2.
ai

(2i + a + 3 + 2)(2i + a +/3 + 3)(2i + a +/3 + 1)(2i + a +/3 + 2)

this is just a reformulation of the Christoffel-Darboux formula.
Returning to our main discussion: by replacing pi(x) by pi(x)f-(x) and D by

fw D 1/f (note that this is operator conjugation), we may assume without loss of gen-
erality that w(x) -= 1. It is also convenient to assume that the functions {p } are normalized,
so that they are orthonormal. With these assumptions, we note that ci ag_ .

Introduce a second basis

1, x=i,
d/(x)

0 otherwise.

Note that, for any function f we have

f= , (f di)di ,f i)di.

Conditions (i) and (ii) can be reformulated as follows:
(i) The linear transformation D is symmetric tridiagonal with respect to the

d-basis Bd {do, all, d2, tiN}; it is diagonal with respect to the p-basis
Bp {Po, Pl, ,10N}.
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(ii) The linear transformation O:f(x) -- O(x)f(x) is diagonal with respect to.Ba;
it is symmetric tridiagonal with respect to Bp.

As in the introduction, let M/ denote projection onto the span of {do, dl, dK }
and let PL denote projection onto {p0, Pl, Pz}.

THEOREM. There exists a symmetric tridiagonal matrix commuting with MKPzM:.
Proof Consider the operator

(OD + DO) (O(K+ 1) + O(K))D ()(L + 1) + )(L))O T(K, L) T

(I) (II) (III).

The matrix representation of T with respect to Bp is symmetric tridiagonal. In fact, its
matrix representation looks like

(o) (L) (L+ 1)

,
,

0
0

,

To see this, note that terms (I), (II), and (III) are all symmetric tridiagonal with respect
to Bp, so T is also. In fact, (II) is diagonal with respect to Bp. Now consider the difference
(I)-(III). It is easy to see that the (L, L + 1) entry of(OD + DO) is just ()(L + 1) + X(L))
times the (L, L + 1) entry of O; but this shows that the (L, L + 1) entry of (I)-(III) is
zero, resulting in the matrix given above.

Similarly, the representation of T with respect to Ba looks like

(o) (K) (K+I)
,
,
,

,
,

,
,
,

,
T commutes with Pz; this follows immediately from the matrix representation of

T with respect to Bp given above, and the fact that the representation of Pz with respect
to Bp is just

(0) (L) (L+ 1)

1.

0
0
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Similarly, T commutes with Mr, which can be seen by considering their represen-
tations with respect to Bd. Thus Tcommutes with MrPLMr. The same type ofargument
shows that T is symmetric tridiagonal with respect to Bd and commutes with
PLMKPz. 1-3

3. Remarks. One might ask how the commuting tridiagonal matrices generated
here compare with those found in [P1 and [P2]. We report that a case-by-case check of
the known circumstances under which commuting tridiagonal matrices (or the continuous
analogues in [G2]) exist shows that our method produces the same commuting operator
(F. A. Grunbaum and M. Reach, private communication).

Finally, since the motivation for finding the commuting tridiagonal matrix is to
facilitate the spectral analysis ofthe operator MrPzjl/lr, it is desirable to have conditions
which insure that the matrix T has simple spectrum. We state some simple sufficient
conditions:

(i) The off-diagonal elements in the three-term recursion relation for O are nonzero;
(ii) The eigenvalues of the difference operator D satisfy

X(L + 1) + X(L) X(K+ 1) + (K) -- L K.

These conditions are satisfied for the classical orthogonal polynomials. We leave
the proof that these conditions imply simple spectrum as an exercise for the interested
reader.

REFERENCES

[A1 R. ASKEY AND J. WILSON, A set oforthogonal polynomials that generalize the Racah coefficients or 6-j
symbols, SIAM J. Math. Anal., 10 (1979), pp. 1008-1016.

[A2] R. ASKEY, Orthogonal Polynomials and Special Functions, CBMS Regional Conference Series in Applied
Mathematics, 21, Society for Industrial and Applied Mathematics, Philadelphia, 1975.

[G F. A. GRUNBAUM, L. LONGHI AND M. PERLSTADT, Differential operators commuting withfinite convolution
operators: some nonabelian examples, SIAM J. Appl. Math., 42 (1982), pp. 941-952.

[G2] F. A. GRUNBAUM, A new property ofreproducing kernels for classical orthogonal polynomials, J. Math.
Anal. Appl., 95 (1983), pp. 491-500.

[L1] D. LEONARD, Orthogonalpolynomials, duality, and association schemes, SIAM J. Math. Anal., 13 (1982),
pp. 656-663.

[P1 M. PERLSTADT, Chopped orthogonalpolynomial expansionsmsome discrete cases, this Journal, 4 (1983),
pp. 94-100.

[P2] ,A property of orthogonal polynomial familes with polynomial duals, SIAM J. Math. Anal., 15
(1984), pp. 1043-1054.

[S1] D. SLEPIAN AND H. O. POLLAK, Prolate spheroidal wavefunctions, Fourier analysis and uncertainty: I,
Bell System Tech. J., 40 (1961), pp. 43-64.

[S2] H.J. LANDAU AND H. O. POLLAK, Prolate spheroidal wavefunctions, Fourier analysis and uncertainty:
II, Bell System Tech. J., 40 (1961), pp. 65-84.

[$3] ., Prolate spheroidal wavefunctions, Fourier analysis and uncertainty: III, Bell System Tech. J., 41
(1962), pp. 1295-1336.

[$4] D. SLEPIAN, Prolate spheroidal wavefunctions, Fourier analysis and uncertainty: IV, Bell System Tech.
J., 43 (1964), pp. 3009-3058.

[$5] Prolate spheroidal wavefunctions, Fourier analysis and uncertainty: V, Bell System Tech. J., 57
(1978), pp. 1371-1430.



SIAM J. ALG. DISC. METH.
Vol. 8, No. 2, April 1987

(C) 1987 Society for Industrial and Applied Mathematics
006

AN EXTENSION OF PLACKETT’S DIFFERENTIAL EQUATION FOR
THE MULTIVARIATE NORMAL DENSITY*

SIMEON M. BERMAN

Abstract. Let f(x, y; B), with x, y in R", and B a nonsingular real rn rn matrix, be a function of the
form

f= (2r)-m/21det B1-1/2 exp (-1/2 x’B-ly).

It is shown thatfsatisfies a partial differential equation which represents a generalization of Plackett’s equation
in the case where B is positive definite, that is, where fis a normal density in m dimensions.

Key words, nonsingular matrix, positive definite matrix, multivariate normal density, partial differential
equation, Gaussian process

AMS(MOS) subject classifications. 62H05, 60E99, 15A24, 60G15

1. Introduction and summary. Let f(xl, "’, Xm; (bo)) be the m-variable normal
density function with mean vector 0 and positive definite covariance matrix (bo). Ex-
tending a known result in the case m 2, Plackett [5] discovered the general relation

(1.1) Of= 02f i4:j.
060 Ox,ax’

His proof is based on the inversion formula for the characteristic function
m

E bjkzjz dzj.(.2) f(x, ,Xm;(b{)) (2)- exp xjzj--4j,
The result 1. l) follows by taking the appropriate derivatives under the integral in (1.2).
While the differentiation with respect to x is justified by basic properties of the integral,
I found that the argument for differentiation with respect to bo required much more.
Indeed, for h > 0, consider the difference quotient of increment h leading to Of/Obo.
It is obtained from the integral in (1.2) by multiplying the integrand by the factor
h-(1 exp (-1/2hzizj)). There is no obvious dominating function for this factor in the
region where zzj < 0, and so the dominated convergence theorem cannot be applied
without more delicate estimates of the remaining part of the integrand. These require
some of the deeper properties of positive definite forms.

A complete proof of (1. l) has apparently never been published. In view of its im-
portance in the theory of extremes of stationary Gaussian processes (see Berman ],
Galambos [2], Leadbetter, Lindgren and Rootzen [4]), such a proof should be available
in the literature. The inequality which has become known as "Slepian’s inequality" [6]
is also based on (1.1).

It is the purpose of this note to present a simple algebraic proof of a more general
version of (1.1). In the place of the multivariate normal densityf we consider the more
general function ., aox(1.3) f(xl, ,x, Yl, ,.Y; (b0)) (2’)-mnldet BI-in exp ._.
where B (bo) is nonsingular with inverse A (ao). B is not necessarily positive definite
or even symmetric. Our result is thatfsatisfies the system of equations
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1.4) Obhk- -I h,k= 1, ,m.
OXkOYh f OXk Oyh’

(The derivative is assumed to be defined in the domain of the variables b0 where the
matrix is nonsingular.) In the particular case where Xk Yk for all k, and B is symmetric
(not necessarily positive definite), (1.4) is replaced by the original relation (1.1).

In a recent paper Joag-Dev, Perlman and Pitt [3], assuming the validity of (1.1),
obtained some extensions of it. It can be shown that (1.1) itself can actually be derived
from their formulas (6) and (7). Indeed, we will show that the more general relation (1.4)
can be obtained by a simple extension of the elementary algebraic methods which they
used. As a consequence, this finally furnishes an explicit proof of (1.1).

2. Proof of (1.4). We employ the more general versions of the relations in [3],
formula (6), for nonsingular but not necessarily symmetric matrices. From the relation

we obtain

and, from the latter,

(2.1)

Next we show that

0
(det B)= (det B)akh,
Obhk

0
Idet BI Idet Blakh,

Obhk

Obhk Idet B1-1/2=
1

Idet Bl-l/2akh.
2

a , aoxiy; , aihxi" ., ak;y;.(2.2)
Obhk i,j j

For the proof of this elementary result in the general nonsymmetric case, write
B (bo(t)), where bo(t is a differentiable function of t, and OB/Ot (Obo(t)). Differentiate
both members of the equation BA I with respect to t, and then multiply the resulting
equation by A to obtain OA/Ot -A(OB/Ot)A. In the particular case where the variable t
is bhk, OB/Obhk is the matrix with entry in position (h, k) and 0 elsewhere, and so
Oaq/Obhk --aihakj, and (2.2) follows. Finally we have

0
(2.3)

aXk ’ aoxiY; , akyj, Oyh
"aoxiY; , aihXi.

i,j j i,j

The result (1.4) now follows from the form offin (1.3) through elementary calculations
using (2.1), (2.2) and (2.3).
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EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS*

LENWOOD S. HEATH

Abstract. We investigate the problem of embedding graphs in books. A book is some number of half-
planes (the pages of the book), which share a common line as boundary (the spine of the book). A book
embedding of a graph embeds the vertices on the spine in some order and embeds each edge in some page so
that in each page no two edges intersect. The pagenumber of a graph is the number of pages in a minimum-
page embedding ofthe graph. The pagewidth ofa book embedding is the maximum cutwidth ofthe embedding
in any page. A practical application of book embeddings is in the realization of a fault-tolerant array of VLSI
processors.

Our result is an O(n log n) time algorithm for embedding an n-vertex outerplanar graph with small pagewidth.
The algorithm embeds any d-valent outerplanar graph in a two-page book with O(d log n) pagewidth. This
result is optimal in pagewidth to within a constant factor for the class ofouterplanar graphs. As there are trivalent
outerplanar graphs that require fl(n) pagewidth in any one-page embedding, the pagenumber ofour embedding
is exactly optimal for the stated pagewidth. The significance for VLSI design is that any outerplanar graph can
be implemented in small area in a fault-tolerant fashion.

Key words, outerplanar graphs, book embedding, algorithm, hamiltonian cycles

AMS(MOS) subject classifications. 05C45, 68Q35, 94C15

1. The problem. We study embeddings ofgraphs in structures called books. A book
consists of a spine and some number ofpages. The spine of a book is a line. For simple
exposition, view the spine as being horizontal. Each page ofthe book is a half-plane that
has the spine as its boundary. Thus any half-plane is a one-page book, and a plane with
a distinguished horizontal line is a two-page book.

The embedding of an undirected graph in a book consists of two steps. The first
step places the vertices of the graph on the spine in some order. The second step assigns
each edge of the graph to one page of the book in such a way that on each page, the
edges assigned to that page do not cross. Whether two edges cross is determined by the
order of the vertices. If (s, t) and (u, v) are edges of the graph with s < u < v and s < t,
then the edges cross if and only if s < u < < v. The resulting embedding is called a
book embedding of the graph.

There are two measures of the quality of a book embedding for G.
The first measure is the pagenutnber of the embedding, which is the number of
pages in the book.

The pagenumber of the graph G is the minimum pagenumber of any book embedding
of G. The pagenumber of a class of graphs is the minimum number of pages that every
member of the class can be embedded in, as a function of graph size. The width of a
page is the maximum number of edges that intersect any half-line perpendicular to the
spine in the page.

The second measure is the pagewidth of the embedding, which is the maximum
width of any page.

The pagewidth of the graph G is the minimum pagewidth of any book embedding of G
in a book having a minimum number of pages. The pagewidth of a class of graphs is the
minimum pagewidth that every member of the class can be embedded in, as a function
ofgraph size. The book embeddingproblem is to find good book embeddings for a graph
family with respect to one or both of these measures.
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A

FIG. 1. Grid graph G.

As an example, consider the grid graph G of Fig. 1. A two-page embedding of G is
shown in Fig. 2. The vertices of G are placed on the spine in the order A-B-C-F-E-D-G-
H-I. The first page consists of the upper half-plane, and the second page consists of the
lower half-plane. Edge (B, E) of the first page crosses edge (F, I) of the second page, so
these two edges cannot be assigned to the same page of this book. The pagenumber of
the book embedding is two, and the pagewidth is three as witnessed by the nested edges
(A, D), (B, E), and (C, F) (both measures are optimal for G).

The book embedding problem is of interest because it models problems in several
areas of computer science and VLSI theory. We mention here only problems arising
from the DIOGENES approach of Rosenberg [9]. For further motivations, see Heath [5]
or Chung, Leighton and Rosenberg [2].

Rosenberg [9] proposes the DIOGENES approach to the design of fault-tolerant
arrays of VLSI processors. The elements ofthe approach are sketched here. One lays out
some number of identical processors in a (conceptual) line. One provides sufficiently
many processors so that one expects (probabilistically) that enough good processors exist
to implement the desired array.

Bundles ofwires with embedded switches run parallel to the line ofprocessors. Each
bundle is capable of implementing a hardware stack of connections among processors.
Each connection occurs on exactly one hardware stack (bundle). For any processor, a
connection to a processor on its right is pushed on a stack; each connection to a processor
on its left is popped from a stack. In this way, each connection to a good processor
requires one stack operation at that processor. No stack operations occur at a bad pro-
cessor. Since the state of a processor as good or bad is a binary value, a single control
signal can cause the shift (push or pop) of many connections. Thus, fault tolerance is
achieved by switching in only good processors.

FIG. 2. Two-page embedding ofG.
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The desired array ofprocessors is modeled as a connection graph; the vertices represent
the processors, and the edges represent the desired connections between processors. The
DIOGENES design problem is to determine the number of stacks and the stackwidths
(the number of connections carried by each stack) required to implement the array of
processors. In a way analogous to a hardware stack, it is possible to view one page of a
book embedding as a stack of edges. For any vertex, each incident edge that connects it
to a vertex to its right is pushed on a stack; each incident edge that connects it to a vertex
to its left is popped from a stack. The DIOGENES design problem for an array of pro-
cessors is exactly the book embedding problem for the corresponding connection graph.
The number of stacks is exactly the number of pages. The stackwidths are the widths of
the pages.

In this paper, we consider the problem ofsimultaneously attaining small pagenumber
and small pagewidth. We consider the class of outerplanar graphs (an outerplanar graph
is one that has a planar embedding with all vertices on the exterior face). There exist
outerplanar graphs of size n that have pagewidth f(n) in any one-page embedding but
have pagewidth O(1 in an optimal two-page embedding. These graphs exhibit a tradeoff
between pagenumber and pagewidth. We present an algorithm that produces a two-page
embedding of small pagewidth for any outerplanar graph. The pagewidth that is attainable
depends partly on the valence (maximum degree) of the outerplanar graph. Let G be a
d-valent outerplanar graph with n vertices. Our algorithm embeds G in a two-page book
having pagewidth less than Cd log n where C 8/(log 3/2) (all logarithms are to the base
two). This result is within a constant factor of optimal in pagewidth for the class of
outerplanar graphs. The algorithm executes in time O(n log n).

The remainder ofthe paper consists of seven sections. In the next section, we survey
previous results on book embeddings relevant to our algorithm. In 3, we discuss tradeoffs
between pagenumber and pagewidth and give an example of such a tradeoff. Section 4
presents the essential ideas ofthe algorithm, while 5 gives the detailed statement. Section
6 proves the correctness of the algorithm, and 7 establishes its performance. In the last
section, we conclude with a discussion of the significance of our result and suggest an
area for further research.

2. Previous results. The original statement ofbook embedding is a linear embedding
performed in two parts. First, the vertices of a graph are placed on a line in some order.
Second, each edge of the graph is embedded in one page so that no edges in the same
page cross.

The resulting linear embedding can be transformed into a circular embedding in
three steps. First, choose a distinct color for each page of the book, and assign each edge
the color of its page. Second, "close" the book by projecting all pages (and their edges)
into a single page. In this one-page book, if two edges cross, then the two edges have
different colors. Third, curve the spine into a circle so that the "ends" at infinity are
identified.

The result of the transformation is an alternate two-pan formulation of the book
embedding problem. First, order the vertices of the graph on a circle. Second, draw the
edges of the graph as chords of the circle. Color the chords (edges) so that if two chords
intersect in the interior of the circle, the chords have different colors. The number of
colors in the circular embedding is exactly the number of pages in the corresponding
linear embedding.

A useful consequence of the circular formulation is that any p-page graph is a
subgraph ofap-page hamiltonian graph. (A graph is hamiltonian ifit has a cycle containing
all its vertices; such a cycle is called a hamiltonian cycle.) Moreover, the order of the
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vertices in the circular embedding is exactly the order of the vertices in the hamiltonian
cycle. To see this, let v, v2, vn be the vertices ofthe p-page graph in the cyclic order
of the circular embedding. Add each of the edges (chords) (Vk, Vk-), <-- k <- n (where
k is taken modulo n) that are not already present. Since these edges connect vertices
adjacent on the circle, they cannot intersect any other edges. Therefore, each ofthe edges
can legitimately be assigned to any page. The resulting edge-augmented graph is a p-page
graph, with hamiltonian cycle v, Vn.

The idea of adding edges to a graph to obtain a hamiltonian cycle is a strategy for
obtaining the vertex order of a book embedding. We will call a cycle obtained in this
fashion superhamiltonian. The following heuristic for book embedding a graph G is
proposed in [2]:

(1) Obtain a superhamiltonian cycle for G and place the vertices of G on the
circle in the order of the cycle;

(2) Color the edges of G by coloring the associated circle graph.
Finding an optimal solution to the second step in the heuristic is an NP-complete problem
(Garey et al. [3]). The first step can be done in a number of ways; in fact, any ordering
of the vertices can be obtained for a superhamiltonian cycle by adding the right edges.
Thus, the problem offinding good book embeddings can be approached as that offinding
a superhamiltonian cycle in an intelligent fashion so that a good (but not necessarily
optimal) edge coloring can be produced.

2.1. One-page graphs. Any one-page graph can be embedded in the plane so that
its vertices are on the spine and its edges are in the first page (the upper half-plane). Then
all its vertices are exposed to the lower half-plane, which is a subset of the exterior face
of the embedding. Thus the graph is outerplanar.

One characterization of an outerplanar graph is that its vertices can be embedded
on a circle so that all its edges are inside the circle and no two edges intersect. This is
just the condition that the graph be one-page embeddable under the circular formulation.
We have the following:

PROPOSITION (Bernhart and Kainen [1 ]). G is one-page embeddable ifand only
if it is outerplanar.

In fact, a k-page embedding of a graph G yields a decomposition of G into k out-
erplanar subgraphs, one for each page. The subgraphs share the vertices of G but are
edge-disjoint. The outerplanarity of each subgraph is witnessed by the same circular
ordering as that of the original book embedding.

2.2. Two-lage gralhs. Each two-page graph is a subgraph ofa two-page hamiltonian
graph. Every two-page graph is planar since the two half-planes (pages) together form a
plane. Thus a two-page graph is a subgraph of a planar Hamiltonian graph.

Define a graph to be subhamiltonian if it is the subgraph of a planar hamiltonian
graph. Given a subhamiltonian graph G, it is easy to show that G has a two-page embedding
([ ]). Edge-augment G to obtain a superhamiltonian cycle in a planar graph. Order the
vertices ofG on a circle according to the superhamiltonian cycle. The edges ofG interior
to the cycle form an outerplanar graph. The edges exterior to the cycle form another
outerplanar graph with its vertices in the same order as those of the interior one. A two-
page embedding of G results. Thus we have the following:

PROPOSITION 2 [1]. G is two-page embeddable ifand only if it is, subhamiltonian.
Propositions and 2 are the results we use in our algorithm to obtain two-page

embeddings of outerplanar graphs with small pagewidth. From Proposition l, an out-
erplanar graph G has a one-page embedding with all edges embedded in the upper half-
plane (page). Our algorithm adds edges to G in the lower half-plane so that a planar,
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FG. 3. The 7-ladder LT.

hamiltonian supergraph results. By Proposition 2, the superhamiltonian cycle yields a
two-page embedding of G with the vertices of G in cycle order.

3. Tradeotfs. We investigate the problem of tradeoffs between pagenumber and
pagewidth in book embeddings. Motivation is best provided by an example from Chung,
Leighton and Rosenberg [2]. The example is a sequence of outerplanar graphs {Lm} for
which any one-page embedding requires large pagewidth m/2q, but for which there exist
two-page embeddings with pagewidth 2. The sequence consists of m-ladders (in [2], an
m-ladder is called a depth-m K2-cylinder). The m-ladder Zm has vertex set

{U,, ,Um) U(1)l, ,/)m)
and edge set

{(Uk, Uk+ )ll <=k<m} U {(Vk, Vk+ )ll <=k<m} U ((Uk, vk)ll <=k<=m}.
The first two components of the edge set constitute the two sides of the ladder while the
last component constitutes its rungs. Figure 3 illustrates L7. The sides are solid and the
rungs are dashed.

The m-ladder is clearly outerplanar and biconnected. By biconnectivity, Lm has a
unique outerplanar embedding (Syslo 10]). Therefore, Lm has a unique one-page embed-
ding up to reflection and circular permutation. Figure 4 illustrates a one-page embedding
of L7 of minimal pagewidth over all one-page embeddings. The rungs {(u4, v4), (us, vs),
(u6, v6), (UT, VT)} nest over the interval (UT, v7). Hence the pagewidth is >_-4. A moment’s
reflection generalizes this observation: In any one-page embedding for Lm, at least
[m/2] rungs nest over some interval; hence pagewidth is >=[m/2q.

Figure 5 illustrates a two-page embedding for L7 that has pagewidth 2. The corre-
sponding superhamiltonian cycle is illustrated in Fig. 6. This superhamiltonian cycle is
easily generalized, giving a two-page embedding of any Lm with pagewidth 2.

We now discuss tradeoffs in the general setting of an arbitrary graph G. Let P be
the pagenumber of G. For each p >= P, there exist one or more embeddings of G in a p-

1 1

V3 Y2 YI Ul U2 U3 U4 U5 U6 U7 Y7 Y6 Y5 Y4
FIG. 4. One-page embeddingfor LT.
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VI V2

FIG. 5. Two-page embeddingfor LT.

page book. Among all those p-page embeddings of G, let wp denote the pagewidth of one
having minimum pagewidth. These pagewidths are nonincreasing:

Wp >-- Wp+ >= >= wp,P>-P.
In the extreme case that p >= IEI, wp 1, as each edge may be assigned to a distinct page.

We are particularly interested in the product pwp. We seek cases where pwp is within
a constant factor of the cutwidth of G. Note that pw is an upper bound on the cutwidth
of the best p-page embedding of G. In the context of the DIOGENES approach, pw is
an upper bound on the height of a p-stack DIOGENES layout of G. Hence, we seek
DIOGENES layouts of G that are within a constant factor of optimal in area over all
linear layouts and within a small additive constant of optimal in stacknumber.

Our result is for the class ofone-page (i.e., outerplanar) graphs. The m-ladder exhibits
an extreme pagewidth tradeoffbetween one-page and two-page embeddings. For general
outerplanar graphs, we do not expect such an extreme tradeoff. Since there exist outer-
planar graphs that have one-page embeddings ofminimal pagewidth, e.g., complete binary
trees, the tradeoff in going from one page to two pages can be arbitrarily small,
even zero.

An n-vertex complete (d 1)-ary tree has cutwidth >-(d/2) log n (Lengauer [6]). (All
logarithms are to the base 2.) Hence, any book embedding ofa complete (d 1)-ary tree
in a constant number of pages requires pagewidth fl(d log n). In general, we cannot
assume that outerplanar graphs have pagewidth o(log n).

4. Overview of the algorithm.The tradeoff result we show is that any d-valent out-
erplanar graph G can be embedded in a two-page book with pagewidth Cd log n, where
C 8/(log 3/2). From the observations in the preceding section regarding m-ladders and
complete (d- 1)-ary trees, this result is optimal in pagenumber and within a constant
factor of optimal in pagewidth for the class of d-valent outerplanar graphs. We prove
our result via a recursive algorithm.

V V2 V3

1 1

.1 T U2 U3

V4 Vi V6 V7

! !
U4 U5 U6 U7

FG. 6. Superhamiltonian cyclefor L7.
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We aim for an algorithm that, when given an n-vertex d-valent outerplanar graph,
returns a two-page embedding with pagewidth logarithmic in n. The input and output
requirements of such an algorithm are a useful place to start.

The input to the algorithm is a d-valent outerplanar graph G (V, E). The manner
of representing this input should witness the outerplanarity of G. Hence, a one-page
embedding of G is the required form for the input. The linearization of V orders the
vertices and provides names 1, 2, , n for the vertices. The order ofthe vertices in the
two-page embedding will not be the original order, but we shall continue to use the
names. Since the algorithm is recursive, the same vertex will have different names
at different levels of recursion. Figure 7 illustrates a possible form of the input
when G LT.

The output of the algorithm is a two-page embedding of G with logarithmic page-
width. To give a two-page embedding for G, it is sufficient to give a superhamiltonian
cycle H in a supergraph G’ of G (Proposition 2). G’ (V, E) is actually a multigraph
(i.e., it may contain loops and multiple copies of edges) that contains all the edges of G
plus possibly edges added to obtain H. H c E is a set of n edges; since H is superham-
iltonian, each of 1, ..., n appears exactly twice among these edges. H represents 2n
different book embeddings for G: there are n choices for the leftmost vertex, and there
are two directions to the cycle. The algorithm fixes the desired book embedding by re-
turning the leftmost (x) and rightmost (y) vertices of the two-page embedding. We call
x and y the vertices ofattachment for G’, for reasons that will become clear. The output
of the algorithm is then the ordered triple (G’, H, (x, y)).

We imagine the one-page embedding ofG as follows. The vertices are on a horizontal
line in a plane, and the edges are drawn in the upper half-plane. In general, there are
many sets of edges that can be added to G without destroying planarity. We restrict
ourselves to two types of edges, upper edges and lower edges, depending on which half-
plane the edges are embedded in. (Thus our restriction is that no edge uses both half-
planes in its embedding.) The original edges of G are always upper edges. The algorithm
may add an upper edge if it will not cross an existing upper edge. The algorithm may
add a lower edge if it will not cross an existing lower edge. In particular, we may (and
shall) assume that the upper edges (i, + 1), =< < n are always present in G; they can
always be added with no affect on pagenumber and at most unit increase in pagewidth.

The algorithm uses the divide-and-conquer paradigm. It determines subgraphs of
G to work on separately before the results are joined together to obtain G’. Each subgraph
is induced by a subinterval of[l, n]. We define the closed subinterval [i, j] to be the set
of integers { i, + 1, ..., j }. We define two types of half-closed, half-open subintervals:
[i,j) denotes [i,j 1] and (i,j] denotes [i + 1,j]. For any subinterval a, size (a} denotes
the number of vertices in the subinterval; hence, size {[i, j]} j + 1. Define G[i, j]

2 3 4 5 6 7 8 9 I0 II

IG. 7. Input representation for L7.

12 13 14
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G

2 3 4 5 6 7 8 9 10

FIG. 8. Sample Gfor divide-and-conquer.

to be the subgraph of G induced on the vertices in the interval [i, j]. If the algorithm is
applied to G[i, j] the result is (G’[i, j], H, (x, y)), where (x, y) determines the first
and last vertices of a two-page embedding of G[i, j] with pagewidth logarithmic in
size { [i, j] }.

The choice of subintervals depends on the structure of the one-page embedding of
G. Define an exposed vertex w of G to be one for which G contains no (upper) edge
(u, v) satisfying u < w < v. Thus an exposed vertex w is one that is "visible" from the
infinite region of the upper half-plane. Each exposed vertex of G except and n is a
cutpoint of G whose removal separates G into left and right subgraphs.

An example will illustrate the divide-and-conquer paradigm. Figure 8 shows a sample
G in a one-page embedding. The exposed vertices of G are 1, 3, 7 and 10. The algorithm
recognizes that each of the edges (1, 3), (3, 7) and (7, 10) is "highest" in the sense that
no other edge passes over it. These three edges determine three nondisjoint subintervals
[1, 3], [3, 7] and [7, 10]. In order to decompose the interval into disjoint subintervals,
the algorithm chooses the largest, [3, 7], to remain intact, and removes one vertex from
each of the other two subintervals. The resulting subintervals are [1, 2], [3, 7] and
[8, 10]. The algorithm recursively applies itself to each of the subintervals. The result to
this.point is shown in Fig. 9. Each subproblem displays a superhamiltonian cycle of its
subgraph and the first and last vertices ofthe corresponding two-page embedding. In Fig.
10, these three superhamiltonian cycles are replaced by a superhamiltonian cycle for the
entire graph. Lower edges (1, 2), (4, 6) and (8, 10) are deleted and lower edges (2, 4),
(6, 8) and (1, 10) are added.

If two exposed vertices andj are joined by an (upper) edge (i, j), then there are no
other exposed vertices in the interval [i, j]. In this case, we call G[i, j] a block, denoted
B[i, j]. When the interval [1, n] is partitioned into subintervals, there will be edges with
endpoints in different subintervals. Such dangling edges are exactly those edges of G not
in any ofthe subgraphs generated by the subintervals. In the case of a block B[i, j], these
dangling edges can be incident to only or j. The total number of such edges incident to
orj is called the edge deficit of B[i, j], denoted def {[i, j]}. It is always true that

def {[i, Jl} =<2(d- 1).

2 3 4 5 6 7 8 9 I0

FG. 9. Results ofsubproblems.
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G

J -)

2 3 4 5 6 7 8 9 I0

FIG. 10. Superhamiltonian cyclefor G.

In Fig. 8, B[ 1, 3], B[3, 7] and B[7, 10] are the blocks of G, and def {[3, 7]} 5 (because
of edges (1, 3), (2, 3), (7, 8), (7, 9), and (7, 10)).

The example of Figs. 8-10 illustrate the execution of the algorithm in the case that
G has two or more blocks. There is another possible case: G has only one block. In that
case, the divide-and-conquer construction is more complex. The two divide-and-conquer
constructions corresponding to these two cases are developed in turn in the next two
subsections.

4.1. String construction. We now describe one of the two constructions used to

obtain a superhamiltonian cycle for G from superhamiltonian cycles for the graphs induced
by subintervals. It is called the string construction. (The name suggests that the super-
hamiltonian cycles for the subintervals are strung together to obtain a superhamiltonian
cycle for the entire interval.) It is employed when the number of exposed vertices is
greater than two, i.e., when G is not one block. The partition into subintervals keys on
the largest block, say B[i, j]: B[i, j], is taken to be one of the subintervals.

A precise description of the partition into subintervals requires more notation. Let
m, m2, mq be the exposed vertices of G in ascending order. Suppose B[mk, mk/ ]
is the largest block in G. Figure 11 illustrates the situation. The partition into q
subintervals is

{ [ml, m2), [m2, m3), [mk- 1, mk), [mk, mk + 1], (mk + 1, mk + 2], (me- 1, mq] }.

Note that B[mk, mk/ ] is the only block of G in the partition. It is called the key block
of the partition. The other subintervals are called side subintervals. Figure 12 illustrates
the partition of G.

The algorithm is recursively applied to the jth subinterval to obtain

m!

G

m2 ink_ m k mk+ mk+2 mq_ mq
FIG. 11. Exposed vertices.
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{Gj} Key Block

m m2 mk_ m k mk+ mk/2 mq_ mq

} }1 1(

FIG. 12. Partition into subintervals.

G’ is obtained in two steps. First, all edges added to the Gj are added to G (Fig. 13).
Second, the lower edges { (xj, yj)} are deleted and the lower edges

{(yj,xj+ )ll =<j=< q-2} U {(x,yq_ 1)}
are added. H is obtained from U/-/ by deleting and adding the same edges (Fig. 14).
Assigning (x, y) (x, yq_ 1) completes the string construction. The correctness of the
construction is proved in Lemma 5 ( 6).

4.2. Ladder construction. In this section, we consider the case when G has only
one block, so we are unable to divide G into subintervals based on blocks. To reach a
solution, we first focus on the problem of obtaining logarithmic pagewidth. To obtain
logarithmic pagewidth, it is clearly sufficient that the linear layout corresponding to the
two-page embedding have logarithmic cutwidth. An approach to small cutwidth is the
recursive application of a separator theorem (see Lipton and Tarjan [7]). A separator
theorem states that the removal of some number of vertices from a graph will partition
the remainder ofthe graph into two subgraphs ofapproximately equal size. For outerplanar
graphs, a two-vertex separator always exists.

LEMMA 3. Let G be an outerplanar graph containing at least 3 vertices. There exist
vertices x and y whose removal separates G into disjoint subgraphs G and G_ such that
n < [Gk[ < n, k 1, 2. If(x, y) is not an upper edge ofG, then it can be added to G as
an upper edge without inducing a crossing.

Proof Since G is outerplanar, we can use the circular formulation ofbook embedding
to embed G in a circle. The vertices of G are placed equally spaced on the circle. The
edges of G are chords of the circle with no two chords intersecting. If the center of the
circle lies on an edge, let x and y be the endpoints of the edge; in this case, IGI < 1/2n,
k 1, 2, and the result follows. Otherwise, let F be the face of G containing the center.
If two vertices on F are on a diameter, let them be x and y, and the result follows.

{Gj’}

m m2 mk_ m k mk+ mk+2 mq_ mq
FIG. 13. Resultsfor subintervals.
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G’ and H

d,

FIG. 14. Subintervals strung together.

Otherwise, triangulate Fwithin the circle. The center ofthe circle lies within some resulting
triangle (u, v, w). Let the angle Luvw be the largest of the triangle. This angle is easily
seen to be between 60 and 90. Let x u and y w. Let G be the graph induced by
the vertices within the angle/_uvw, and let G2 be the graph induced by the vertices outside
the angle/_uvw. Then the removal of x, y separates G into G and G2 where

Note that the edge (x, y) can be added to G without destroying the outerplanar embedding.
The lemma follows.

If (x, y) is not already an edge of G, it can be added without destroying outerplanarity.
An edge (x, y) that satisfies Lemma 3 is called a separating edge. An algorithm to obtain
logarithmic cutwidth for a d-valent outerplanar graph G can select a separating edge
(x, y) and apply itself recursively to the resulting G and G2. However, it is unclear how
to obtain a superhamiltonian cycle for G from superhamiltonian cycles for G and G2.

Our algorithm uses separating edges in another way so as to make it possible to
derive a superhamiltonian cycle from superhamiltonian cycles for the pieces. The key is
the following definition. Let G be an outerplanar graph, and let (x, y) be a separating
edge for G. A set of edges P c E is parallel to (x, y) if

(1) (x, y)
(2) if(u, v), (w, z) e P, then {u, v} fq {w,z} (there are no shared endpoints);
(3) P can be ordered as ((u, v), (u2, v2), (Uk, Vk)} in such a way that

/,,/l </,/2 < ....Uk.l)k. ....(V2.V

(the edges ofP nest).
A sample set of parallel edges for a graph G is shown in Fig. 15 by dashed lines. A set P
of parallel edges is maximal if no edge of G can be added to P to obtain a larger set of
parallel edges.

U U
2

U3 U4 V4 V3 V2 V

FIG. 15. Parallel edges in G.
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FIG. 16. Removal of Ve.

Suppose P is a maximal set of parallel edges for G containing the separating edge
(x, y). Let Ve be the set of endpoints of edges in P. The removal of the vertices Ve from
G separates the interval 1, n] into some number of subintervals. Let Ge be the subgraph
of G resulting from the removal of Ve and all incident edges. Let [i, jl], [is, js] be
these subintervals in left-to-right order. The planarity of G and the maximality of P
guarantees that there is no edge of G between two vertices in different subintervals. This
in turn guarantees that Ge can be obtained an alternate way: Ge is the (disjoint) union
of the induced subgraphs G[ik, jk], <= k <= s. By Lemma 3, the presence of a separating
edge in P guarantees that

size { ik ,jk] } < In, <- k <- s.

Figure 16 shows the graph of Fig. 15 after the removal of Ve.
The algorithm is applied recursively to each G[ik, jk] to obtain a superhamiltonian

cycle for each. To obtain a superhamiltonian cycle for G, one need only reintroduce the
endpoints of the parallel edges Ve. A second look at Fig. 15 provides inspiration. If each
subinterval [is, js] were replaced by an edge (is 1, js + 1) between two vertices in Ve,
the result is the one-page embedding ofa ladder where all the rungs nest. The construction
of a superhamiltonian cycle H for G is patterned after the superhamiltonian cycle for a
ladder, as illustrated in Fig. 6. Appropriately, we name the construction ofH the ladder
construction.

There are two cases to consider, depending on whether or not the edge (1, n) is in
P. The case (1, n) P illustrates all the ideas and is simply modified to cover the case
(1, n)e.

Start with the picture of the parallel edges alone in Fig. 17. Some lower edges are
added to obtain a supercycle containing exactly the vertices in Ve. This supercycle is
indicated in Fig. 18 by arrows. It remains to place all the subintervals within this supercycle.
To accomplish this, each lower edge is replaced by new lower edges that connect two
subintervals into its place in the supercycle. For a right arrow (Uk, Uk / ), the result is as
in Fig. 19. For a left arrow (v_ , Vk), the result is as in Fig. 20; is chosen so that [it, jt]
is the subinterval between Vk / and Vk.

u U
2

U3 U4 V4 V3 V2

FIG. 17. Parallel edges.

v
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U2 3 U4 V4 V3 V2

FIG. 18. Supercyclefor parallel edges.

For the case (1, n) P, [il, jl] is to the left of the ladder and [is, L] is to the right of
the ladder. The connection of [i, j] into H is shown in Fig. 21. The connection of
[is, L] into H is shown in Fig. 22.

5. The algorithm. This section describes our algorithm for embedding a d-valent
outerplanar graph in a two-page book with logarithmic pagewidth. The correctness of
the algorithm, embodied in Theorem 4, is given in the next section. Section 8 analyzes
the performance of the algorithm.

For the statement of our algorithm, see Algorithm 1. As the algorithm is recursive,
it is useful to give it a name. The name is TRADEOFF. TRADEOFF is a recursive
function which has as input the d-valent outerplanar graph G and as output the planar
supergraph G’ having hamiltonian cycle H and vertices of attachment x and y.

It is to be noted that, for simplicity, certain trivial cases are not included in the
statement ofTRADEOFF. These cases occur when a recursive invocation ofTRADEOFF
returns an empty G’. This cannot occur in step 5, as each subinterval contains at least
one vertex. However, it can occur in step 9 when some Gk is empty. In that case, the
ladder construction merely skips the empty interval [ik, j] (which is caused by two
adjacent elements of Ve).

Uk-I Xk_ X kYk-I Uk Yk Uk+l

Replaced
Arrow

FIG. 19. Replacing a right lower edge.
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Vk/l Xt Yt Vk Xt/l Yt+l Vk-I

Replaced
Arrow

FIG. 20. Replacing a left lower edge.

ALGORITHM 1. The TradeoffAlgorithm.
Function TRADEOFF (G), returns (G’, H, (x, y)).
(1) (Trivial cases)

If G , then assign G’ , H and (x, y) undefined.
If V= {1}, then assign G’ ({1}, {(1, 1)}),H= {(1, 1)} and(x,y)
(1, 1).
If V= { 1, 2}, then assign G’ ({ 1, 2}, {(1, 2), (1, 2)}), H {(1, 2), (1, 2)}
and (x, y) (1, 2).
Return (G’, H, (x, y)).

(2) Let S {mjI1 =< j -< q} be the set of exposed vertices of G in increasing
order.

(3) Choose k, =< k -< q such that B[me, me/ 1] is the key block of G.
(4) If B[me, me/ 1] G, then go to step 7.

String Construction

(G has more than one block.) For -< j < k, assign

(G), tl, (xj, yj)) TRADEOFF (G[mj, mg+

For j k, assign

(G,H, (xj, y)) TRADEOFF (G[me, me+ 1]).

For k < j < q, assign

(G, I-I, (x, yj)) TRADEOFF (G(m,m+ 1]).

x y u u

Replaced
Arrow

FIG. 21. Adding a subinterval on the left.
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V:3 Xs-2 V s

Replaced
Arrow

X$

FIG. 22. Adding a subinterval on the right.

Ys Js

(6)

(7)

(8)

(9)

Use the string construction to obtain G’, H and (x,y).
Return (G’, H, (xl, yq)).

Ladder Construction

(B[mk, mk+ 1] G.) Choose a separating edge (u, v) for G. If (u, v) is not
already an edge of G, then add it as an upper edge.
Choose P a maximal set of edges parallel to (u, v). Let Ve be the set of
endpoints of edges in P.
V- Ve determines a sequence of disjoint subintervals [il, jl], [i2, j2],
[is, L]- For _-< k =< s, make the assignment:

(G’k, Hk, (Xk, Yk)) TRADEOFF (G[ik,jk]).

Construct G’ from G and {G} using the ladder construction. Return
(G’,H, (x, y)).

We now describe TRADEOFF step by step.
(1) These are the trivial cases when n -< 2. If G is empty, return G’ . If G is a

single vertex, return G’ having a single loop. If G has two vertices, then it has one edge
(1, 2). Return G’ having the added lower edge (1, 2) which is distinct from the upper
edge (1, 2).

(2) From the one-page embedding of G, determine the exposed vertices of G. It is
straightforward to accomplish this step in linear time; see Algorithm 2. Algorithm 2
requires time O(dn) and generates the elements of S in increasing order.

(3) Choose the key block of G, B[mk, mk/ 1]. Clearly, this can be accomplished in
time linear in IsI,

(4) This step determines which of two cases is current. If G is a single block, then
the ladder construction is applied (steps 7 through 9). IfG has more than one block, then
the string construction is applied (steps 5 and 6).

(5) Decompose the interval [1, n] into subintervals so that the key block
B[mk, mk/ 1] is one ofthe subintervals. Note that each side subinterval contains fewer than
1/2n vertices. Apply TRADEOFF to the graphs induced by each subinterval to obtain
supergraphs G, -< j -< q- 1.

ALGORITHM 2. Determining exposed vertices in linear time.
(1) Assign S { } and 1.
(2) If > n, then halt.
(3) Assign max {i + 1, maxti,k)e k}.
(4) Assign S S kJ { i}. Go to step 2.
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(6) Apply the string construction to obtain the planar hamiltonian supergraph G’
and the hamiltonian cycle H for G’. Assign (x, y) (x, yq). Return (G’, H, (x, y)).

(7) We know that G is entirely covered by the edge (1, n). We show that it is then
safe to add a separating edge to G. If this is the initial call to TRADEOFF, we can always
add a separating edge. If this is a deeper recursive call to TRADEOFF, we imagine that
there are intervals to the left and fight of 1, n] with dangling edges incident to vertices
in 1, hi. Since these dangling edges can only be incident to exposed vertices (in this case,
and n), any upper edge added to G at this recursive level cannot cross an edge at a

higher recursive level. The determination of a suitable separating edge is accomplished
in linear time by Algorithm 3. (Note that the triangulated G has a linear number
of edges.)

(8) Select a maximal set of parallel edges. The construction of P is accomplished
in linear time by Algorithm 4.

(9) This step completes the ladder construction. TRADEOFF is invoked recursively
for each subinterval disjoint from Ve. G’ and H are obtained by the ladder construction
described in the previous section.

ALGORITHM 3. Finding a separating edge.
(1) Triangulate the interior faces of G.
(2) Examine each edge (u, v) of the triangulated G to find one such that

n=<(v-u)-< n.
ALGORITHM 4. Generating a maximal set ofparallel edges.
()
(2)
(3)

(4)
(5)
(6)

Assign P {(u, v)}, s u and t v.
If s < 1, then go to step 4.
Assign r max { 1, maxts, k)e k}. If r _-< t, then assign s s and go to
step 2. Else assign P P tO {(s, r)}, s s and t r and go to step 2.
Assign s u + 1, and v.
If s >-_ t, then halt.
Assign r min {n, mints, k)e k}. If r < t, then assign P P tO {(s, r)},
s s+ andt r and go to step 5. Else, assigns s+ and go to
step 5.

6. Correctness. In this section, we demonstrate the correctness of algorithm
TRADEOFF via the following theorem.

THEOREM 4. Let G be a d-valent outerplanar graph. Let (G’, H, (x, y)) result from
applying TRADEOFF to G. Then H is a superhamiltonian cyclefor G with thefollowing
property: following Hfrom x to y yields a two-page embedding of G with pagewidth
<Cd log n, where C is a constant that can be chosen to have any value >_-8/(log 3/2).

Proof. The proof decomposes naturally into the proof of pagenumber (Lemma 5)
and the proof of pagewidth (Lemma 6). UI

LEMMA 5. Given the assumptions of Theorem 4, following Hfrom x to y yields a
two-page embedding ofG.

Proof. The proof is by induction on n. The inductive hypothesis is
(H. 1) G c G’;
(H.2) G’ is planar;
(H.3) H is a hamiltonian cycle of G’;
(H.4) (x, y) H is a lower edge of G’ such that there is no lower edge (u, v) of
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G’ with u < x =< y < v (i.e., x and y are on the unbounded region of the
lower half-plane).

Step of Algorithm guarantees that the inductive hypothesis is satisfied when n -< 2.
For purposes of induction, assume that the inductive hypothesis is true for graphs

of size less than n and that n > 2. There are two cases determined by the cardinality of
the set S of exposed vertices of G: (1) [SI > 2 and (2) ISI 2.

(1) IsI > 2. TRADEOFF applies the string construction in steps 5 and 6. The in-
ductive hypothesis guarantees that after the applications of TRADEOFF to all the sub-
intervals, each xj and each yj is on the unbounded region ofthe lower half-plane. Therefore,
the lower edges (y, x+ 1), -< j =< q and (Xl, yq) can be added while maintaining
planarity (H.2). Clearly, G c G’ (H.1), and H is a hamiltonian cycle of G’ (H.3). Finally
x x and y y satisfy (H.4).

(2) IS[ 2. The edge (1, n) is in G and covers all other upper edges. TRADEOFF
applies the ladder construction to G in steps 7 through 9. In 2.2, the addition of the
separating upper edge (u, v) was shown to maintain planarity. In step 9, the application
of TRADEOFF to each G[ik, jk] yields (G’k, H, (Xk, Yk)) that satisfies the inductive hy-
pothesis. In particular, (H.4) applies to each (xg, yg). Since each x and Yk is on the
unbounded region of the lower half-plane, the ladder construction yields a planar result
(H.2). The ladder construction also makes G c G’ (H.1) and H a hamiltonian cycle of
G’ (H.3). Finally, (x, y) is explicitly chosen to satisfy (H.4).

This extends the induction for arbitrary G. Since His a hamiltonian cycle ofa planar
supergraph of G, it yields a two-page embedding of G ]. V1

To complete the proof of Theorem 4, we must bound the pagewidth of the two-
page embedding. It is sufficient to bound the cutwidth ofthe underlying linear embedding.
We use the notation cw (H) to mean the cutwidth of the linear embedding obtained by
following H from x through y. (G, x and y will be clear from context.) If and j are
vertices in H such that comes before j in the linear embedding, define cw ([i, j]) to be
the cutwidth of the linear subembedding from to j.

LEMMA 6. Given the assumptions of Theorem 4, cw(H)< Cd log n, where
C 8/(log 3/2).

Proof. The proof is by induction on n. The statement of the inductive hypothesis
mirrors the two cases of the algorithm. The inductive hypothesis is

(I. 1) If G has more than one block, then

cw (H)< Cd log n;

(1.2) If G is a singleblock, then

cw (H) =< max (1, Cd log n) def { 1, n] }.

Some explanation of the presence of the edge deficit in (1.2) is in order. In the string
construction, a large key block [mk, mk/ 1] must be able to absorb def {[mk, mk/ 1]}
additional cutwidth, as its cutwidth will dominate the cutwidth of the entire string con-
struction. The precise meaning of this statement will be clear from the proof. The max
(1, Cd log n) takes care of the case n 1. Note that a G with a single vertex can never
be the key block in a string construction.

For the basis of the induction, it is easy to check the inductive hypothesis for
n= landn=2.

For purposes of induction, assume that the inductive hypothesis is true for graphs
of size less than n and that n > 2. There are two cases: (1) G has more than one block
and (2) G is a single block.
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(1) G has more than one block. In this case, the string construction is applied (steps
5 and 6). Let us examine the linear order induced by H and (x, y) on V. H1 is a super-
hamiltonian cycle for G([ml, m2)) that begins at x Xl and ends at Yl. As such, HI can
be viewed as a permutation on [ml, m2). The string construction places the vertices of
[ml, m2) first in H, in this permuted order. Similarly, the vertices of [mz, m3) come next
in H, in the permuted order given by H2. In general, the q subintervals appear in
the same order in H as they do in the partition, though H permutes the vertices within
each subinterval. The permutation of the jth subinterval is always that of/-/.

It is now possible to bound cw (H) based on {cw (Hi)}. First, consider the cutwidth
of H between two subintervals, that is, cw ([yj, x+ 1]), _-< j _-< q 2. Suppose j < k.
Then the only edges that pass over the interval [y, x+ ] are dangling edges from m/

to [m, m+ 1). Hence,

cw ([yj, x + 1])--< d- < Cd log n.

Ifj >- k, by a similar argument, we have

cw ([y, x + 1]) --< d- < Cd log n.

Second, consider the cutwidth over a side subinterval. Consider the jth subinterval
in H, [x, y]. If j < k, then there are at most (d- 1) dangling edges from mj+l to

[m, m+ 1) that can contribute to cw ([x, y]) and at most d dangling edges from m to

Iraj_ 1, m) that can contribute to cw ([x., y]). Hence by (I. l)

cw ([x,y])<2d+ Cdlog (size {[mj, my+ 1)})

< Cd log n

since size {[m, m+ 1)} < 1/2n. Ifj > k, we have similarly

cw ([x,yj])<2d+ Cdlog (size {(m, m+ 1]})

< Cd log n.

Third and finally, consider the cutwidth over the key block, B[mk, mk + 1]- By (I.2),

cw ([Xk, Yk]) <= (Cd log (size { [rag, mk + 1] })) clef { [mk, mk + 1] }.
The only dangling edges that can contribute to the cutwidth over [xg, y] are those
incident to mk and mk+ 1. There are def { [mk, mk+ 1] } of these. Hence

cw ([Xk, Yk]) <---- Cd log (size { [rag, mk + l] })

< Cd log n.

Putting these three results together yields cw (H) < Cd log n. Thus G satisfies (I. 1).
(2) G is a single block. In this case, the ladder construction is applied (steps 7

through 9). The subintervals are [il, jl], [i, j]. Let

’= {(u, v,), (u, v2), "’, (u, v)}
where

Ul<U2<’" <ut<vt<"" <v2<vl and t=/(s+l)/23.

We first consider the case (1, n) e P. We can represent the order in H of the vertices of
Ve and of the subintervals by the following string:

ulvl[is- l,js- l][is,js]V2U2[il ,jl][i2,j2]u3v3[is- 3,js- 3][6- 2,js- 2]l)4u4[i3,j3][i4,j4]lt51)5

Of course, the vertices of the subintervals are permuted with H as they were in case (1).
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From the ladder construction, there are four recognizable types of subintervals,
two types on the left and two types on the right. While we could write down subscript for-
mulas for each of the four types, for the cutwidth argument it is sufficient to consider
the following four representatives of the four types: [i3, j3], [i4, j4], [is-3, js-3] and
[is-2, js-2]. The only edges that add to cw (Hk) are edges incident to vertices in Ve that
pass over the kth subinterval in H. The diagram in Fig. 23 illustrates the potential for a
vertex in Ve to have edges incident to some subinterval. For example, u2 or v2 might
have one or more edges to subintervals [il, jl], [is, js], [i2, j2], and [is-1, js-1]. Since we
are interested only in an upper bound on cutwidth, we ignore the possibility that the
existence of some edge may preclude the existence of other edges.

We start with the type represented by subinterval [i3, j3]. An examination of the
string for H together with Fig. 23 reveals the potential for edges passing over [x3, Y3]
from u3, v3, u4, v4, u5 and v5 only. Hence, by inductive hypothesis,

cw ([x3, Y3]) -< 6d+ cw (H3)

<= 6d+ Cd log (size { [i3 ,j3] })

<= 6d+ Cd log ]n
<= (Cd log n)- 2d

< (Cd log n) def { 1, n] }
since each subinterval contains at most ] n vertices.

Similarly, consideration of the three types represented by [i4, j4], [is-3, js-3] and
[is-2, js-2] reveals that at most 6 vertices in Ve can have incident edges adding to the
cutwidth of a subinterval. Hence, for all subintervals [xk, Yk] in H,

cw ([Xk, Yk]) <= (Cd log n) -def {[ 1, n] }.
Consideration of intervals in H between the subintervals (e.g., [us, vs]) yields no worse
an upper bound. Hence we conclude that cw (H) -< (Cd log n) def {[1, n] }.

The case in which (1, n) ’ P is similar to the preceding case. The additional left or
fight subinterval cannot boost the cutwidth above (Cd log n) -def {[1, n] }. Hence in all
cases, (I.2) holds.

This completes the induction and the proof of the lemma. E3

7. Performance. In this section, we analyze the time and space complexity of
TRADEOFF. Of course, the complexity depends on the representation of data. While

FIG. 23. ProofofLemma 9.
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we do not prescribe the details of the data representation, we do require that the repre-
sentation make elementary operations efficient (i.e., constant time per edge or vertex).
A place where this requirement is crucial is Algorithm 3 for finding a separating edge.
To accomplish step in linear time, it is necessary to be able to recognize the next
(counterclockwise) edge of an interior face in constant time. It is easy to represent G so
that this is possible. A reasonable representation puts all the edges adjacent to a vertex
of G in a circular list in counterclockwise order; for each edge (u, v), there is a link from
its position in the u-list to its position in the v-list. In this representation, the edges ofan
interior face can be traversed in constant time per edge.

First, we note that all operations ofTRADEOFF performed on G except the recursive
calls require linear time. From the description of the steps in 3, all steps are clearly
linear time except steps 6 and 9. From the description of the string construction, G’ can
be constructed in linear time from the { Gj } (step 6). Similarly, the ladder construction
can be accomplished in linear time (step 9). Hence, the entire algorithm excluding recursive
calls can be implemented in linear time.

Let T(n) be the time complexity of TRADEOFF. Let n, n2, "", np be the sizes of
the subintervals either in step 5 or in step 9, depending on which case holds. Then,
,= nk <= n and nk <---- n, <--_ k <- p. By the result ofthe previous paragraph, there exists
a constant c such that

p

T(n) <= cn + , T(nk).
k=l

LEMMA 7. If T(1) is one unit oftime, thenfor all n > 1,

T(n) <- (c]log )n log n.

Proof. By induction on n. The lemma is certainly true for n 2. Assume n > 2
and assume the truth of the lemma for values smaller than n. Then,

p

T(n) cn + T(nk)
k=l- cn + k. C log n log n

Ncn+ c log nlogn
k=l

=cn+ c log nlogn

(/ 3)(/ 3) 3
=cn+ c log nlogn- c log nlog

c log nlogn.

The lemma follows by induction, ff]

The space requirements of TRADEOFF are clearly n times some small constant.
We thus have the following.

THEOREM 8. TRADEOFF has time complexity at most Cln log n and space com-
plexity at most C2n, for small constants C, C2.
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8. Conclusion. We have investigated tradeoffs between pagenumber and pagewidth
that are significant in a YLSI context. Our main result is an algorithm for obtaining a
book embedding for outerplanar graphs that is within a constant factor of optimal in
VLSI area for the class of outerplanar graphs. While this near-optimality is not guaranteed
for individual outerplanar graphs, we know of no example of an outerplanar graph for
which our algorithm fails to obtain near-optimal area. Our algorithm embeds any
d-valent n-vertex outerplanar graph in a two-page book with at most Cd log n pagewidth,
C 8/(log 3/2); the algorithm executes in time O(n log n). We show that at the cost of
one additional page above optimal pagenumber, layouts of near-optimal cutwidth for
outerplanar graphs can be obtained constructively.

Our result is applicable to the motivating DIOGENES design problem. The result
bounds the area of a two-stack DIOGENES layout for a circuit represented by an out-
erplanar graph.

A fruitful area for further research is tradeoffs between pagenumber and pagewidth.
It is not known how prevalent such tradeoffs are or whether dramatic tradeoffs exist for
any pagenumber. In the context of VLSI problems, algorithms for embedding a graph
in a bounded number of pages with pagewidth close to the cutwidth of the graph could
be most practical. We do not know ofany example where adding one or two pages above
the pagenumber of G does not give us an embedding whose pagewidth is within a small
constant factor ofthe pagewidth ofG; there is hope that such algorithms exist for important
classes of graphs. In particular, we believe that such an algorithm is possible for planar
graphs. The algorithm would embed any d-valent planar graph in a B-page book with
Cd/- pagewidth where B and C are small constants. Our planar graph algorithm [4] or
the similar algorithm of Yannakakis 11 might serve as the starting point for obtaining
bounded pagenumber. The small pagewidth would depend on a version of Lipton and
Tarjan’s [7] planar separator theorem tailored to this problem. The result of Miller [8]
on separating cycles in planar graphs is relevant here, though it is not sufficient by itself.

Acknowledgments. The author wishes to thank Arnold Rosenberg for suggesting
the problem and for helpful discussions. He also wishes to thank the referee whose detailed
report improved the presentation of the paper greatly.
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A COMPLEX ORTHOGONAL-SYMMETRIC ANALOG
OF THE POLAR DECOMPOSITION*

DIPA CHOUDHURYf AND ROGER A. HORNzI:

Abstract. Every square complex matrix A can be factorized as A UH, where U is unitary and H is
positive semi-definite Hermitian. IfA is nonsingular, it is known that one may write A QS, where Q is complex
orthogonal and S is complex symmetric. We develop necessary and sufficient conditions for there to be a
factorization of this type when A is singular, and we give sufficient conditions for there to be at least one such
factorization in which the factors commute.

Key words, complex orthogonal matrix, complex symmetric matrix, polar decomposition, matrix
square root
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Let Mm,n denote the set of complex m-by-n matrices and write M, M,,,. We shall
use Q to denote a complex orthogonal matrix (Q M,, QQr I) and S to denote a
complex symmetric matrix (S e M, S St). A set of vectors {Xl, x2, x,} C" is
said to be rectangular ifxfxj 0 whenever 4: j; it is rectanormal if it is rectangular and
xfx for all 1, 2, k. A vector x e C" such that xrx 0 is said to be isotropic;
the vector x [1 i]r C2 is an example of a nonzero isotropic vector. Every subspace
of C has a rectangular basis, and every rectangular basis of a given subspace contains
the same number of isotropic vectors. A subspace is said to be nonsingular if it has a
rectanormal basis. For basic facts about rectangular sets and the geometry associated
with the bilinear form b(x, y) yrx, see [1 ], [7], [8].

It is known that every nonsingular complex matrix A M can be written in the
form A QS where S is symmetric and Q is complex orthogonal [4, Vol. II, Thm. 3 of
Chap. XI], but this factorization may not be possible ifA is singular. For example, if

A=
0 0

could be factored as A QS, then ArA SrQrQS S2 has a (symmetric) square root,
but the Jordan canonical form of

ArA [ ]is iOo
and henceArA does not have a square root. We develop necessary and sufficient conditions
for a possibly singular matrix to be factored as A

If A s M can be expressed as A Q& then A QS QSQrQ Q, where- QSQr is a complex symmetric matrix. Similarly, if A e M,, can be factored as
A SQ, then A SQ QQrSQ Q, where QrSQ is a complex symmetric matrix.
Thus, the existence of either factorization A QS or A SQ implies the existence of
the other. Here we consider the factorization A

Our discussion uses a special case of a general criterion that tells when two given
matrices XI, X M,,, k -< n, are orthogonal transforms of each other, i.e., when there
is an orthogonal Q e Mn such that XI QX.
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LEMMA 1. LetX X2 Mn,k with <= k <= n and let rankX q. There is a complex
orthogonal Q M" such that X QX2 ifand only if the following two conditions are
satisfied:

(a) XrX, XfX2;
(b) rankX rank X2; in addition, if <= q < k, let P M be a permutation matrix

such that XtP [) ]], M’,q hasfull rank q, and1 )lCfor some C Mq,k-q.
Then X2P [2 l2C], where )2
Condition (b) is equivalent to

(b’) There is a nonsingular B M" such that X BX2.
Proof Let X, X2 M’,k with -< k =< n and let rank X1 q. We first show that (b)

and (b’) are equivalent.
IfX BX2 for some nonsingular B e M’, thenX and X2 must have the same rank.

If P Mk is a permutation matrix such that XIP [. llC] for some 1
with full rank q and C Mq,k-., partition XEP [’212] with 2 e Mn,q. Then
[) ItC] XP BXEP [B’EIB2], so ’ B2 and B2 ’C B)gC, which
implies that 2 2C since B is nonsingular. This shows that (b’) implies (b).

Conversely, assume (b) and letXP [ I)C], XEP [2 I2C] with, ’2 e Mn,q
both of full rank q. Then there are full rank matrices Y, Y2 Mn,’-q such that
Z [11 Y] and Z2 [21 YE] are both nonsingular (just extend the columns of
and 2 to bases of C’). If we write

then SiP ZIR, R z-lXlP, XP ZR ZZ-fXP, and XI (ZZI)X, which is
condition (b) with B - ZZTo prove the primary assertion of the theorem, notice that ifX QX_ for some
complex orthogonal Q M,,, then (a) and (b’) follow immediately. Conversely, suppose
(a) and (b’) are satisfied. Let V,. denote the span of the columns of X, 1, 2, let
X [(0 (] be partitioned according to its columns for l, 2, and consider the
linear mapping T: V VI given on the columns ofX by T((}) --( ,j= 1,...,k.
Then T is well defined, linear, one to one, and onto by (b’), and (a) guarantees that T is
an isometry with respect to the bilinear form b(x, ) yrx. Witt’s Theorem [8, Thm.
202.1 ensures that T can be extended to an isometry of 12", whose representation in the
standard orthonormal basis is a complex orthogonal matrix Q with QX2 X.

If A M" can be expressed as A QS, then for any permutation matrices P,
R M’, PAR PQSR PQRRrSR , where PQR is a complex orthogonal
matrix and RrSR is a complex symmetric matrix. Thus, in an effort to characterize
those singular A e M" that can be written as A QS, there is no loss of generality if we
assume that A is given in the partitioned form A [JlJC] where the columns of

Mn,k are linearly independent and C Mk,n- k. The only exceptional case is A 0,
which clearly has a factorization of the desired form.

THEOREM 2. Let A Mn be a given nonzero matrix with rank k <- n, and let
P M" be a permutation matrix such that AP [JlJC], where t Mn,k has full rank
and C Mk,n- k. There exists a complex orthogonal matrix Q and a complex symmetric
matrix S such that A QS ifand only ifthere exists a symmetric S Mn such that

(1) S2 ArA, and
(2) SP [IC]for some M’,k with full rank.
Proof Without loss of generality we assume that A [J IC], where Mn,k has

full rank k >_- 1. If k n, we adopt the convention that the termsCandC are absent
from the respective partitioned presentations ofAP and SP, P L A .4, and S
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Suppose A can be written as A QS. Then ArA SQrQS S2, and hence S is a
symmetric square root ofArA. Write S [I], conformal with the indicated partition
ofA. Then A []C] QS Q[Ig] [Q Q]. Hence Q and C Q,
i.e., QC Q; and hence C since Q is nonsingular. Thus, S []C] and rank

rank Q rank k, so the stated conditions are necessary.
Conversely, suppose there is a symmetric S e M, such that S2= ArA and

S [[C] for some M, with full rank. Since S2 SrS, conditions (a) and (b) in
Lemma are satisfied and there exists an orthogonal Q Mn such that A QS.

Because of the equivalence of conditions (b) and (b’) in Lemma 1, condition (2) of
the theorem is equivalent to

(2’) A BS for some nonsingular B e M.
In the ordinary polar decomposition, we know that ifA UH (where U is unitary

and H is positive definite), then Ucommutes with H if and only ifA is normal [5, Thm.
7.3.4]. Thus, the factors in any one polar decomposition of a given matrix A e M
commute if and only if the factors in all polar decompositions of that matrix commute.
What is the analogous situation for orthogonal-symmetric factorization?

IfA Mn and A QS, where Q is complex orthogonal and S is symmetric, and if
Q commutes with S then AAr QSSQr SQQrS SQrQS ArA. It is therefore
necessary that AAr ArA if Q and S are to commute. IfA is nonsingular, it is known
[4, Vol. II, Thm. 3 of Chap. XI] that the condition AAr ArA is sufficient for there to
be at least one factorization A QS in which Q commutes with S. IfA is singular and
AAr ArA, however, it can happen that no matter how one forms A QS, the factors
will not commute.

Example. Let

A= 0
0

Since A is skew-symmetric, AAr ArA. This matrix can be factored as

A= -i 0 0 -(l+i) (l-i) (l-i) (l+i) =-QS.
0 0 (l-i) (l+i) (l+i) (i-l)

One checks that Ar -A SQ QS A. This noncommutativity is no accident:
there is no factorization of the form A QS in which the factors commute. Suppose
A QS SQ, where

Iabc 1Qr= e f g M3
hkm

is complex orthogonal and S e M3 is symmetric. Then AQr QrA S, which implies
that

I -bi+c ai -aI Iei-h fi-k gi-m 1-f +g ei -e QrA S AQr= -ai -bi -ci
-ki + m hi -h a b c

and all of these matrices are symmetric. In particular, the (1, 2) entry of the first matrix
equals the (2, 1) entry of the last matrix, i.e., ai -ai and hence a 0. Also, the (2, 3)
entry ofthe last matrix equals the (3, 2) entry ofthe same matrix, i.e., b -ci. Therefore
a2 + b2 + c2 0. Thus, the first row ofQr is isotropic, a contradiction ofthe assumption
that Q is orthogonal. Observe that
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I ]0 0 0
ArA= 0 -1 -i

0 -i

so rankA 2 4:1 rankArA. Notice that 0 is the only eigenvalue ofArA, with geometric
multiplicity 2, so ArA is not diagonalizable.

For a given matrix A e Mn, it is possible to have two different factorizations
A QS and A , where Q, 0_. Mn are complex orthogonal and S, Mn are
symmetric, in which one pair of factors commutes but the other does not.

Example. Let

A= f 0

If we take S A and Q /, then A QS and the factors commute. However,

a= o
but

0

The following theorem gives a set of conditions that are sufficient to guarantee that
some factorization A QS of a given matrix A Mn has commuting factors.

THEOREM 3. Let A M, be such that ArA AAr./frank A rank AVA andArA
is diagonalizable, then there exists a complex orthogonal Q Mn and a symmetric
S M, such that A QS and Q commutes with S.

Proof Suppose A Mn satisfies all the hypotheses of the theorem. By [2, Cor. 4]
there exists an orthogonal Q Mn such that

XP
A Q k2P2 0 QT

0

where Pi Mni is orthogonal and k C for 1, 2, k, and n q- n2 + + nk n.
We can write A QAPQT where

is diagonal and

A k2i2
0

0

el
p= P2 0

0

is orthogonal. Then A Q(PQT")(PQr)7APQr= QS where Q QpQT is orthogonal
and S (PQT)rA(PQr) is symmetric. Now compute
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SQ1 (PQr)rA(PQr)QPQ

QPrAPPQ
QP’PAPQ (since A commutes with P)

=QAPQr=A=QIS. I--1

The rank and diagonalizability conditions of the theorem, although sufficient, are
not necessary. Any symmetric matrix that fails to satisfy either or both of these two
hypotheses has a trivial QS factorization in which the factors commute; take the matrix
itself as the symmetric matrix and the identity matrix as the orthogonal matrix. For
example,

A=
1-i

is nonsingular but AAr A is not diagonalizable, and

IA=

has AAr A 0 diagonalizable but fails the rank condition. Moreover, it is known [4,
Vol. II, Thm. 3 of Chap. XI] that any nonsingular A e Mn (which therefore satisfies rank
A rankArA) can be written in at least one way asA QS, in which the factors commute
if and only if ArA AAr, whether or not ArA is diagonalizable. The rank condition is
equivalent to the assumption that the column space ofA is nonsingular, i.e., has a rec-
tanormal basis ], [8, Prop. 157.1 ].

The first hypothesis ofTheorem 2 is that the symmetric matrix ArA has a symmetric
square root, but it is not necessa to assume both that (a) ArA has a (not necessarily
unique) square root and (b) among its square roots there is one that is symmetric. The
following result shows that the second statement follows from the first, and leads to a
simple sufficient condition for the existence of a QS factofization.

THEOREM 4. Ifa symmetric matrix S Mn has a square root B Mn, then it has
a symmetric square root that is similar to B.

Proof Let S e M, be symmetric and suppose B e M, satisfies B2 S. Because eveff
square matrix is similar to a symmetric matrix [5, Thm. 4.4.9], there is a nonsingular
R M, such that B RR- and T. Therefore, S B2 RR-1RR- RZR-l.
Since S and 2 are similar and both are symmetric, there is a complex ohogonal
Q M, such that S Q2Qr QQrQQr 2 [1, Thm. 3.6], [4, Vol. II, Chap. XI],
[6, Chap. 6]. Thus, QQr is a symmetric square root of S and is ohogonally
similar to , which is similar to B.

The Jordan canonical fo of a matrix A e Mn helps one to deteine whether
A has a square root or not. If A is nonsingular, it always has a square root. If A
is singular, let A RJR-, where J M is the Jordan canonical fo of A. Let
J,(0) @ J:(0) @ @ J(0) be the singular pa ofJ, where each summand is a nilpotent

0 0

Jm(O) "." - Mm,

Jordan block
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and let n >- n2 >= >= nk. Define A n n2, A3 n3 n4, The A has a square
root if and only if all Ai 0 or for 1, 3, 5, .... If k is odd, then we must also
require that rig [3]. See also [6]. Since the numbers Hi, HE, rlk can be determined
easily from the numbers rank Ai, l, 2, ..., n, it is in principle easy to determine
whether a given matrix A e Mn has a square root or not. If a given symmetric matrix A
has a square root B with a given rank, then the preceding theorem ensures that A has a
symmetric square root with the same rank as B.

We have already observed that if a given matrix A Mn can be written as A QS,
then ArA has a square root (namely, S) that has the same rank as A. This necessary
condition is not sufficient, however, as the example

illustrates. We have

ATA=O=B2 whereB=[ -il]
has the same rank as A. Nevertheless, this matrix A cannot be written as A QS because
ArA 0 is not similar to

AAr=[li ]il"
With one additional hypothesis, however, the square root condition is sufficient to guar-
antee that A QS.

THEOREM 5. Let A Mn be given./frank A rank ArA and ifArA has a square
root with the same rank as A, then there exists an orthogonal matrix Q and a symmetric
matrix S such that A QS. Conversely, ifA QS with Q orthogonal and S symmetric
then ArA has a square root (namely, S) with the same rank as A.

Proof. Let rank A k rank ArA. Using the arguments preceding Theorem 4, we
may assume without loss of generality that the first k columns ofA are linearly indepen-
dent. Write A [,41 AC], where A e Mn,k has full rank and C Mk,n- k. IfATA has a
square root B with rank B rank A, we know from Theorem 4 that ATA has a symmetric
square root S with rank S rank B rank A. Let S [] ], where e Mn,k. Calculate

where

E-
LDTflT_

Mn,k

has full rank. Also S2 ArA, i.e., S[I] [SIS] [El EC]. Therefore, S E and
S EC. Since S E has full rank, has full rank k (which is also the rank of S) and
hence there exists F e Mk,- k such that F. But then SF S EC SC, and
hence S(F- C) 0, or E(F- C) 0. Because E has full rank, we have F- C 0,
or F C. Thus, C. By Theorem 2 there exists an orthogonal matrix Q such that
A QS. The converse is immediately apparent. []

The following examples show that the two hypotheses ofthe preceding theorem are
independent.

Example. Let

A =[1
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Since A is symmetric, it can always be expressed as A QS and A itself is a square root
ofArA. But rank A :/: rank ArA since ArA O.

Example. Let

A=
0 0"

Then

0 0 0 -1

and so rank A rank ArA. However, ArA does not have a square root because the
Jordan form ofArA is

As a practical matter, our results give only a partial solution to the problem of
characterizing those singular A Mn such that A QS. IfA is such that ArA has a square
root at all (easily checked), then we know it has a symmetric square root S. However,
Theorem 2 does not offer any way to use the given data (the matrix A) to determine
whether this symmetric matrix S, for which we have no explicit representation, satisfies
the second condition (2) or (2’) of Theorem 2. Since ArA SQrQS S2 is similar to
AAr QSEQr ifA QS, and since two symmetric matrices are similar if and only if
they are orthogonally similar, it is tempting to conjecture that A QS ifand only ifArA
has a square root and ArA is similar to AAr. Since we have neither a proof nor a coun-
terexample to offer, we leave this conjecture as an open problem.

Every square complex matrix has both a polar decomposition and a singular value
decomposition. It is possible, however, for a square complex matrix to have a factorization
ofthe form A QS but not one ofthe form A PAPf, where P and P2 are orthogonal
and At is diagonal. For example the symmetric matrix

A=[
has the trivial QS factorization A IA - QS. IfA PAtP, then AAr PAt2Prl 0
implies At2 0 At, which implies A 0. Thus, this matrix has a QS factorization but
not a factorization analogous to the singular value decomposition. There is no example
of the converse phenomenon, for ira PIAtP, then A (P1P)(P:AtP QS. See [2]
for more results about factorizations of the form PAtP.
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FURTHER COMPARISONS OF DIRECT METHODS FOR COMPUTING
STATIONARY DISTRIBUTIONS OF MARKOV CHAINS*

DANIEL P. HEYMANf

Abstract. An algorithm for computing the stationary distribution of an irreducible Markov chain consisting
of ergodic states is described in Grassmann et al. [Oper. Res., 33 (1985), pp. 1107-1116]. In this algorithm, all
the arithmetic operations use only nonnegative numbers and there are no subtractions. In this paper we present
numerical evidence to show that this algorithm achieves significantly greater accuracy than other algorithms
described in the literature. We also describe our computational experience with large block-tddiagonal matrices.

Key words, direct methods, Markov chain, sparsity schemes, Gaussian elimination, block-tridiagonal
matrices
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Introduction. The solution of many probabilistic models requires the computation
of the stationary distribution of a finite-state Markov chain. A direct (i.e., not iterative)
algorithm to compute the stationary distribution ofa finite-state Markov chain consisting
of ergodic states is given in Grassmann, Taksar and Heyman [2]. For brevity, we will
call this the GTH algorithm. This paper describes the numerical accuracy of the GTH
algorithm, and compares its performance to several alternatives described in Harrod and
Plemmons [3]. For the test problems considered by Harrod and Plemmons, the GTH
algorithm provides greater accuracy than the alternatives described by those authors.

Algorithms are often evaluated by their speed and their storage requirements. The
GTH algorithm requires about 2N3/3 operations (N + is the number of states) and
stores the transition matrix and the vector of stationary probabilities. Large problems
frequently possess a special structure that can be exploited to reduce execution time and
storage requirements. The block-tridiagonal (or generalized birth-and-death) structure
occurs in many queueing models when the state space has two dimensions. We describe
how to modify the GTH algorithm to exploit this structure. An example with 3,600
states requires approximately 7 minutes of execution time on a VAX 8600, so large
problems of this type can be solved.

This note contains three sections. Section is a review of the GTH algorithm.
Section 2 compares the accuracy of the GTH algorithm to the algorithms considered by
Harrodand Plemmons. Section 3 describes some computational experiences with large
tri-diagonal transition matrices.

1. Review of the GTH algorithm. Let Pbe the transition matrix ofa Markov chain
with states 0, 1, N, and let r be a stationary distribution of P, i.e.,

r 7rP and 7r 1.

The GTH algorithm for obtaining 7r is as follows:

1. For n N, N- 1, 1, do the following:

Received by the editors January 20, 1986; accepted for publication (in revised form) August 21, 1986.
f Bell Communications Research, Red Bank, New Jersey 07701.
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n-1

Let S Pnj.
j=0

Let Pin Pin/S,

Let Po Po + PinPnj,

i<n.

i,j < n.

2. Let TOT and r0 1.
3. For j 1, 2, N do the following:

j-1

Let rj Poj + rkPkj.
k=l

Let TOT TOT + rj.

4. Let 7r 7rj/TOT, j 0, 1, N.

Notice that all ofthe arithmetic operations use only nonnegative numbers, and that there
are no subtractions. Grassmann shows that algorithms with this property are extremdy
resistant to rounding errors. The alternative methods do not have the above property,
and only or 2 decimal digits are accurately obtained in a chain with merely 5 states
(see Test Problem 3 in 2). The GTH algorithm is accurate to 7 decimal digits in this
example.

Grassmann et al. show that this algorithm produces the limiting distribution when
P is irreducible and consists of aperiodic positive-recurrent states. However, the algorithm
will work when the states are periodic, in which case it produces the stationary (but not
limiting) distribution. IfP has transient states in addition to an irreducible set ofpositive-
recurrent states, the algorithm may fail because step produces S 0. This will not
occur if the states are renumbered so that the transient states have the largest numbers.

Grassmann et al. observe that the algorithm can be applied to a continuous-time
Markov chain (CTMC) by appealing to the uniformization procedure. For a CTMC with
generator (i.e., rate matrix) Q, one applies the algorithm to the matrix that agrees with
Q on the off-diagonal elements and has zeros on the diagonal.

2. Accuracy of the GTH algorithm. Harrod and Plemmons compare three direct
methods. Two of them are the recommended choices from the comparisons in Paige,
Styan and Wachter [7]; the third is the authors’ partition factorization method. The latter
method requires about one-halfthe number ofoperations compared to the GTH method.
They consider 5 test problems. The fifth one is not completely specified in the paper and
is no longer available, so we will use a comparable problem.

Harrod and Plemmons assess the accuracy of an algorithm by first computing 7r in
double-precision arithmetic using the QR algorithm as implemented in the LINPACK
software package. This is considered to be the "true" value. (The QR algorithm is quite
computationally bound, requiring about N3 operations.) Then r is computed in single-
precision arithmetic. The relative error is [ri il. For each test problem, we will let
MinRE be the minimum relative error for the methods considered by Harrod and Plem-
mons, and let MaxRE be the maximum relative error produced by that method. (Since
one of the equations in r rP is redundant, the performance may depend on which
equation is dropped.) The relative error ofthe GTH algorithm will be denoted by GTHRE.
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Test Problem 1. The transition matrix is:

.2 0 0 .6 0 0 0 0 0 .2
0 .1 0 0 .6 0 .3 0 0 0
0 .1 0 0 0 0 0 .8 0 .1
0 0 .6 0 .3 0 0 0 0 .1
0 .5 0 0 .5 0 0 0 0 0
0 .5 0 0 .2 0 0 0 .3 0
0 0 0 0 .7 0 .2 0 0 .1
.1 0 .9 0 0 0 0 0 0 0
0 .1 0 0 0 .8 0 0 0 .1
0 .4 0 0 0 .4 0 0 0 .2

The GTH algorithm determines that states 0, 2, 3, and 7 are transient. (Notice that step
produces S 0 when n 1.) The GTH algorithm produces 6 significant decimal digits

while some of the alternatives produce only 5. We have

GTHRE MinRE MaxRE
4.5 10-8 6.9 10-8 3.7 10-6

and the GTH algorithm provides greater accuracy than the alternatives.
Test Problem 2. The transition matrix is

85000 0 .14900 .00090 0 .00005 0
.10000 .65000 .24900 0 .00090 .00005 0
10000 .80000 .09960 .00030 0 0 .00010
0 .00040 0 .70000 .29950 0 .00010

00050 0 .00040 .39900 .60000 .00010 0
0 .00005 0 0 .00005 .60000 .24990

.00003 0 .00003 .00004 0 .10000 .80000
0 .00005 0 0 .00005 .19990 .25000

.00005

.00005
0
0
0

.15000

.09990

.55000

(We have corrected a typographical error on element (1, 5).) The GTH algorithm produces
6 significant decimal digits while the alternatives produce between 3 and 6. We have

GTHRE MinRE MaxRE
9.64 10-8 3.96 10-5 1.71 10-4

and the GTH algorithm provides greater accuracy than the alternatives.
This matrix is also considered in Koury, McAllister and Stewart [6]. For the ap-

proximate method they recommend, (VANTD), an estimated 173 floating point oper-
ations are required to obtain a solution. The GTH algorithm requires 400 floating point
operations.

Test Problem 3. The transition matrix is

.999999 1.0 10-7 2.0 10-7 3.0 10-7 4.0 10-7

.4 .3 0 0 .3
5.0 10-7 0 .999999 0 5.0 10-7

5.0 10-7 0 0 .999999 5.0 10-7

2.010-7 3.010-7 1.010-7 4.010-7 .999999

The GTH algorithm produces 6 significant decimal digits while the alternatives produce
only or 2. We have

GTHRE MinRE MaxRE
3.1 10-s 6.12 10-3 3.89 10-2



DIRECT METHODS: STATIONARY DISTRIBUTIONS, MARKOV CHAINS 229

and the GTH algorithm provides greater accuracy than the alternatives.
Test Problem 4. The transition matrix is

.1-e .3 .1 .2 .3 e 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
e 0 0 0 0 .1-e .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

(We have written the -e terms that failed to appear in the paper by Harrod and Plemmons.)
This matrix is reducible when e 0, so it potentially might cause the GTH algorithm
difficulty. The GTH algorithm produced 6 decimal digits accurately. (The corresponding
figures for the alternatives are not reported.) We have

GTHRE MinRE MaxRE

10-1 1.38 10-7 1.18 10-6 6.74 10-6

10-3 1.38 X 10-7 6.16 X 10-5 5.51 10-4

10-5 1.3810-7 7.0310-3 3.9010-2

10-7 1.38 10-7 6.42 10-1 8.29 10-1

A novel feature of this matrix is that the GTH algorithm produces the same answer for
each of the four values of e given above, in both single and double precision arithmetic.
That property persists in double precision (but not quite in single precision) as the states
are renumbered. The explanation is that r is independent of e, as we will now show.

Since an e appears in only two columns of the transition matrix, only two balance
equations contain an e. They are

(1) .9r0 .2r + .lr2 + .47r3 +.6r4 + e(r5 r0)
and

(2) .9r5 .2r6 +. r7 + .5r8 +. 171"9 e(71" 71"0).

In the steady state, we must have (see, e.g., Theorem 7-13 in Heyman and Sobel [4])
4 9 9 4

7i Pij 7I’i Pij
i=0 j=5 i=5 j-0

which is conservation of flow between the sets of states {0, 1, 2, 3, 4} and { 5, 6, 7, 8, 9 }.
In this chain, the equation above is simply

(3) r0e rse
which shows that r0 r5 for every e > 0. Substituting (3) into (1) and (2) shows that (1)
and (2) are independent of e, and hence r is independent of e.

Test Problem 5. Test problem 5 ofHarrod and Plemmons is an 84-state chain used
in a job line production model. The positions of the nonzero elements is determined by
the model, and their values are randomly generated. The values they used are no longer
available, so I used a Markov chain that arose in a communications network model I
was working on.

For 76 states, the positions of the positive elements of the transition matrix
are shown in Fig. 1. All of the elements of r are correct to 5 decimal digits. For the
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FIG. 1. Nonzero elements ofP.

same model with 102 states, 5 digit accuracy is obtained whenever rg >_- 10-33. When
7r < 10-33, there may be no accurate decimal digits (e.g., r45 0.622263 10-38 in
double precision and is 0.000000 in single precision) because single precision cannot
represent such a small number. In most situations, these discrepancies are inconsequential.

3. Computing with large block tri-diagonal matrices. Many congestion models,
especially systems ofoverflowing queues, have a transition matrix that is block td-diagonal,
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Bo Do
C B

c
D1
BE DE

CK-1 BK- DK-1
CK BK

The blocks Bk, Dk and Ck are square and they all have the same number of elements.
Frequently, each Ck is upper-triangular and each Dk is lower triangular. We will only
consider this situation. Examples are given in Kaufman [5] and Sumita and Shanthikumar
[8]. In both of these examples there are two queues. The subscript on each block is the
level of one queue and the components of the block show the transition probabilities for
the other queue. Kaufman also shows that when a third queue is added to the model,
the block tri-diagonal structure remains.

It is clear that this structure should be exploited when attempting to solve chains
with many states. We will now see how the GTH algorithm exploits this structure and
some large problems that have been solved will be described.

When there are positive integers g and h such that Pi 0 for j < g and
j > + h for every i, the transition matrix is called banded. Grassmann et al. [2] show
that the GTH algorithm preserves this property and that steps and 3 of the algorithm
can be streamlined. Notice that block tridiagonal matrices are necessarily banded, so the
comments above apply to them. Moreover, every banded matrix can be written as a
block tri-diagonal matrix with the C’s upper-triangular and the D’s lower triangular.

When each block is s s, the storage requirements for the matrix are (3K + 1)s2

numbers for the special structure compared to n2 for the general case, where
n s(K + 1). For example, when s K + 50 and n 2,500, the special structure
stores 370,000 numbers, which is 6% ofthe 6,250,000 numbers stored without exploiting
the structure.

For the special structure, the three parts of step of the algorithm take s additions,
followed by s multiplications and then an addition and a multiplication are done s2

times, for a total of 2s(s + 1) operations. This is done n times. Step 3 requires 2s
multiplications and additions followed by an addition. This is done n times. Step 4
contains one multiplication and is done n times. Thus, there are about (actually, slightly
less than) 2s(s + 1)2(K d- 1) operations. When s K + 50, the special structure needs
about 13 million operations compared to roughly 10 trillion operations if the structure
is not exploited.

For n s(K + 1) held fixed, both storage and computing time decrease as s decreases.
Some examples. The transition matrix I used is the jump chain derived from the

generator matrix (2.3) in Kaufman [5]. The model consists of two queues, each with 5
servers and b waiting positions. A customer that tries to enter queue when all of its
waiting positions are occupied will attempt to join the second queue. Let ,i be the arrival
rate (including lost customers but not including overflow customers) and ti be the service
rate at queue i. The blocks are

Ck min (k, 5)/, k 1,2, ..., b,

Dk XI, k=0, 1, ,b- 1,

where I is the (b / 1) (b + 1) identity matrix. For k 0, 1,..., b l, and
i- 1,2,...,b,

Bk(i, i-- 1) #2 min (i, 5), Bk(i- 1, i) 2,
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and is 0 otherwise. Finally,

Bb(i, i-- 1)= #2 min (i, 5), Bb(i-- 1, i)= X + )k2,

and is 0 otherwise. Here, s K + b + and n (b + 1)2.
The general purpose GTH algorithm and a special purpose version that exploits the

special structure were programmed in FORTRAN 77 and run on 3 different computers.
Various values of b were used. The running times reported below include the time to
create the matrices.

When b 9, the running times for the special purpose algorithm were

VAX 11/780 PYRAMID VAX 8600

2.4 see 1.9 see 0.3 sec

The running times for the general purpose algorithm were

VAX 11/780 PYRAMID VAX 8600

14.5 see 15.9 see 2.9 sec

The remaining times are for the special purpose algorithm only:

VAX 11/780 PYRAMID VAX 8600

n 2,500 10:18.4 6:10.9 3:11.5

n 3,600 22:39.5 24:42.61 6:45.58

n 4,900 hr9:53.3

Only the Pyramid, which has virtual memory, was capable ofrunning the n 4,900
example.

The limited experience reported here suggests that the special purpose algorithm is capable
of handling models within the three thousand state range.

The very special structure of the blocks (C and D are diagonal and B is tridiagonal)
can be used to obtain greater efficiency. I have not done so because it is the tridiagonal
structure of P that was of interest. The very special structure should not have affected
the computation times for the algorithm that was used.
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SOLUTION OF A LINEAR RECURRENCE EQUATION ARISING
IN THE ANALYSIS OF SOME ALGORITHMS*

WOJCIECH SZPANKOWSKIf

Abstract. We study a recurrence equation of type

n-I

ln(2n+’--2)=2nan+ " kk=l

n>_N

where an is any sequence and s, N are integers. This type of recurrence arises in many applications in computer
sciences and telecommunications, e.g., in the analysis of unsuccessful search in a family of Patricia trees, in the
average complexity of an algorithm generating exponentially distributed variates, in trie statistics, in the per-
formance evaluation of conflict resolution algorithms in a broadcast communication environment, etc. We
present a closed-form solution of the recurrence and then we establish an asymptotic approximation for it. In
addition, we offer an approximation of a generating function, l(z), of In for small values of z.

Key words, linear recurrence, Patricia trees, conflict resolution algorithms, Bernoulli numbers, Bernoulli
polynomials, Bernoulli inverse relationship, asymptotic approximation, Mellin transform
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1. Introduction. Let the infinite sequence 10, l, 12, satisfy the following linear
recurrence

n-1 n
(1.1) fnln=an+’y ., pkqn-kl, p+q= 1,

k=0 k

where an is a given sequence, and "r is a constant. The coefficientf is either 3,p
n or

-rpn -rqn. Such recurrence arises quite often in practice [2], [4], [6]-[8], [10], [12],
15], 16], 18] with the additive term, an, in (1. l) appropriately chosen.

Let firstf ,gpn, and "r 1. Consider a digital search trie 12] with n records
(external nodes). Then In represents the external path length in such a tree if an n, and
depth ofa leafifan 1. An annoying flaw ofthe digital search tile is "one-way branching,"
which leads to the creation of extra nodes in the tree. To avoid this, D. R. Morrison
discovered a data structure which he named the Patricia tree 12]. The external path
length in the Patricia is also given by (1. l) with an n(1 pn qn). Other applications
of (1.1) have been found recently in the telecommunications field where the so-called
conflict resolution algorithms for broadcast communication are studied [4], [10], [15].
Here, either an or an pn [10], [15]. More examples can be found in [8] and
[12]. Note that all of these cases may be treated in a unified manner if one solves (1.1)
with the additive term an being any sequence of numbers. This was done in 15] where
the general solution of (1. l) with an asymptotic approximation is presented.

In this paper we study (1.1) withf .ypn _,.rqn. This is almost identical to the
one described above, but the appearance of 3,q n is enough to change the entire character
of the recurrence, and the methods used before are wiped out. Because of that we are
forced to further restrict the class of (1.1). We assume throughout the paper that p q

0.5, but we present the solution of(1.1) for any sequence of an. Such a restriction does
not limit the applications of (1.1). For example, it turns out that an unsuccessful search
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in the Patricia tree is described by (1.1) with 7 1. For the average value ofthe unsuccessful
search we must assume an 2 -" [12], and for higher moments the additive term
is more complex, but still (1. l) is to be considered. Flajolet and Saheb [6] studied (1. l)
with 7 0.5 and some particular form of an, analyzing the complexity of generating an
exponentially distributed variate. Recently, (1.1) has found applications in the perfor-
mance evaluation of the Gallager-Tsybakov-Mikhailov conflict resolution algorithm
[6], [18]. In this case either a, 1, 3’ or an 2-"- and 3" 0.5 [16]. The same
recurrence might be used to study another conflict resolution algorithm proposed by
Berger [2], [16] (for more examples, see [8]).

Under the above assumption we present a closed form solution of (1.1) and asymp-
totic approximation to it. In addition, an approximation of the exponential generation
function of In is given. To the author’s knowledge such a solution was available only for
a few specific values of a,, namely: Knuth considered a, 2 n, 3" 12, p. 409]
while Szpankowski [16] assumed either an 1, 3" or an 2-"- , 3" 0.5. This paper
generalizes these results.

2. Problem formulation. We shall study (1.1) under the following assumptions:
(a) p=q=O.5,
(b) fn 3"pn 3"qn 3"2 3"2-n,
(C) For simplicity we assume also that 3’ 2-s where s is an integer (later we shall

point out that this assumption is irrelevant for the proposed method).
In addition, instead of a, we consider 2na, for reasons which will be clear later. Then,
the problem is to solve the following recurrence:

10, II, lN given

(2.1)
(2n+ s_ 2)ln 2nan + lk

k=l k
n>N

where s, N are integers such that N > -s, and a, is any sequence.
Example a. Unsuccessful search in a family of Patricia trees [8], 12]. Digital

searching is a well-known technique for storing and retrieving information using lexi-
cographical (digital) structure of words. Let U be an alphabet containing two elements,
U { 171, 172 } and we define a set S which consists of finite numbers, say n, of (possible
infinite) strings (keys) from U. A trie or radix search trie is a binary digital search tree
in which edges are labelled by elements from U and leaves (external nodes) contain the
keys [8], 12]. The access path from the root to a leafis a minimal prefix ofthe information
contained in the leaf. The radix trie has an annoying flaw: there is "one-way branching"
which leads to the creation of extra nodes in the tree. D. R. Morrison discovered a way
to avoid this problem in a structure which he named the Patricia tree. In such a tree all
nodes have branching degree equal to two. For more details see [8], [12]. The Patricia
tree finds many applications, e.g., in lexicographical order, dynamic hashing algorithms
and so on. If we want to store a new element in the tree, then two situations may occur.
Either the element is already in the tree, which we call a successful search; or the element
is not in the tree, hence an unsuccessful search. It turns out that the average value of the
unsuccessful search, c,, in a family of Patricia trees with n records satisfies the following
recurrence [12, p. 498]:

Co=C =0,

"-l( n )(2.2)
(2"- 2)Cn 2n- 2 + ., c..

This is equivalent to (2.1) with s 0, N 1, an 2- ".
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Example 2a. Gallager-Tsybakov-Mikhailov conflict resolution algorithm [7],
[18]. Assume an infinite number of users sharing a common communication channel.
Since the channel is the only means ofcommunication among the users, packet collision
is inevitable, if central coordination is not provided. The problem is to find an efficient
algorithm for retransmitting conflicting packets. It turns out that the so-called conflict
resolution algorithms [2], [4], [7] are the most efficient, and among them the Gallager-
Tsybakov-Mikhailov (GTM) algorithm [7], 18] achieves the highest throughput. The
idea of the algorithm is to partition a conflict of multiplicity n into smaller conflicts by
observing the channel and learning whether in the past it was idle, success or collision
(ternary feedback). The performance ofthe algorithm depends on two quantities Tn and
Wn, where n is the multiplicity of a conflict. T represents the average length of a conflict
resolution interval, while Wn is the average length of the so-called resolved interval (for
details see [7], [18]). It is proved that Tn and W, satisfy recurrences [18]

(2.3)

and

To= T 1,

(2n-2)Tn=2n+nTn_+
k=l k

W0= W 1,

n-l( n )(2.4)
(2" + 2)W, + nWn + , Wk.

k= k

These recurrences are not oftype (2.1), but in 16] we have proved that both recurrences
might be solved if one finds a solution of the following recurrences

t0=h= 1,

n-l( n )(2.5)
(2n- 2)tn 2n + tk

k=l k

and
Wo=W 1,

nl (n)(2.6) (2n+ 1_ 2)w,= + Wk
k=l k

which fall into class of (2.1). Moreover, it is shown that for a Poisson message arrival
process the maximum throughput kma of the algorithm is equal to

zW(z)
(2.7) max max

T(z)

where
Zn Zn

W(Z) Z Wn n!
T(z) . Tn

n=0 n=0

Note that W(z) and T(z) are exponential generating functions of W, and Tn, respectively.
Example 3a. Berger’s conflict resolution algorithm [2]. Consider now a conflict

resolution algorithm as in Example 2a with binary feedback, that is, a user distinguishes
only two states ofa channel: nothing or something. Then Berger [2] described an algorithm
for which the average length ofthe conflict resolution interval T, and the average length
of the resolved interval W, satisfy recurrences similar to (2.3) and (2.4) except the first
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term which is either 2" / + n + nTn- or + nWn- 1. Neglecting terms
and nWn- we have to solve the following equations:

to 0, tl 1,

(2.8)
(2n- 2)tn 2"+ + n- + tk,

k=l k

Wo--Wl-- 1,

(2.9)
(2,+ 1_ 2)Wn + w.

k=l k

Moreover, the maximum throughput max satisfies

xW(x)
(2.10) Xmax max

e + T(x)

where T(z) and W(z) are defined as in (2.8) and (2.9), respectively.
These motivating examples suggest that from a practical point ofview both a closed

form solution of (2.1) and the generating function of the solution are interesting. In
particular, for (2.7) and (2.10) it is much more important to derive an approximation of
W(z) and T(z) for small values of z, than to obtain exact closed form solution of (2.5)
and (2.6).

3. Solution of the recurrence. Let l(z) be the exponential generating function for
the sequence l,, n 0, 1, defined in (2.1). Let us also introduce a new sequence
L,, n 0, 1, ..., as follows:

(3.1) L, 1,- lo, L(z) l(z)- loe
where L(z) is an exponential generating function ofL,. Note that L0 0, and recurrence
(2.1) is transformed into

L0=0, L1, ,LN given,

nl (n)(3.2)
(2" + s_ 2)L, 2nan +/0(2n 3) + Lk, n > N.

k= k

To solve (3.2) we use the generating function method. Multiplying (3.2) for n > N by
z"/n! and taking into consideration initial conditions, one shows that

2SL(2z) L(z)(e + 1)

a(2z) ao 10(2- 1)(e2z 1)
(3.3)

+ kl Lk(2k+ 1) + 10(2- 1)2k- a2 Zi
i=0

where a(z) is the exponential generating function for a,. Substituting now in (3.3) z by
z/2 and using (3.1) we obtain

(3.4) L(z) 2-*L(z/2)(ez/2 + 1)+ b(z)

where
N

Zk

(3.5a) b(z) 2-*[a(z) a0]- lo(1 2-*)(ez- 1)+ gk,
k=l

(3.5b) g lg 2- s) ak2-- 2- l, k 2, N.
i=
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To find a closed form solution for (3.2) we must solve the functional equation (3.4).
The easiest way is to introduce a new function H(z) as follows:

z
(3.6) H(z) L(z)

ez-

Then, (3.4) becomes

b(z)z
(3.7) H(z) 2 *H(z/2)+

ez-

We prove that
LEMMA 3.1. A general solution offunctional equation (3.7) is given by

(3.8) H(z) H*(z) + 2(1 -s)kb(Z2-)z2-k
ez2-’-k=0

where H*(z) limk-, 21 -S)H(z2-), provided H*(z) exists and the series in (3.8) is
convergent.

Proof Iterating (3.7) n times and taking the limit as n --* c we find (3.8), assuming
the appropriate limits exist.

Let us now consider H*(z). We show the following:
COROLLARY 3.2. If H(z) is differentiable (1-s)+ times at z-0, where

a+ max {0, a}, then

(3.9) H*(z) Z(1 s)+ H(I s)+(0)
(1 s)+!

Proof Assume first s >= and note that by (3.6) and (3.2) H(0) 0. Then

lim 2 S)H(z2-) 0.
k--

Now let s < and u z2-k. Then applying l’Hospital’s rule s times, we find

H(u) H( s)(0)
lim 2 S)H(z2-k) z lim

ul
z

k-* u-* 0 (1 S)!

where H(")(Zo) is the nth derivative of H(z) at z0.
We now present sufficient and necessary conditions for convergence ofthe series in

(3.8). Let b,, n 0, 1, be coefficients in the Taylor expansion of b(z) at z 0. By
definition we assume also that b_, 0, n 0, 1, .... Then

COROLLARY 3.3. The series in (3.8) is convergent ifand only if

(3.10) b0 b bl 0

provided b(z) is (1 s)+-times differentiable at z O.
Proof Necessity. Let z > 0 be a fixed real number and denote the series in (3.8) as

k= o ck, which is assumed to be convergent. This implies that limk- ak 0 11] i.e.,
the following must be satisfied:

lim 2(1 )k b(z2-k)z2-k Z lim us-
b(u)u

k--* ez2-k u O eu-

where u z2-k. Assume first s > 1. Then

-0
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for any values of bk, k 0, 1, ..., assuming b(0) < (in our case b(0) bo 0). Let
now s -< and apply l’Hospital’s rule s times. Then

0 lim u - b(u)u
lirn u-sb(u) lirn

btl(u)
lim ’bt(u)

u-., o eu- u o (1 s)u-s -* o (1 s)!

hence (3.10) holds.
Sufficiency. Assume now that (3.10) is satisfied. By D’Alembert’s criterion 11 the

series is convergent if limk- ak / 1/ak < 1. Note that

ez2-k b(z2-k 1)
lim ak /

lim 2-1 21(3.11)
k-, ak k-,. eZ2-,,- T_ b(z2-k)

But, by l’Hospital’s rule

ez2-k- eu-
(3.12) lim 2-1 lim 2-1 1"

k eZ2-k- u 0 eu/2

hence by (3.11 and (3.12)

lim ak / 21-s lim b(u2-1) 21 -s lim 2-1
b’(u2-1)

k ak u o b(u) u- o b’(u)

b(2- S)(u2-)
2-2-1 lim =< < l;

u-*0 b(2- )(u)
hence the series is convergent.

In order to find an explicit formula for l(z), let us introduce the Bernoulli inverse
relation. For a given sequence An, n 0, 1, we define a sequence n, n 0, 1, as
in [17]

(3.13) A,,= ( n

k--0 k BkAn-k

where Bk, k 0, 1, are Bernoulli numbers defined by [1

Zkz--z--= nk-, Izl<2.(3.14)
ez- k=0

(In Appendix A we list some properties ofBernoulli numbers and Bernoulli polynomials
which will be used in the further part of this paper.) Note also that by (3.13) and (3.14)
the exponential generating function A(z) ofAn is given by [1 ], [17]

(3.5) d(z)=a(z)

and
ez-

An (kq- 1)-*A._

(by the above equation and (3.13) An and A, are a pair of inverse relations). Then, we
prove our first main result of this section.

THEOREM 3.4. If(3.10) and the hypothesis ofCorollary 3.3 hold, then the exponential
generatingfunction Ofln is given by

(3.16) /(z)= loe + z-+- ll*s(eZ-- 1)+ b(z)+(ez- 1) 2-sg
b(z2-

k= ez2-k-
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and

(3.17)

where

(3.18)

/(z)= loeZ+ z(-)+- l*(e- 1)+ b(z)+(e
z- 1) bkzk
Z k=(2- s)- k!(2k--

l* 1- s)+-/06,(1- s)+-/oB(1- )+

and a- min { a, 0 }, nk is the Kronecker delta, while b(z) is defined in (3.5a).
Proof Equation (3.16) follows directly from (3.1), (3.6), (3.8) and (3.9). We must

only derive (3.18). But, by (3.6) and (3.15) H(z) [(z) loz loz/(e 1). Note now
that H*(z) given by (3.9) is a coefficient of the Taylor expansion of H(z) at z(-)+.

To prove (3.17), consider the series in (3.16), Corollary 3.3 and (3.15). Note also
that by (3.13) condition (3.10) is equivalent to b0 b b 0. Then the series
in (3.16) is equal to

[3
z 2 k. 2(’-s)kb(z2-k)z2-k ., 2(-*)kb(z2-k) 2(’-s)k .ez2-k

k= k=0 k= i= (2-s)-

" bkz--kk! I- 2-i(k+s-l) -’ k!(2k 77---bkZk’l
k (2 s)- k (2 s)-

and by (3.10) the geometric series in the above formula is convergent. D
The second main result of this section is as follows:
THEOREM 3.5. If(3.10) holds and the hypothesis ofCorollary 3.2 is satisfied, then

recurrence (2.1) possesses thefollowing solution:

n! n{/n+l bk(3.19) ln=l+(1-6")l*
(n+s)! bn n+ k=(2-s)- k 2k+s-

where

(3.20)

(3.21)

bo O, b, 2-*an 10(1 2-s) + gnX(n
_

iV),

min k,N

bk 2-s(ak- aoBk) lo(1 2-s)rk + (1 6o)
i=1

n>0,

gi is given by (3.5b) and x is a function equal to one if condition A is satisfied, and
otherwise it is zero.

Proof Equation (3.19) follows directly from (3.17) by applying the multiplication
formula for generating functions. V1

Remarks. (i) Assumptions (a) and (b) from 2 are relevant while (c) is not relevant
for the above derivations. If a constant 3’ is any number, then (3.4) becomes

L(z) ,L(z/2)(ez/2 + 1) + b(z)

and using (3.6) together with e (ez/2 1)(ez/2 + 1) we obtain

H(z) 23,H(z/2)+b(z)z
ezm

instead of (3.7). (Note that b(z) here is defined slightly different than in (3.5a).) This form
of the above functional equation is relevant to get a closed form solution for H(z).

(ii) For (3.19) (more precisely: (3.21)) we must compute dn for a given
n 0, 1, For example, if an (nr)qn, q is a constant and r is an integer, then using
(A4) from Appendix A and (3.13) we find
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qry nkqn-r-k= qrnn_r(q
r k r

where Bn- r(q) is a Bernoulli polynomial (see (A 1)). Hence

(3.22) an qn, dn qrnn- r(q).

For more Bernoulli inverse relations, see Riordan [17].
Example lb. In that case we must substitute in (2.1) Co Cl 0, N 1, s 0,

an 2"2-L Then, by (3.5b), (3.18) and (3.20) gl 0; 1) 0; bk 21 -k + 6k0.
But nn(1/2) -(1 2 -n)nn, (see (A9) in Appendix A) so dn 3Bn + 6n 22 -nnn.
Then, by (3.22) and the above bn 4Bn(1 2n) + 6nl and by (3.19)

4 (n+l) k(1--2-k)2k_Cn 2 n q_ nO -Jr- 2 in+lk= k -1

Using now (A4) and (A8) after some algebra we obtain

(3.23) Cn=2
4 2 % (n+l Bk

n +
F 26nO +

--2 \ ) 2k-n+lk= k -1

Example 2b. Consider first (2.5). Then, an 1, s 0, N 1, and q -1, l’ 0,
bn 6n0 6n- Naturally, n Bn + 6nl and bn -nBn- for n >- 2. Therefore, by
(3.19) we find

(3.24) tn=2_tnO_t3nl (n+l)(k nk-1
n+lk=2 \ J \ 2k-l_ l"

On the other hand, for (2.6) we have an 2-n, s 1, N 1, and then we compute
gl 0.25, l’ 0, bn 2-n- 0.5 + 0.25/n. Moreover, by (3.22) dn nn(2-n 1)
and bn Bn(2-n 1) 0.5/n + 0.25nBn_ 1. Hence, after some algebra

0.25 (n+l) (k)Bk-l(3.25) Wn=+ nl +’
2n+l n+lk= k -1

Example 3b. For (2.8) we assume s 0, N 1, an 2 + n2-n 2-n. Then
gl -2, l and bn an 8no 28n. Using (3.22) we show that t/k 2(Bn + 6n) +
0.5kBk_ (1/2) Bk(1/2) and by (A9) we obtain bk Bk 1.5kBk_ + 2kBk_ (2-k

2-) Bk(2 k 1) + 1.5/n. Hence, by the above and (A8) we find

(3.26)
tn=4"5--2"515nO--2"515n12n+ + (n+l) 2k-Bkln+lk= 2 k -1

n+ :___ k 2k-l- 1"

Recurrence (2.9) is equivalent to (2.6) so the solution is given by (3.25).

4. Allrts. In this section we present an approximation for the exponential
generating function l(z) for small values of z and an asymptotic approximation of l,, for
large values of n.
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Let us start with the small value approximation of l(z). Such an approximation
might be very useful in practice if one is more interested in l(z) than In. For example, in
determining maximum throughput for a conflict resolution algorithm we must optimize
a ratio given by (2.7), where exponential generating functions are involved. It turns out
that the optimal value of z is rather small, and hence the discussed approximation is
applied. Assume now z </3, is a small real value and consider (3.17). Then, we find

M bkzk-(4.1) l(z) loe + z1 s)+ l.(eZ 1) + b(z) + (e 1)
k!(2k +

+ O(zM+ 1)
k=(2-s)- 1)

where b(z), l*, bk are given by (3.5a), (3.18) and (3.21), respectively, while M> (2 s)-.
The value ofM determines the quality of the approximation.

Hereafter we deal only with the asymptotic analysis of In computed as in (3.19).
Naturally, the problem is to find an approximation for the sum in (3.19), and further we
restrict our considerations to that sum. Let

(4.2) S(n, s, bn)
n +---- k 2k +-k=t

where is an integer. In our case (2 s)-. According to (3.21) bk consists of three
terms; however, for asymptotic analysis of (4.2) the first one is the most difficult to
handle, since it includes k. Furthermore, we restrict our considerations to a wide class
of ak such that the other terms of (3.21) will be automatically included in the analysis.
Therefore, let an be given by (3.22), that is

(4.3)

where r is an integer while q > 0. For q we obtain, as a special case, the other terms
of (3.21).

Under the above assumption we deal with the asymptotic approximation of the
following

(4.4) S(n, r, s)
n - k r dk + s- -1k=t

where d > 1, > s. In our case d 2. Note that applying the geometric series formula
to the denominator of (4.4) one finds

(4.5) S(n,r,s)=( n+l ] qro nr( )r n + i d-J(r + s) n + r
Bk(q)d-k- 1)

j=l k=m k

where m max {t, r} r. In our case (2 s)-, and

12 s r, s =< max { 1,2 r},
(4.6) m

0 otherwise.

Let us now consider the inner sum in (4.5) divided by n. Then

r (n+l--r)Bk(q)d-J(k-l) nr (n+l--r) (n)k-(4.7)
n k= m k k= m k "nk(q) -But 13]

(4.8) (n+l-r)k ..[1 + O(n-l)]
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and let x =nd-j. Equation (4.8) suggests the following approximation of (4.7) for large
values of n

n+l-r B(q)x-’ ’ k!k=m k k=m

From (A1) we know that for Ixl < 2r

Bk(q)x_ eX m- Bk(q)xk-
(4.9)

k! eX----- k= ok= m k!

Therefore, we approximate S(n, r, s) by T(n, r, s) where

( n + ) nqr [ eX---l
m- Bk(q)xk-1](4.10) T(n, r, s) d-+ s)

eqX

k!r "= k=O

We prove that
THEOREM 4.1. For any values ofr and s

def
(4.11) 6(n, s) T(n, r, s) S(n, r, s) O(n-s- l).

Proof Let 6(n, s) 6(n, s) + 62(n, s) where 6(n, s) is computed for x <
(nd- < 1) while 6_(n, s) for x > 1. We first evaluate 6l(n, s). Then for d > n one finds

61(n,s)=O(nr) ,
j logd n

d-J(r + s) Bk(q)xk-
k-=

I (n+l_r) 1 B(q)x-i
(4.12) .- k

+ E k!k=n-r+

<= O(n) , d-J(r + s)O(n-lxm
j log./n

The inequality in (4.12) comes from the fact that the second term in (4.12) represents a
remainder of a convergent series and we can make it as small as we want for large values
of n, so the first term in (4.12) is a leading factor. Therefore,

l(n, s) =< d-J(r+s)O(nr-1glm-ld-J(m-1))
j lOgd n

d-J(r +s + 1)O(rtr + m 2) O(n-S- 1)
j logdn

since under (4.6) the above geometric series is convergent.
Assume now x > 1, i.e., dJ < n. For simplicity we also assume that m 0 and

q 1. Then the finite sum in (4.5) may be rewritten in the presence of (A8) as

def n-r /n+l-r’ dJ-1

A o ) Bkd-J(k-1)=dJ(n-r) kn-r"
n+l--rk= k

But for any a >
a-1

la-I, (ka-)<=a- x"dx<_(n+ 1)-a-(1 a-t),+ ;
k=l

hence A <- O(x-(1 d-)"). Using the following well-known inequalities [13]

e-x
>, x> O, d-< e--,

ex- x
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we may evaluate/2(n, r) as follows:

2(n, r) <= O(nr) d-j(r + s) (1 d-J)n eX---j=l

N O(n) d-(+0 N O(exp {-[rid+ (r+ s) In d- r Inn In loge nl }),
jl

which may be made as small as we need for large n, e.g., O(n-s- 1) as required.
By Theorem 4.1 the problem of comufing S(n, r, s) is reduced to finding T(n, r, s)

Nven by (4.10). We aply the Mellin transfo method [9], [12], [15]. In Appendix B
we rove that for an odd integer c, real x, q > 0 and Re z > c/2

def c/+i =--ex(-q (-c/B(1-q)x-
k

(4.13) I(c, q)
oa-

f(z, q)r(z)x-&
ex o

where f(z, q) is the generalized zeta function (see Appendix A) and r(z) is the gamma
function [1 l, [5]. Then (4.10) is equal to

d-( + I(3 2m, q +(4.14) T(n, r, q)
r

and we restrict the range of q to 0 N q N 1. The case q needs some additional
considerations, therefore q appears in (4.14) as shown in Apendix B. Note that
x nd-, and then after some algebra one roves that for Re < r + s

q f(z, q + l)r(z)n &(4.15) r(n, r, q) + O(n-)l
3/- d +’-

where stands for 1/2i r+
dc- i

The calculation of the contour integral in (4.15) is routine, and is equal to minus
the sum ofthe residues ofthe function under integral to the ght ofthe line ofintegration
[9]. Three types of singulatics must be taken into account:

(i) Zeros ofthe denominator, that is, d + 0. The roots of this equation
arc equal to zg r + s + 2ik/ln d, k O, 1,

(ii) Singular point ofthe zeta function at z l,
(iii) Singular points ofthe gamma function at z -m, where m is a nonncgativc

integer.
The number of singulatics wc must consider for evaluation of (4.15) depends on the
position of the line of integration, that is, it depends on the values of r and s. The most
dicult to handle is a double pole, which might occur if a zero of the denominator
coincides with singular point ofthe zeta function or with the gamma function. Wc prove

(4.16)

PROPOSITION 4.2. Let M r + s.
(i) IfM r + s < then

S(n,r,s)= n-Sqr{ (--1)-M+l [(-M)’ In / (1 M)
(In n if(1 M) 0.5 In d)

+ "(M, q + ql) ]
+/=-lm2 (_1)1+- ]5i Bl+l(1--q+ql)nt+M--fM(n)}

/ -M

+ O(n-S- 1);
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(ii) IfM r + s 1, then

n-Sqr {S(n, r, s)
r!

In-1 d [lnn + 3’ + (1 q + 6ql) 0.5 In d]

m-- (_I)I+ BI+ 1(1--q+6ql)nM+l_fM(n) } + O(n_
_

1);(4.17) +
dM/It= (l+ 1)!

(4.18)

(iii) IfM > and rn > 1/2 then
n-Sqr[m2(--1)t+l B,+ 1(1 _-". - ql)

-r! lZ’t=_l (l+1)! dst+q-1 nS(n, r, s) M+

fM(n) (M, q + 6ql)(M- 1)! ln-l.d} + O(n-s 1);

(iv) IfM > and rn < 1/2 then

S(n, r, s)
n-Sqr

r! {’(M, 1-q+6ql)(M- 1)t In-1 d+ft(n)} +O(n-s-l)(4.19)

where

(4.20) fst(n) lc - (M+ 27rik]ln d)I’(M+ 2rik]ln d) exp (-2rik loga n)

k/O

and p(x) is the psifunction ].
Proof See Appendix C.
The function ft(n) may be safely ignored for practical purposes, since numerical

analysis shows that values of the function are very small in comparison with the leading
component of (4.16)-(4.19). In fact, it is not difficult to prove that ft(n) ft(dn) (e.g.
ft(n) is a periodic function of loga n) and ft is bounded. The last follows from the
following well-known formula [19]

(i) lexp (iY)I--< 1,

(ii)

y- real,

O(1) for s> 1,
(s + iy, q)

O(Y /2- ) fors<0,

(iii) for any nonnegative integer, s,
s-1

[F(s + iy)l 2
7r I-[ (J 2 + y2),

y sinh y j o

Ir(-s + (j +
y sinh y .:

and sinh y O(el’l).
Example lc. To evaluate (3.23) we put s 0, r 0, q 1, m 2 in (4.16) and

after some algebra we obtain

(4.21) Cn lg (n)
In r -_______ +In 2 - +f(n)+O(n-l)’ n>=

wherej(n) is given by (4.20) with M 0 (see also [12]).
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Example 2c. For (3.24) we assume s 0, r 1, m and by (4.17) we find

(4.22) tn 1.5 in + lg n + f(n) + O(n-), n >=
where lg n log2 n. For (3.25) we assume s 1, r 1, m 0, hence by (4.19) and (A16)
we obtain

7r
2 1

(4.23) Wn=+ n+ -+fz(n)+ O(n-2).
n+l 241n2 n

However, in order to compute the maximum throughput ofthe algorithm (Eq. (2.7)) we
need the exponential generating function of tn and wn for small values of z. But by (4.7)
one finds

Z Z2
2
4

(4.24a) t(z) - + O(z6),
2 36 24. 450

Z Z2 Z4

(4.24b) w(z) +8- 720-----3--i + O(z8)

where z is a real number, which might be optimized to get maximum throughput. For
details see 16].

Example 3c. By (3.26), the two sums might be evaluated either as in Example c
or as in Example 2c. We immediately obtain

(4.25) t, 3 + 0.5 lg (r/4/Tr) + 3’ + O(n_)
21n2

while wn is given by (4.25).

5. Conclusions. In this paper a linear recurrence with full history was considered.
We have found a closed-form solution of the recurrence, and in addition the generating
function of the solution was computed. We have also established two approximations:
a small value approximation for the generating function and an asymptotic approximation
for ln. The analysis was illustrated by three examples of some importance in practice. In
future research assumption (a) from 2 should be relaxed. Note also that for an exact
solution of(2.3) and (2.4) we should consider (2.1) with nln- added to the LHS of(2.1).
Finally, our basic recurrence (2.1) with an instead of 2nan should be also analyzed.

Appendix A. Bernoulli polynomials and the Riemann zeta function. We list below
some properties ofBernoulli polynomials and the Riemann zeta function which are used
often in this paper. Details may be found in [1 ], [3], [5], [9], [11], [14].

Bernoulli numbers Bn and Bernoulli polynomials Bn(x).
DEFINITION.

teXt
(A 1) et_ , Bn(x), Itl < 2r,

n=0

(A2) Bn Bn(O).

Properties.

(A3) Bn(x + 1) Bn(x) + nxn- 1,
n (n)B(x)hn-(A4) Bn(x+ h) ,

kk=0
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(A5) On( X) (-- 1)nOn(X),

(A6) Bn n(n), Bk-- 6nl
k=0 k

(A7)
rn kn_Bn(m+_ 1)-Bn+

k=l n+l
n,m= 1,2,

(A8) B. (x)-B. (a)
B.(t)dt +1 +

n+l

(A9) (1)Bn - Bn(21-n- l).

Generalized zetafunction.

(A10) r(z’ q) n=0(q+ n)z’
Re z> 1, q 4: 0, -1, -2,

Riemann zetafunction.
(All) {(z) ’(z, ).

Properties.

(A12) ’(0, q) :- q,
z

where b(z) r’(z)/r(z).

(A14)
df(z, q)

In r(q)- In 2r,
dz z=o

(A15) Bn + l(q)
’(-n,q) -, n=0,2,3,

n+l

(A16)
(27r)2m

’(2m) [Bzml, m 1,2, ....
2(2m)t

Appendix B: Mellin transform. Let us compute the following integral:

fc/2 + ioo c
(B 1) I(c, q) i c/2

(Z, q)P(z)x-Zdz, Re z>

where q > 0 and c is an odd integer, while x is real. To evaluate the integral, we use the
residue method. A path of integration goes from (c/2 + iN) to (c/2 + iN- M) to
(c/2 iN- M) to (c/2 iN) to (c/2 + iN). Using properties ofzeta and gamma functions
([9], [19]) one easily proves that the integral over horizontal lines and left vertical line
vanishes where N, M -- c. Therefore, I(c, q) is equal to the sum of residues left of the
line (c/2- ic, c/2 + i).



SOLUTION OF A RECURRENCE 247

Case A: c -< 0. Then the only singularities of the integrand are poles of the
gamma function, that is, nonpositive integers smaller than c/2. Hence, noting that for
z -k (k >= 0) the residue of the gamma function is equal to (-1)k/k! [9], we obtain

I(c, q) ., (-k, a)
(- 1)xk

k (1 c)/2 k!

But by (A15), (A5) and (A1) for Ixl < 2r we find

(B2) I(c, q)
ex(l q) (1 -)/2 Bk(1 q)Xk_ IXl < 27r
ex- k o k!

where Bk(X) is Bernoulli polynomial.
Case B: c > 0. In that case all nonpositive integers are singularities of the gamma

function, and in addition for c there is a simple singularity at z of zeta function.
Therefore,

I(c, q) _, f(-k, q)
(- 1)kxk+(1 acl)X-1

ktk=0

since the residue at z ofthe zeta function is equal to one. As above using (A 15), (A5)
and (A1) we finally obtain

ex( q)

(B3) I(c,q)= x------7-x-lc’l’ Ixl <27r.

By analytical continuation we prove that (B2) and (B3) hold for all real x. Hence,
for any odd integer c we find

ex(l q) (1 c)/2B q)Z Xk-(B4) I(c, q) eX o

where the sum in (B4) is assumed to be zero if the upper index is smaller than the
lower index in the sum symbol. Moreover, for q 0 it is easy to show (using the fact:
Bn(0) Bn(1) for n > and Bl(1) --Bl(0)) that

(l c)/2 Bk k(B5) I(c, 1)
eX_l =o

and then f(z, q) in (B 1) becomes the Riemann zeta function ’(z) ’(z, 1).

(C1)

Appendix C: Proof of Proposition 4.2. Let us evaluate the following integral:

fc/2 + im (Z, q)r(z)n-J(n, N,M) - dc/2 ioo -d--- i dz

where c is an odd integer, q > 0, N, M-integers, and Re z < M, c/2 < M.
In the evaluation ofthe integral we use the same method as in Appendix B; however,

this time the path of integration is right to the line (c/2 ic, c/2 + iaz). By the same
arguments as above we can show that the integral is minus the sum of residues on the
right of the line of integration.

Let g(z) be a function under integral. We must consider four cases depending on
the value ofM and c (note that c/2 < M).
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Case A: M < 1. In that case singularities of g(z) are as follows:
(a) For the gammafunctions, all nonpositive integers in the interval [(c + 1)/2, 0],

that is, z -m, m 0, 1, .--, (c + 1)/2;
(b) For the zetafunction at z 1;
(c) Zeros of the denominator in (C1), that is, Zk M + 27rik/lnd, k

0, _1, _2, "-’.

Then the residues of g(z) are equal to the following:
(i) For z -m, m 4: M, m 0, 1, -(c + 1)/2 by (C1) and (A15)

(_l)m nN+ m
(C2) res g(z) (-m, q)

-m /M m! dM+ m -1

(ii) For z ([9], [19])

nN-
(C3) rze=S g(z)= dM 1;

(_l)m+ Bm+ (q)nu+m

(m + )! dM/ m -1

(iii) For Zk M + 2rik/ln d, k +__ 1, +2, (Zk =b M)

, resg(zk)=_nN_M
k-- In dk___oo

(M+ 2rik/ln d)

k/0 k/0

(C4) I’(M+ 2rik/ln d) exp [-2rik 1Ogd n]

nN MfM(n
where fM(n) is defined as in (4.20).

(iv) For z M
This is the most difficult to handle, since z M is double pole ofg(z) (gamma function
and the denominator of (C1)). To find the residue, we use the following expansions of
the functions under the integral at z M (let w z + M) ([5], [9]):

(C5a) .(z, q) _B-M,q.______+t w’(M,q)+ O(w2),
1-M

(C5b) r(z) w- (- I,-M
(-M)!

(C5c)

(--1)-M

(-M)!
b(1 M) + O(w),

n- nN-M W rtN-M In n + O(

(C5d)
dM- z_

-w- ln d -2 + O(w).

The residue at z M is the coefficient of w- in the product of (C5a)-(C5d). After
some algebra we find that

(C6) zr=eSmq(Z)= rtN_M(--1)-M { ( ) }(1 -)I. BI M(q) 1Ogd n k(1 M)/ln d + "(M, q)/ln d

where k(x) is the psi function [1], [5] and "(x, q) denotes the derivative of the zeta
function for z x. For example ([1], [5])

"(0, q)= In r(q)- 1/2 In 27r.
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For other values of V(x, q) see [3].
Finally, taking into account (C2)-(C6) we find that for c/2 < M <

J(n, N, M)nM-N=
(--1)I-M

(1 -M)!

(C7) {B, t(q)[lOgd n- -,(1 -M)/ln d + "(M, q)/ln d

-(c + 1)/2 (__ 1)m + Bm + l(q)nm +M

’ m"ii dM+m-
4-fM(n)

m=-I
m / -M

wherefM(n) is defined in (C4).
Case B: M 1. In that case we have the same singularities as above; however, now

z is a double pole of the denominator and the zeta function. Hence, (C2) holds for
all nonnegative integers m e [0, -(c + 1)/2], and (C4) holds forM 1. The only problem
is the double pole at z 1. But denoting w z and using expansions (C5c), (C5d)
together with 5], [9]

we find that

Therefore,

(C8)

(z, q) w-1 (q) / O(w), Ia(z) "yW + O(W2),

rze=S q(z)= nlV- l( loga n /

j(n,N,M)n -M._ -(lga n + "Y +lnk(q)d 21)
-(c+ 1)/2 (_ 1)m + nm+ l(q)nn+-y=o -’"ii dM+m-

where j’](n) is defined in (C4) for M 1.
Case C: M > and c/2 < 1. We have now the same singularities as before, but

there is no double pole. Therefore, by the same arguments as above we find

-(c + 1)/2 (__ 1)m + Bm + l(q)nm +M ’(M, q)(M- 1)!
(C9) J(n,N,M)nt-lv=- ,

m"iii dt+
+ +ft(n).

m=-I
m_ In d

Case D: M > and c/2 > 1. In that case only zeros of the denominator are poles
of the function under the integral. Noting that for z0 M

(M, q)(M- 1)!nv-1
res q(z)
z0=t lnd

we find that

(CIO) J(n, N, M)nM- N._ (M q)(M- 1)l/In d+fM(n)

wherefMn) is defined in (C4).
In order to prove (4.16)-(4.19) we must assume in (C7), (C8), (C9) and (C10)

N r and M r + s, and take into account (4.15).
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ALGEBRAIC METHODS APPLIED TO NETWORK
RELIABILITY PROBLEMS*

DOUGLAS R. SHIERf AND DAVID E. WHITEDf

Abstract. An algebraic structure underlying network reliability problems is presented for determining the
2-terminal reliability of directed networks. An iterative algorithm is derived from this algebraic perspective to
solve the (s, j)-terminal reliability problem simultaneously for all nodes j. In addition to providing an exact
answer (in the form ofa reliability polynomial), the algorithm also yields a nondecreasing sequence ofapproximate
solutions guaranteed to be lower bounds on the exact solution. Empirical results, presented for two different
implementations of the algorithm, show that useful approximate solutions can be obtained in a reasonable
amount of computation time.

Key words, algorithm, directed graphs, reliability

AMS(MOS) subject classifications. 05C20, 62N05, 94C15

1. Introduction. The problem ofdetermining the reliability ofan existing or proposed
communication system has received considerable attention in the engineering, statistical,
and operations research literature [1 ], [5], [9]. For example, it is important to assess the
probability that a message sent from a given source arrives at its destination, when the
components comprising the system are subject to failure. Unfortunately, most reliability
problems ofany substance are now known to be NP-hard or #P-complete [4], 17], 18],
[27]. As a result, researchers have focused on special network structures (where poly-
nomial-time algorithms are possible), or have resorted to simulation.

A number of special classes of undirected networks have recently been analyzed
with success. Polynomial-time algorithms are now available for calculating certain reli-
ability measures in series-parallel [21 ], inner-cycle-free 14], inner-four-cycle-free 14],
and cube-free [15] planar graphs. Provan 16] has shown, however, that the problem of
determining source-to-terminal reliability remains #P-complete for the general class of
planar graphs. In order to analyze more complex network topologies, the idea of pivotal
decomposition [5] together with polygon-to-chain reductions [28] can be used to decom-
pose the original problem into smaller subproblems.

Similar results and tools are not as available in the case of directed networks. The
only significant types of directed networks that are known to admit a polynomial-time
algorithm are "basically-series-parallel" networks [2], [3]. Also, unlike the case for un-
directed networks, certain simplifications are not available when carrying out pivotal
decomposition in the directed case [1 ]. Nor does there exist an "optimal" factoring al-
gorithm, such as that demonstrated for undirected networks 19].

This paper exploits the underlying algebraic structure of network reliability problems
to produce a general iterative algorithm, applicable to arbitrary directed networks. While
not polynomially-bounded, it is able to generate reasonable approximations to exact
network reliability with a modest amount of computation.

2. Algebraic structure. Suppose that G (N, E) is a directed network with node
set N and edge set E, in which nodes do not fail but edges fail independently of one
another. The reliability of edge e (the probability that edge e functions) is denoted by Pe.
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f Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634.
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Nodes s and t designate the specified source and terminal of G, and we are interested in
calculating the 2-terminal reliability Rst(G):

Rst(G) Pr {there exists a functioning path from s to t in G}.
Associate with each edge k e E a variable Xk. Then the reliability polynomial

Fs/(x) Fst(x, xr) associated with s and is a polynomial in Xl, Xr such that
if the numerical values p,..., pr are substituted for the corresponding variables
x, ..., x then the resulting value is the probability that a functioning path exists from
node s to node t. (If the xi’s were simply Boolean variables, this polynomial would be
identical with the.structurefunction ofthe system [5].) The reliability polynomial can be
concisely expressed using two operations (R) and (R) defined on polynomials.

To begin, let
Ta =XX2 xa/

denote a monomial term, where each aie (0, }. The operation (R) when applied to terms
Ta and Tb yields the term Tc, where ci max {ai, bi }. This operation is extended to
arbitrary polynomials by distributivity. The operation q) is defined on polynomialsf(x)
and g(x) using

f(x)(R) g(x) =f(x) + g(x) -f(x) (R) g(x).

Operations related to (R) and (R) were apparently first suggested by Mine 13] and by
Kim et al. 10]. More recently Gondran and Minoux [8], and Shier [24], have formulated
network reliability using the operations’0) and (R) defined above.

Let S denote the set of all polynomials that can be formed from monomial terms
Ta, Tb, by finite applications ofthe operations (R) and (R). Then it can be demonstrated
[24] that (S, (R), (R)) forms a distributive lattice with smallest element 0 (the zero polynomial)
and largest element (the unit polynomial). Suppose that Pt is the set of simple paths
from node s to node in G. Define the value v(P) ofpath P to be the product, with respect
to (R), of the edge variables along the path

v(P) (R) H {x:keP}.

Then the reliability polynomial Ft(x) can be expressed as

(1) F,Xx) (R) { v(P):P Pt}.
As an illustration, consider the standard bridge network in Fig. having s and
t 4. Since there are four simple paths extending from s to t, equation (1) becomes

Fst() XlX4tXlX3X5 lx2x4x6{x2x5

Equation (1) is just the standard expression for the inclusion-exclusion formula, applied
to paths in the network ]. Expanding such an expression, using the definitions of q)

x x4

x
2 x5

FIG. 1. The bridge network.
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and (R), and then substituting numerical values Pk for the corresponding variables Xk
yields Rst(G).

A number of techniques have been developed to calculate the quantity (1) for a
general algebraic structure (S, (R), (R)) satisfying appropriate properties [6], [8]. These
techniques can all be viewed as different methods of solving the system of equations

(2) z zMes,

which is linear in the operations (R) and (R). Here M (mij) is the weighted adjacency
matrix for G, with m0 Xk for k (i, j) e E and m0 0 otherwise. Also, es denotes the
sth unit row vector. An (extremal) solution z to these equations is known [6] to satisfy

z F(x) for all j e N. Thus by solving such equations to find Ft(x), and hence Rt(G),
we also obtain the (s, j)-terminal reliabilities for all j N. Moreover, unlike existing
methods for calculating two-terminal network reliability based on paths ], 11 ], such
algebraic methods do not need to first enumerate all simple pathsjoining the two terminals
[6], [8]. These paths are automatically generated in the course of solving the set of equa-
tions (2).

A natural way of solving (2) is by means of an iterative procedure, whereby the
current estimate for z is substituted into the right-hand side of (2), producing a new
estimate for the solution vector z. In the next section, we discuss a specific iterative
scheme for solving (2) that incorporates special data structures to streamline such com-
putations.

3. An iterative scheme. The basic idea of the iterative scheme presented here is
that ofpassing on, at each step, the information available at node to each ofits neighbors
j, where (i, j) e E. Before stating the general iterative scheme, the ideas will first be
illustrated using the network in Fig. 1. We will find all reliabilities z Fsj(x) relative to
the source node s 1.

In the algorithm, a polynomial label is associated with each node j. At any stage,
LABEL(j) will be a reliability polynomial based on a certain subset of paths from node
s to node j. In this sense, LABEL(j) corresponds to a current estimate of the solution z
to (2). Initially, if there is an edge k (s, j) e E then LABEL(j) Xk. If there is no such
edge then LABEL(j) 0; in the case of the source node, LABEL(s) I. Those nodes,
apart from s, receiving a nonzero initial label are placed on a list L. In this example, we
have

j: 2 3 4

LABEL(j): X 22 0

L: [3, 21
Now we remove the "top" node from L and update its neighbors j using

(3) LABEL(j) := LABEL(j)(R) [LABEL(i)(R)xk],

where k (i, j). The above (i, j) update simply incorporates into LABEL(j) new paths
from s to j that use the edge (i, j). Any node j whose label is changed by (3) is placed on
L if it does not already appear. This steps removes, in our example, 3 and updates

LABEL(2) x + X2X6 XlX2X6,

LABEL(4) XEXs,

L [2,41.

The corresponding network, with node labels attached, is shown in Fig. 2.
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x

x2x6
x x2 x6

x x4

x
2 x5

FIG. 2. Labeling produced byfirst step.

At the next step, node 2 is removed from the top of L. Nodes 3 and 4 are then
updated, and node 3 is added to L:

LABEL(4) x2x5 + XlX4 XlX2X4X5 q- x2x4x6 x2x4xsX6

XlX2X4X6 -- XlX2X4XsX6,LABEL(3) x2 - XlX3 XlX2X3 -- x2x3x6 x2x3x6

XlX2X3X6 + XlX2X3X6

=X2+ XlX3 XlX2X3,

L= [4,31.

This process is continued until L becomes empty. At this point, the polynomial
label on any node j represents zj Fsj(x). Table shows the final labels for our example,
together with the value obtained by substituting the common edge reliability p for all xk.

The general form of the iterative procedure is specified by the following algorithm,
where L again represents the list of nodes whose labels have been changed.

TABLE

j=l
j=2
j=3
j=4

X "- X2X XlX2X6
X2 qt. XIX3 XlX2X3
X2X5 XIX2X4X6 "- XIX2X4X5X6

_[_ X2X4X6 X2X4XsX6 .qt_ XIX4
XlX2X4X -Jr" XlX3X XIX3X4X5
XIX2X3X5 + XIX2X3X4X5

Rsj(G), Pk P

p+ p2 p3
p+f _p3
2p + 2p3- 5p + 2p
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1. [Initialization]
for j s do

if k (s, j) e E then LABEL(j) := xk
else LABEL(j):= 0;

LABEL(s) := 1;
L := [j: (s, j)e E];

2. [Iterative Step]
whileL[ ]do

remove from L;
for k (i, j) E do
T := LABEL(j) @ [LABEL(i) (R) xk];
if T q: LABEL(j) then
LABEL(j) := T;
ifj g L then enter j into L.

Upon termination of the algorithm, LABEL(j) will be the required reliability poly-
nomial Fs.(x). Notice that there are several ways of managing the list L. In our example,
we treated L as a queue, whereby nodes are processed in a FIFO (first-in-first-out) manner.
It is also possible to treat L as a stack, whereby nodes are processed in a LIFO (last-in-
first-out) manner. The effect of these two ways of managing L will be examined in 5.
First, we discuss a number of useful properties of this iterative algorithm.

4. Properties. In this section we make use of the algebraic properties of (S, , (R))
to establish certain properties of the iterative algorithm presented in 3. It will be con-
venient to denote the variable attached to edge (i, j) by x. Also, the label on node j at
the start of step m will be denoted by Lm(j). Then the (i, j) update (3) of node j after
step m is expressed as

(4) Lm + l(j) Lm(j) () xLm(i).
Because the label on node j represents the sum with respect to of a set of simple

s-j paths and because this set of paths can expand through subsequent updates (4), we
have

Property 1. If k -< m then L(j) (R) Lm(j) Lm(j).
One important simplification derives from the following property. It states that only

the "new" information N(i) added to the label of since was last on L needs to be
propagated to its neighbors j.

Property 2. Suppose that at step m an (i, j) update is to be performed, where the
labels on and j are Lm(i) Lk(i) (R) N(i) and Lm(j) with k < m. Step k represents the
step at which an (i, j) update previously occurred. Then at step m + the new label
assigned to j will be Lm + (j) Zm(j) () xN(i).

Proof At step k, node j receives the label Lg / (j) L(j) (R) xL(i). Also, since
k < m we have Lg / (j) Lm(j) Lm(j), by Property 1. Then

Lm + (j) Lm(j) xLm(i)

[Lm(j)@ Le + (j)] (x[L(i)) N(i)]

[Lm(j) Lk(j)xL(i)] xL(i)) xN(i)

[Lm(j)Lk(j)xL(i)] xN(i)

[Lm(j)@ Lk + (j)])xN(i)

Lm(j) () xN(i). E]
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Because the labels on each node will be maintained as fully expanded polynomials
(expressed using ordinary + and ), it is desirable to know when certain of the terms in
Lm(i) do not affect the label Lm(j). The following property provides one such condition.

Property 3. Suppose that at step m an (i, j) update is to be performed with
Lm(i) A + A2 + + Av, Lm(j) BI () B2 () () Bw and BI

_
XAl. Then the

updated label Lm + (j) Zm(j) ) x[h2 + + Av].
Proof. Let A A2 + + Ao and B B2 (R) (R) Bw. Then

Lm+ (j) Lm(j)( xLm(i)

[B (R) B] (R) x[A +A]

[B 6) B] + [xA + xA] [xA + xAI[B 6) B]

[B (R) B] + xA + xA xA[B +B BB] xA[BI () B]

[B (R) B] +xA + xA xA xAIB +xAB xA[BI (R) B]

Lm(j) + xA XALm(j)

Lm(j) 6) x[A2 + +Av].

Together, Properties 2 and 3 show that certain "cancellations" in the update step
(4) ofthe iterative scheme can be predicted in advance, and thus unnecessary computation
can be avoided. The next property demonstrates that the approximations to Rsj(G), derived
from successive labels at node j, are monotone nondecreasing. The notation Rm(J’) in-
dicates the value obtained by substituting numerical values Pr for xr into the polyno-
mial Lm(j).

Property 4. If k =< m then Rk(j) <= Rm(j).
Proof Since k -< m we can express Lk(j) T 6) T2 6) ...6) T and

Lm(j) T T2 Tw,

where Ti is a monomial term representing some path Pi from s to j and v -< w.
Then Rm(j) represents the probability that at least one path of {P, P2, , Pw} is func-
tioning and so is at least as large as the probability Rk(j) that at least one path of
{P, P2, P} G {P, P2, Pw} is functioning.

5. Computational results. Several examples will be given in this section to illustrate
the efficacy of a version of the iterative algorithm that makes use of Properties 2 and 3.
The quality of the nondecreasing sequence of approximations to Rsj(G) will also be
examined, in particular as this relates to the discipline (FIFO, LIFO) used for managing
the list L. The iterative algorithm was coded in FORTRAN 77 and all computations
were performed using the IBM 3081 computer at Clemson University.

Example 1. This network, having 9 nodes and 19 edges, is taken from [20] and is
shown in Fig. 3. There are 35 s-t paths and 5,287 noncancelling terms in F/(x). As
discussed in Satyanarayana and Prabhakar [20], each noncancelling term corresponds
to an "acyclic subgraph" of G. Despite its small size, this example represents one of the
most complex directed networks whose exact reliability has been reported in the literature.

The reliabilities R.i(G) have been calculated using our iterative procedure and the
FIFO/LIFO disciplines. For ease of presentation, the reliability polynomial Ft(x) has
been evaluated with all Pk P for the particular (s, t) pair indicated in Fig. 3; all edge
failures are assumed to be independent. Figure 4 shows F(p) Ft(p, "", p) plotted
versus p using the FIFO discipline. As expected, the various iterations produce an in-
creasing sequence F1, ..-, F9 of reliability curves that converge to the exact answer in
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FIG. 3. Example 1.

9 iterations. Each iteration produces a lower bound on Rst(G) and thus provides a con-
servative estimate for the true network reliability. Namely, the exact (s, t)-reliability of
the network is guaranteed to be at least as large as the value specified by the approximation.
Notice that the curves for the fifth through ninth iterations overlap in the figure, thus
providing excellent approximations to Rst(G). Also indicated in Fig. 4 are the cumulative
CPU times (in seconds) required to complete the work through the end of the specified
iteration. Thus, a total of 0.638 seconds were needed to obtain Rst(G), whereas only
0.061 seconds were needed to obtain an approximation that is virtually indistinguishable
over the entire range 0 -< p =< 1.

Figure 5 shows analogous information relative to the LIFO discipline. In this case,
twelve iterations were required before convergence was obtained. (Several of the curves
overlap so only 10 approximations are apparent in the figure.) Although the exact answer

F(P)

1.o

0.8

0.6

F9

/ . .061

F1

FIG. 4. Reliability curvesfor Example 1, FIFO discipline.



258 D. R. SHIER AND D. E. WHITED

F(P)

1.o

0.8

0.6

0.4

0.2

F12

.038

F1

o.o .1 I.. .I
o.o o. o. o. o. ,.o

P

FIG. 5. Reliability curves for Example 1, LIFO discipline.

was obtained in 0.454 seconds (less than the comparable time for FIFO), the LIFO
discipline did not give as useful a set ofapproximations compared to the FIFO approach.

Example 2. This network, with 13 nodes and 27 edges, is derived from an example
given by Martelli 12]; see Fig. 6. It is considerably more complex than Example 1, having
70 s-t paths and 34,983 noncancelling terms. Plots of F(p) versus p are shown in Figs. 7
and 8 for the FIFO and LIFO disciplines, respectively. Again it is observed that the LIFO
method obtains the exact answer faster than the FIFO method. However, the quality of
approximations produced by FIFO is superior to those produced by LIFO. Indeed, a
very close approximation to the exact reliability polynomial is obtained by FIFO in 1.18
seconds, one-eighth of the time required to find the exact answer using FIFO and one-
sixth of that required using LIFO.

FIG. 6. Example 2.
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F(P)

1.o

0.8

0.6

0.4

0.2

Fll

1.18

F1

0.0
0.0 0. 2 0. 4 0. 6 0. 8 1. 0

FIG. 7. Reliability curvesfor Example 2, FIFO discipline.

Finally, five random networks on 12 nodes and 30 edges were generated for test
purposes. The characteristics of these networks, together with the number of iterations
required for convergence, are shown in Table 2. In order to compare the quality of the
approximations generated for these examples, we have tabulated the CPU time (in seconds)
required to achieve a relative error of c% or less (at p 0.5) in Table 3. The results for
Examples and 2 are also included.

In these random examples the FIFO and LIFO disciplines appear to be comparable
in terms of the time required to obtain the exact answer. Again, however, the FIFO

F(P)

1.o

0.8

0.6

0.4

0.2

F28

6.92

F1

.434

FIG. 8. Reliability curvesfor Example 2, LIFO discipline.

o.o
0.0 0. 2 0. 4 0. 6 0. 8 1. 0
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TABLE 2

Number of
iterations

Number of Number of
Network s-t paths noncancelling terms FIFO LIFO

R1 14 1,263 9 7
R2 28 3,383 11 8
R3 41 7,583 8 10
R4 44 17,919 5 5
R5 34 42,687 10 8

variant gives a fairly close approximation rather quickly and it completely dominates
the LIFO variant in this respect.

6. Conclusions. This paper has explored an algebraic structure underlying certain
network reliability problems. A promising iterative algorithm has been developed that
allows both exact and approximate answers to be obtained. Rather than giving simply a
single number, this algorithm produces a reliability polynomial that can then be easily
evaluated at any particular input values p, , Pr. Also, in the process of determining
Rst(G) we also generate Rsj(G) for all j e N.

Empirical results have shown that the choice of data structure (FIFO, LIFO) can
have a significant effect on the relative efficiency of the procedures as well as on the
quality of the approximations. Whereas the LIFO approach frequently obtains the exact
reliability polynomial faster than the FIFO approach, the latter produces better approx-
imationsmones that are quite close to the exact answer but are obtained in a fraction of
the time. This desirable feature ofthe FIFO approach can be explained as follows, assuming
that the Pk are comparable in value. Under a FIFO discipline, nodes are processed in
order of increasing distance from s. Thus, the first time node j is labelled, it is done so

TABLE 3

CPU (sees) for accuracy within

2 FIFO 9.23 4.26 1.18 .277
LIFO 6.92 6.92 6.92 .847

R FIFO .049 .001 .001 .001
LIFO .054 .054 .004 .001

R2 FIFO .380 .076 .006 .003
LIFO .362 .362 .362 .362

R3 FIFO 1.21 .172 .172 .004
LIFO 1.11 .630 .162 .071

R4 FIFO 3.06 .195 .004 .004
LIFO 2.85 2.85 .089 .005

R5 FIFO 5.07 .062 .002 .001
LIFO 5.11 1.58 1.58 .002

FIFO .638 .248 .061 .033
LIFO .454 .454 .083 .083

Example Discipline 0% 1% 5% 10%
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relative to a path with the minimum number ofedges. More generally, the FIFO approach
ensures that the "more probable" (fewer edge) paths are incorporated as soon as possible.
Subsequent (longer and less probable) paths contribute, but not as much, to the final
label on node j. On the other hand, a LIFO discipline creates a depth-first rather than a
breadth-first search ofthe network, and thus "early" approximations can be substantially
improved by the incorporation of later (shorter) paths.

The approximate solutions generated by the iterative algorithm will always produce
(conservative) lower bounds on the exact solution. If greater accuracy is required, such
lower bounds can be used together with a simulation approach, such as Fishman’s sam-
piing procedure [7], that makes explicit use oflower bounds to obtain improved estimates.
Alternatively, these lower bounds can be used in conjunction with existing techniques
that produce upper bounds on network reliability [22], [25] to obtain an interval that
must enclose Rst(G).

Finally, it should be emphasized that regardless of the list discipline used, some
relatively challenging directed networks from the literature can be solved by our algorithm
with a modest amount ofcomputation. In particular, one example studied had 70 paths.
We are not aware of any existing algorithm that has exactly solved a problem of this
complexity. While the proposed approach appears to have potential, further experimen-
tation will be necessary before any firm conclusions can be drawn concerning its general
applicability. In order to solve larger, more realistic problems, it may be possible to
combine this approach with methods for decomposing the network into more manageable
portions [23], [26].

Acknowledgments. This paper benefited greatly from the careful scrutiny of the
referees.
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GROUP CONVOLUTIONS AND MATRIX TRANSFORMS*

DAVID EBERLYf AND PAUL HARTUNG

Abstract. Given a finite group G (possibly noncommutative) and a fidd :, group convolutions are con-
structed based on the group algebra of G over :. Matrices with entries in the group algebra are constructed so
that they have a convolution property relative to G. As special cases, the discrete Fourier transform, the discrete
Walsh transform and a transform based on the dihedral groups are discussed. The development also shows that
higher-dimensional transforms are special cases of the construction where the underlying group is an external
direct product of other groups. An illustration of the ideas is given using the dihedral groups and matrix rep-
resentations. Finally, a generalization of convolution is discussed in terms of group tings.

Key words, convolution, discrete transforms, group algebras

AMS(MOS) subject classifications. 94A11, 15A33

1. Introduction. The ideas in this paper are motivated by the concept of a discrete
transform in signal processing. We briefly discuss the discrete Fourier transform and the
discrete Walsh transform. Historically, both transforms are developed by considering
series expansions in terms of orthogonal functions. The construction of the transforms
comes about as a transition from an analytical framework to a discrete setting. From a
computational point of view, it is desirable to avoid this transition and instead develop
the framework of discrete transforms from a common, discrete foundation.

Such a foundation is provided based on abstract groups. As a consequence, the
discrete Fourier and Walsh transforms are constructed in a more natural way than through
an analytical-to-discrete approach. Multidimensional transforms can also be constructed
via this foundation by looking at direct products of groups.

Extensions of these ideas have been developed in the past decade by constructing
discrete transforms using surrogate number systems; for example, finite fields, Mersenne
numbers, and Fermat numbers are used 1]-[3], 10]-[ 12], 19]-[22].

An important concept in studying discrete transforms is that of the convolution of
sequences. Convolutions arise naturally in determining transfer functions (by discrete
Fourier transforms), digital signal processing (using discrete Walsh transforms), correlation
studies, multiplication of large integers (using number theoretic transforms), etc. Fast
transforms are desirable in computing convolutions and the abundance of results in the
literature support this relationship. However, the transforms used are based on Abelian
groups.

In this paper, we examine the idea of convolution based on abstract groups in
general (commutative or noncommutative) and matrix transforms based on these con-
volutions. Such transforms will have elements in a group algebra generated by a given
group. An illustration ofthese ideas is given using the noncommutative dihedral groups.

2. The discrete Fourier transform. Let Z be the set of integers and let be the set
of real numbers. Define n(X) exp (-inx), n Z, x , and 2 -1. The set
G {n(x):n e Z) is an orthogonal set of functions on the interval [0, 2r] with
f dp,,(x)pm(x)dx 2rnm. Here, /nm is the Kronecker delta and (-) is the complex
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conjugate. Also, the set G forms a group under function multiplication: If 4),, (])m ( G,
then (n(m (#n + m " a (closure); b0 (identity);

_
(inverses); the operation

is clearly associative. Note that "conjugate" and "inverse" are the same operation:. _. .
A periodic functionf(x) with period 2 can be represented by a Fourer series

f(x) CnCn(X), Cn (t)(t)dt.
n

For a ven N, approximate the coefficients Cn, n 0, ..., N- 1, by the trapezoid role
to obtain

1TM

1-’ "’/,’/2J=[2J)f(t) (t)at X fl ,o,t =e,, n=O,... ,N-1.Cn= j=O

This system of equations is called the discrete Fourier transform oforder N and can be
written in matrix form, MNf , where f [j] and : [] are N vectors with

f f(2rj/N). The matrix is given by MN [akj where a exp (2ri/N). The matrix
has the property M 2VIv/N. For more detailed discussions on the discrete Fourier
transform and properties, see [4], [13], [14], [25], [26].

3. The discrete Walsh transform. The set of functions on [0, given by

4o(X) 1, 0 _-< x < 1,

1, 0_--<x< 1/2)O,(x)=
-1, 1/2_-<x<l

4,,2x),qn + 1.2k- I(X)
(-- )k + l..k(2x ),

dPn,k(2X),
b. + 1.2k(X)

(-- 1)kdpn.k(2X- 1).

0=<x<1/2)1/2_-<x<

0--<x<1/2)1/2-_<x<l

n 1, 2, k 1, 2, 2"- was first analyzed extensively by J. Walsh in 1923
[23]. These functions have been used in a number of applications in recent years. They
are especially useful for computer applications since the functions take on only the
values + 1.

Let m be a nonnegative integer and let N 2m. The Walsh functions can be con-
structed by the following "alternating" process (and the functions have at most N dis-
continuities on [0, ]). The process gives a different numbering, called the Paley ordering,
than that used originally. The reason for constructing the functions in this way is that
the functions are essentially listed from smallest number to largest number of disconti-
nuities.

Partition [0, into N subintervals of equal length and label these

lj [fiN, (j + 1)/N], j=0, ,N-1.

Since the Walsh functions take on only the values +__ 1, we need to specify on each of the
intervals/ what the function value will be. The argument will be illustrated with the
case N 8. See Fig. 1. The column numbers refer to the index of/.; the row numbers
give the new numbering for the Walsh functions, say ffj(x).
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The value for the Walsh function kj(x) on [0, 1/8] is always 1. For the second
interval [1/8, 2/8], half ofthe functions have value while the other half have value -1.
This is shown in Fig. by dividing column into halves and either "duplicating" (mul-
tiplying by 1) or "complementing" (multiplying by -1) the associated entries in column
0. We have now constructed 2 columns of the matrix. To construct the next 2 columns,
we divide these columns into fourths and alternately duplicate and complement the
associated entries in the first 2 columns. We have now constructed 4 columns of the
matrix. To construct the next 4 columns, we divide these columns into eighths and
alternately duplicate and complement the associated entries which appear in the first 4
columns. This matrix represents the values of the first 8 Walsh functions (with at most
8 points of discontinuity on [0, ]) on the subintervals/. Such a matrix is an example
ofa Hadamard matrix (a matrix such thatM-1 cMT for some constant c). A discussion
of these can be found in [5].

Call the N N matrix constructed by this process WN. The set of functions
{k0, "’", N- 1} is isomorphic to Zg’, where Z2 {0, } is the cyclic group with addition
modulo 2 (1 + 0). To see this, in the construction of kj (row j of WN), assume first
2k (0 =< k < m) entries ofrowj have been computed. To compute the next 2k entries, we
multiply the first 2k entries by or 1. Ifthe multiplication is by 1, assign to this operation
the element 0 e Z2. If the multiplication is by -1, assign to this operation the element

Z2. There will be m such assignments in the construction ofk. Ifthe list ofassignments
is treated as a number in base 2, then this number is equal to the row number j in
base 10.

For example, in Fig. 1, k3 0 and k6 0 (310 0112 and
610 1102). We can see that this process, when applied for the value m, gives us a set
isomorphic to Z’. When the process is applied for the value m + 1, the set obtained is
isomorphic to Z2 Z’ Z’ / 1. As a consequence, the ordering of the functions does
not change from that of the previous step.

Let G {kn(x)}=0 be the sequence of functions constructed in the above
process. The set G is a complete set of orthogonal functions on [0, 1] with

fo n(X)m(x)dx nm. This set also forms a group under function multiplication: If
//n, //m ( G, then nr/m - G (closure--this follows from the isomorphism property of
subsets of G discussed above); 0 (identity); k kn (inverses); the operation is
clearly associative. This is an identical formulation to the one given for Fourier series.
Again, note that "conjugate" and "inverse" are the same operation: --- k k1.

We can in fact compute the result nm by using the isomorphism property of
subsets of G. Define n (R) m to be addition of the numbers n and m in base 2 with no
carries. Then nm n(R)m. For example, 5 (R) 7 101 + 111 010 2 (no carries
used), so kk7 .
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A periodic function f(x) with period can be represented by a Walsh series

f(x) , chin(x), c f(t)(t)dt.
n=0

For a given value N 2m, approximate the coefficients c, n 0, N- l, by the
trapezoid rule to obtain

Cn f(t)n(t)dt
J o

This system of equations is called the discrete Walsh transform of order N and can
be written in matrix form, Wsf , where f [J] and [] are N vectors

withJ f(j/N). The matrix Ws is the matrix which was constructed earlier and has the
property W Ws/N. For more detailed discussions on Walsh transforms, see [6]-
[9], 15]-[ 18].

4. Group convolutions. Let G be a multiplicative group with index set /, say
G {g:i I}, where I is a subset of the integers Z. Let i, j, k e I and g, g., gk G.
Define index summation, (R), by: (R) j k iff ggj gk.

Suppose G is a finite group of order N. Select the index set to be
I {0, N } and require go (the identity element of G). Let = be any field
and let ei e =s (i e I) be the vector which has all components 0 except for the th
component which is (and the components are numbered 0 through N- 1). If G is
an infinite group, select I Z and require go 1. Let = be the set of all sequences
x {xi }_--, where x:Z -- =. Let ei e = (i e Z) be the sequence which has all
components 0 except for the ith component which is 1.

Let u i uiei and v ve be elements in =s (or =). Define the group
convolution of u and v to be

U* V kI ( (R)ji"=k Hil)J) ek"
The group convolution is bilinear and since en iI iei, we have the property

en*em= ( tngmj)ek=en(R)m
keI i(R)j=k

Note that if G is not a commutative group, then u,v # v, u.
The linear convolution arises in this development by allowing G to be isomorphic

to Z, say G {xi:i Z}. This group is multiplicative where gi xi, go 1, and index
summation is simply addition of integers: gg xx x +

gi +. The sequences used
in the linear convolution, { ui } ---oo, have the property ui 0 for < 0 and > p (for
some positive exponent p). For such sequences, say { ui },P= 0 and {v }y_-o, the linear con-
volution lists the coefficients of the product of two polynomials:

ux vx (,x.
=0 j=0 k=0

The circular convolution arises by allowing G {x:i e Zs}, a multiplicative oup
isomohic to Z, the cyclic oup of order N. Index summation is addition modulo N.
For example, ifN 4, then the circular convolution of u, v e is
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(n, )0 u01)o -- u11)3 +//21)2 -1- u31)1, (n, )2 u01)2 + UlU1 --1--//21)0 -I--//31)3,

(U*)l /dO1)l -]- UI1)0 "- U21)3 -- U31)2, (ll* V)3 U01)3 -]- Ul1)2 -- U21)l -- U31)0.

The circular convolutions lists the coefficients ofa product ofpolynomials in one variable
with restriction xN 1.

The Walsh convolution arises by allowing G to be isomorphic to Z, a
product of m copies of Z2. The group G is multiplicative and has 2m elements,
go 1, gl, gN- (N 2m); each element is its own inverse. The index summation

(R) j k can be computed as in 3: Convert i, j to base 2 and add using no carries. For
example, if rn 2 (N 4), then the Walsh convolution of u, v e 4 is

(U* V)o Uo1)o-- UI1)I -l- UE1)2-- U31)3, (U* )E Uo1)2 4i- UI1)a-[- UE1)O-Jf- U31)l,

(U* V)l U01)I -1- Ul1)0 -- U21)3 --//31)2, (n* )3 --"//01)3 -- Ul1)2 q- u21)l -- u31)0.

The Walsh convolution lists the coefficients of a product of polynomials in m variables,
x, Xm, with the restrictions x] (1 =< j =< m). The reason for naming the Walsh
convolution is partly due to the fact that copies of Z2 appear (compare with the devel-
opment for the Walsh functions). A discussion on applications of the convolution can
be found in [1], [10], [12]-[14].

As a last example, let G D3 { 1, or, a2, -r, -ra, "ra2), the dihedral group (noncom-
mutative) with rotation element a (of order 3) and reflection element z (of order 2).
With the selection go 1, g a, g2 0"2, g3 "r, g4 ’ff, g5 "/’o’2, and the properties
a 1, z2 1, and za a2z, the table listing index summation is given in Fig. 2 below.

The group convolution of u, v e :6 is

0 2 3 4 5

0 2 3 4 5

2 0 5 3 4

2 0 4 5 3

3 4 5 0 2

4 5 3 2 0

5 3 4 2 0

FIG. 2

(U, V)o U01)o -}- U11)2 -- U21)1 -] U31)3 -]-U41)4 -]- U51)5,

(U* V)I U01)I -]- UI1)0 -I-- U21)2 +//31)4 -]- U41)5 -]- U51)3,

(U* V)2 ---//01)2 -]- UI1)I --//21)0 @ U31)5 "- U41)3 @ U51)4,

(n* v)3 "-//01)3 -I- u11)4 -- u21)5 - u31)0 -I- u41)2 -- u51)1,

(n* v)4 --//01)4 + u11)5 +//21)3 +//31)1 -- u41)0 + u51)2,

(n, )5 =//01)5 "- u11)3 -- u21)4 --//31)2 -- u41)1 -- u51)0.

5. Matrix transforms. Let G be a multiplicative group with index set I
(a subset of Z). Define the group algebra of G over : to be the set of formal sums
(G) {iI rigi :gi - G, l" . , all but a finite number of ri are zero}. This set is a ring
with addition defined by
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, ug+ , vg , (u+ v)g
iI iI iI

and multiplication defined by

We can define another group algebra of G over : to be the set of formal sums
(G) { ,iz giri :gi e G, ri , all but a finite number of ri are zero}. This set is a ring
which is isomohic to (G) and has similarly defined addition and multiplication op-
erations. In 4, the fact that convolutions list the coecients ofproducts ofpolynomials
is just an obseation that such products are essentially products of elements in (G) (or
(G)) via the isomohism ofG with the appropfime set ofpolynomials. We will consider
now only groups of finite order N and discuss matrices with elements in (G).

Define {[a]:a e (G), 0 N- 1, 0 j N- }. Then is a ring with
addition defined by

[a] + [b] [a+ bij]

and multiplication defined by

[ai][bi] aikbk
k=0

is an associative algebra over : where scalar multiplication is defined by

cia,s] [ca], c=.
Let V [(G)]N {(v0, VN-):Vj e t(G)} be an N-dimensional vector space

over with the usual vector addition and scalar multiplication. An element M can
be thought of as a linear operator, M: V V. Let x e V be ven by x [x] and let
M [aij]. Define Mx by

Mx= g CokXt
n=O kl=n j=O

where xj ,-o glXjl and aij k=O Cikgk Xjt, Cijk IF. The definition for the operation
ofM on elements is motivated by the usual matrix arithmetic, where the elements ofM
are in a field and V is Euclidean N-space:

Interchanging summations gives us the definition for Mx.
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Let x [xi ], y [yj] e V. Define the binary operation, o, to be the bilinear operation
having the property: x o y [xiYi]. IfM [aij] e 99, define M to have the convolution
property if

M(u, v) (Mu) <3 (My) for all u, v e : .
THEOREM IfM [aij] - has the convolution property, and ifa ,lV-k=0 Cijkgk,

then (1) aimai, ai,m(R)n and (2) Ci.m(R)n,p -k(R)l=p CimkCinl.
Proof. Let ei be the N vector which has all components 0 except for the ith

component which is 1. Then the ith component ofMet is given by
N-1

(Met)i , ai;t ait.
j=0

This implies that (Mem) <3 (Men) [aimain]. But

em*en em(R) n, SO M(em*en) M(em(R) n) [ai,m(R) HI.
Since M has the convolution property, M(em,e,,) (Mem) <3 (Me,,). Consequently,
ai,,,ai, ai,m (R) ,, and (1) is proved.

To see that (2) is also true, ait k=0 Ctkgk and condition (1) imply that. Ci,m(R)n,pgp-- Cimkgk Cinlgl
p=0 k=0

N-IN-I, CimkCinlgkgl
k=0 1=0

CimkCinl gp.
p=0 k(R)l=p

Equating coefficients of the gp terms gives the result in (2).

6. Examples. The examples listed illustrate the linear convolution, the circular
convolution, the Walsh convolution, and the convolution for the noncommutative
group D3.

Consider the linear convolution (u, V)k ,i+= k UiVj, i, j Z, where the sequences
for u and v have only a finite number of nonzero terms. If F(f) on= fneinx, then F
satisfies the convolution property (discussed in the usual analysis of Fourier series)
F(u, v) F(U)F(v). This is part of the motivation for looking at convolution properties
for the general convolution (derived from a group G).

Consider the circular convolution (U*V)k i(R)j=k Uil)j where the underlying
group is ZN, the cyclic group of order N with addition modulo N. Let M [ak] be
an N N matrix where c exp (27ri/N). Then M has the convolution property
M(u, v) (Mu) <3 (My). As pointed out earlier, this matrix is the one used for the discrete
Fourier transform and has the property thatM- 3rr/N. Compare with the introductory
remarks on the group properties of {exp (-inx):n Z}: IfM [ck], then Ar [c-k];
that is M [aj] implies that 3r [a ].

Consider the Walsh convolution (u,v) where the underlying group is Z’ and
index summation is computed by adding and j base 2 with no carries. Let W [wi]
be the N N matrix constructed in 3. Then W has the convolution property
W(u, v) (Wu) <3 (Wv). The matrix was the one used for the discrete Walsh transform
and has the property that W- W/N Ir/N. If W [w], then I [w ].
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Finally, consider the dihedral group D3. The convolution was given in 4 along
with the table for index summation. Listed in Fig. 3 is a matrix S [sij] which has the
convolution property with respect to D3. The block matrix R [aij and the block matrix
zR [zai], where 0 _-< _-< 2 and 0 _-< j -< 2.

FIG. 3

It is easy to verify that the entries of S satisfy the condition SimSin Si,m(R)n. As in the
previous examples, S has the property S-1 7"/N and [s) where (-) is complex
conjugation acting on the elements of D3; that is, a2, and .

7. Convolutions and transforms for direct products. We have seen in the examPles
that the discrete Fourier transform oforder Narises as a matrix which has the convolution
property relative to the group ZN. We have also seen that the discrete Walsh transform
of order N arises as a matrix which has the convolution property relative to the group
Z’, N 2m. Groups provide a common origin for both types of discrete transforms. In
addition, the development here actually allows the construction of transforms which
represent the higher dimensional discrete Fourier and Walsh transforms. For a good
discussion, see [27].

As a prelude, we make the observation that the group convolution depends on the
numbering of the elements of G. This is important when considering index summation.
Superficially, this may seem to be a burden to the development. For example, if
a exp (27ri/6) and/3 exp (27ri/3), then Z6 is isomorphic to { 1, a, a2, 0/3, a4, 0/5 and
Z2 Z3 is isomorphic to the group { 1, 1), (1,/3), (1,/32), (- 1, 1), (- 1,/3), (- 1,/32) } where
multiplication is performed componentwise. If u, v :6, then relative to Z6,

(U * )0 U01)0 + Ul I)5 -- //21)4 + U31)3 " //41)2 + //51)1

and relative to Z2 Z3
(11" )0 /101)0 --/’/11)2 --/,/21)1 --///31)3 --/t41)5 --///51)4.

Clearly the group convolutions differ even though Z6 and Z_ Z3 are isomorphic groups.
It turns out that this can be quite useful when considering higher dimensional transforms.
However, the labeling of vectors will be done differently.

Let G {go, gv-1} and H {ho, "", ht-1} be finite groups where go
(the identity in G) and ho (the identity in H). Let (R) be the index summation for G
and let (R)’ be the index summation for H. The external direct product of G and H is
G H {Pi (gi, h.i):O =< -< N- 1, 0 -< j -< M- }. List the elements of G H so
that the subscripts increase (where (j is treated as a two-digit number in base max
(N, M)). This set is a group with product

PijPkl (gi, hj)(gk, hl) (gigk, hjhi) (gi (R) k, hj 6)’ l) Pi (R) k,j (R)’ I.

The order ofG H is NM. Let [ui] and [vj] be N Marrays with elements in :. Define
the group convolution of u [ui.i] and [vi] relative to G H by

(U*V)nm"- E E lgO1)kl, O <-_ n <- N 1, O <- m <=M 1.
i(R)k=n j(R)rl=m

The motivation, as before, is that the product of two elements in the group algebra
:(G H) looks like



GROUP CONVOLUTIONS AND MATRIX TRANSFORMS 271

E uijPij l)klPkl a (ll=l=)nmPnm.
i=0 j=0 \k=0 1=0 n=0 m=0

Note also that the convolution defined here for G H is different than that for H G.
Let e,s er @ es [Sirjs], the matrix with all entries 0 except for the rth row and

sth column entry which is 1. Here, (R) is the tensor product. The definition for group
convolution implies that ers*etu er(R)t,s(R)’u.

Let V ([xo]:xo. (GH)}. Then V is a vector space under the usual matrix
addition and scalar multiplication (with scalars in :). We wish to discuss matrices whose
entries are in :(G H) and such that as an operator, we have M: V --* V. To do so, we
need the following. Let A [aik] be an I K matrix and let B [bit] be a J L matrix
where aik and b:t are elements of a ring. Define the Kronecker product A B to be the
IJ KL matrix whose entry in row iJ + j and column kL + l is given by Co,kt aikb:t,
0--<i=<I-- 1,0=<j=<J- 1,0=<k=<K- 1,0=<I=<L- 1. ABcanbeinterpreted
as an I K array of J L blocks with the (i, k)th block given by akB. Note that
A B 4 B A and (A B) C A (B C). It is also true that (A B)(C D)
(AC) (BD) whenever the matrix multiplications AC and BD are defined.

For example, ifA [c], a -1, and B [3], exp (27r//3), then

B B
and BXA= A 3A 3:AA XB=

B aB A 3ZA 3A
both 6 6 arrays.

We can construct matrices with entries in :(G H) by the following process. Let
A [ak] be an N N matrix with entries in :(G) and let B [bst] be an M M
matrix with entries in :(H) where N IGI, and M IHI. Identify the element ai with
(a, 1) :(G H) and the element bst with (1, bst) [:(G H). Then A B is the NM
NM matrix whose entry in row iM + j and column kM + l is

(ai, 1)( 1, bt) (ai, bst)ef:(G H),

0-<i=<N- 1,0=<k-<N- 1, and0-<j-<M- 1,0-<I=<M- 1. Thus, A,B, and
A B {[co]:co [:(G H)}.

Given x [xo] V, define T: V -- Vby
N-IM-1

(TX)nm . (ani,bms)Xo, xoe(G H).
i=0 j=0

If u [uo] and v [vo] are elements in V, then define the binary operation o
by u o v [uovo]. Define the matrix T to have the convolution property relative to
GXHif

T(u,v)=(Tu)o(Tv), u, vE V.

We have the following result.
THEOREM 2. If A - (:(G)) has the convolution property relative to G and if

B 93([:(H)) has the convolution property relative to H, then A B (I(G H)) has
the convolution property relative to G H.

Proof It is sufficient to consider A B applied to the basis tensors e0. From the
definition of matrix multiplication for A B, we have that

N-1M-I

(A B)ers (ani, bmj)CirCjs [(anr, bins)]
i=o j=o
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using the -substitution property; similarly, (A B)etu [(ant, bmu)]. We also have

(a B) (ers* etu) (a B) (er(R) t,sr u) [(an,r(R) bm,s(R), u)]

[(anrant, bmsbmu)] [(h n)ers] o [(A n)etu],

where Theorem has been used. t-I
The ideas in this section clearly generalize to products of the form

fi Gk {(g), ....,s,.(nh’Mk),.6,, e Gk, 0 < ik < Nk-- IG,I-
k=l

If Ak is a matrix with entries in :(Gj) and has the convolution property relative to
then A ... Ak :(G ... Gk) has the convolution property relative to
GI Gk. This matrix has the property: ifM At Ak, then

M= [ao] [ago], Ar= [a?] X X [ak-i)1,
and M-t charr, where c [IGI IGI]-; here we use A] c,r, A, [a,o], and
i= [aL ].

8. Examples. Using the development for direct products ofgroups, we can illustrate
higher dimensional transforms.

The two-dimensional discrete Fourier transform can be constructed by considering
groups of the type ZN ZM. If a exp (2ri/N) and exp (2ri/M), then A [a0]
has the convolution property relative to ZN, B [fl0] has the convolution property
relative to ZM, and A B [a{3kl] has the convolution property relative to ZNM. The
two-dimensional discrete Fourier transform is given by

N-IM-1

nm’- 2 2 animJfij
i=o j=o

where fj is a sampled N M array of data.
The two-dimensional discrete Walsh transform can be constructed by considering

groups of the type Z Z’. If N 2m and N2 2m2, then the matrices WN and
WN, are constructed as shown in 3. Each has the appropriate convolution property.
The matrix WN X WN: has the convolution property relative to the full group product.
Note that, however, WN X WN 4 WNN:. For example,

/W2=
-1

WzXW2= --1 --1
-1 -1

/W4
--1 --1

--1 --1
--1 --1

and

Ofcourse, the three- and higher-dimensional transforms can be constructed by using
three or more groups in the direct product formulation.

9. An illustration using dihedral groups. The main result in this paper is the idea
of developing convolution and matrix transforms from the group algebra point of view
with the thought ofdeveloping applications using noncommutative groups. To construct
matrix transforms with the convolution property, one needs to construct inverses of
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elements in the group algebra. In general, this is a difficult process. To avoid this difficulty,
one can resort to matrix representations of the group algebra elements. The idea is il-
lustrated using the dihedral groups.

Let G be the dihedral group with generators r (r2 1) and i (dv 1). Let
gi ri/2 if is even and gi "l’if(i-1)/2 if is odd (0 -< _-< N- 1). Then ggj gi(R).i defines
the index summation (R) j j + (-1)i + iN where di e Z is chosen so that the right-
hand side of the equation is between 0 and N- 1.

Let :be any field and consider the dihedral group algebra :(G). If a e :(G),.then
N-I N-I

Ot a2iii + a2i + l"g’ii.
i=0 i=0

Define the group algebra element & by
N-I N-I

& a2ji
-j

a2 + ri.
j=0 j=0

Then
N-IN-1

a& (a2ia2j a2i + la2j + l)i -j

i=0 j=0

N-I, E (a2ia2j- ai + la2j + 1)o"p
p=-(N- 1) i-j=p

for 0 -< =< N- 1, 0 -< j =< N 1. For the summation over p, the positive indexed terms
give

N-l-p

(a2ia2j-- a2i + la2j + l)ip E
i-j=p j=O

The negative indexed terms give

[a2(j + p)a2j a2(j + p) + a2+ 1].

N-1

(a2iazj--a2i+ a2+ )a-p= [a2(j-p)a2j--a2(j-p)+ la2j+ 1]-
j=p

The p 0 term gives
N-I

E (aEia2j- a2i + lazj + ,) , (a2i- a2i + 1).
i-j=O i=0

It is easily shown that the summations for -j p and -j -p are equal. Call this
common value cp. Then

N-I

a&=c0+ cp(P+a-).
p=l

We can identify the elements of,G with operations on vectors in : 2. Let the matrix
representation for r be T and let the matrix representation for i be S. Represent the,
identity by the identity matrix I. Then

T=
0 sin(0) cos(0) N"

Let (C) be the set of matrix representations of the group algebra F(G) with the above
identifications. For a :(G), let M(a) (C) be its representation. Let a agi, where
cp are defined as before. Then M(a) is invertible if and only if 1/2c0 + c cos (pO) O.
This follows from M(a&) M(a)M(&) and the formula for the product
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M(a&) coM(1) + cp[M(ap) + M(tr-P)] eo + 2 cp cos (pO) I
p=l p=l

so that M(a&) kI. If k 4 0, then M(a) and M(&) are invertible and M(a)-1

M(&)/k. Note the stalking similarity to the properties for the discrete Fourier and Walsh
transforms: M- JlTlr/N (’corresponds to-T). Of course, it is not necessarily true that
in :(G), a and &/k are inverses. But in the matrix transforms with elements from
:(G), instead of finding inverses for the entries, we can substitute the values &/k and
resort to computations with matrix representations. Figure 4 shows the application of
matrix representations to a matrix which has the convolution property. Here
G { 1, , 0"2, T, To’, To"2 } (compare with 6).

-r -r -r -[
0, 0

,2 --r --r0, --r0,

S= rR r r
0, 0,2 7- 7"0, 7"0,2
0,2 0, r to, to, _!

0

0

0

0

0

-1 00O
0 0

a

a

0

0

-b a

a -b

b a

a b

0

0

-b a

a -b

b a

a b

b -1 0

0a

-b

a 0

0.
0

b

a 0

-b

a 0

0 a

0

0

b -a

a -b

a b

0

-1 0

-b a

-a b

b a

-b

0

-1

b

--a

-b

--a

FIG. 4

The parameters are a cos (2r/3) and b sin (2r/3). The matrix M(S) can be used in
applications in the standard ways that the discrete Fourier and discrete Walsh transforms
are used.

10. Conclusions. The preceding formulation seems to be a good foundation for
looking at matrix transforms which have a convolution property. Tbere may be useful
applications for transforms derived from the noncommutative groups. Groups which
have elements of order 2 would be extremely useful since these elements have matrix
representations which "act" like the real numbers and -1, a property which makes
the Walsh transform useful for digital signal processing. The quaternions might also be
a group to consider since there are elements such that g2 and h2 -1.

One last note: One could generalize the concept of convolution in the following
way. Recall that if G is a multiplicative group and R is a ring, then the group ring of G
over R is the set of all formal sums

R(G)= { ri&:rR,gieG, all but a finite number of r are O}
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The addition and multiplication are as given for the group algebras discussed earlier.
The multiplication makes sense if the ri are not "related" to the gi. We could let
R :(G). If so, then allowing for interaction between R and G, we could define ring
multiplication for R(G) by

iIj’l (kI Uikgk)gi ( ll l)Jlgl)gj’ Uik’ l)Jl C:: 2’

E E Uiljtgcgigtgj
iIjel kI leI

E E E Uik)jlgk(R)igl(R)j
iIjel kI leI. E Uikjlgngm
nI meI k i= n lj= m

nm= ki=n lj=m

Thus, for [ui] and [v] as N X vectors in [(G)], define the group convolutions
of these vectors by

(u,vg= E E N uv.
nm=p ki=n lj=m

This definition implies that (egi).(egt) ei(R)gj(R)t. We can define a matrix M to have
the convolution property ifM(u, v) (Mu) o (My) for all u, v e [(G)]. As in Theorem
1, we can prove that ifM [aij], then

aingkaimg- ai,n(R) m

for all gk G. If k 0 (go 1), then ainaim ai,n(R)m. In addition, if n 0, then
aioaim ai,o(R)m aim; if m 0, then ainaio ai,n(R)O ain. Thus, aio (the identity in
the group ring).

If k is arbitrary, and since aio 1, we have that aiogkaimg- ai,o (R) m, Or

gkaim aimgk for all i, m, k. Thus, aim must commute with every element in G. As a
consequence, aim can only be a linear combination of the elements of the center of G.

For an Abelian group G, the center of G is exactly G. Thus, this more general
convolution allows construction of matrices which have the convolution property and
the matrices can be chosen just like the ones given earlier. For noncommutative groups,
this definition of convolution is very restrictive. For example, in D3, the center consists
of only the identity. No matrices (which are invertible) can be constructed which have
the convolution property relative to D3.
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COMPLEXITY OF FINDING EMBEDDINGS IN A k-TREE*

STEFAN ARNBORG, DEREK G. CORNEIL:I: AND ANDRZEJ PROSKUROWSKI

Abstract. A k-tree is a graph that can be reduced to the k-complete graph by a sequence of removals of a
degree k vertex with completely connected neighbors. We address the problem of determining whether a graph
is a partial graph of a k-tree. This problem is motivated by the existence of polynomial time algorithms for
many combinatorial problems on graphs when the graph is constrained to be a partial k-tree for fixed k. These
algorithms have practical applications in areas such as reliability, concurrent broadcasting and evaluation of
queries in a relational database system. We determine the complexity status of two problems related to finding
the smallest number k such that a given graph is a partial k-tree. First, the corresponding decision problem is
NP-complete. Second, for a fixed (predetermined) value of k, we present an algorithm with polynomially bounded
(but exponential in k) worst case time complexity. Previously, this problem had only been solved for
k= 1,2,3.

Key words, graph theory, k-trees, algorithm complexity, NP-complete
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1. Motivation. The class of k-trees is defined recursively as follows (see, for instance,
Rose [15]). The complete graph with k vertices is a k-tree. A k-tree with n + vertices
(n >_- k) can be constructed from a k-tree with n vertices by adding a vertex adjacent to
all vertices of one of its k-vertex complete subgraphs, and only to these vertices. In a
given construction ofa k-tree, the original k-complete subgraph is its basis. Any k-complete
subgraph of a k-tree can be its basis (Proskurowski 13, Prop. 1.3]). A partial k-tree is a
subgraph of a k-tree.

Our interest in the class ofk-trees and their subgraphs is motivated by some practical
questions about reliability of communication networks in the presence of constrained
line- and site-failures (Farley [8], Farley and Proskurowski [9], Neufeldt and Colbourn
[12], Wald and Colbourn [16]), concurrent broadcasting in a common medium network
(Colbourn and Proskurowski [6]), reliability evaluation in complex systems (Arnborg
[1 ]), and evaluation of queries in relational data base systems; for a survey see Arnborg
[2]. For these problems restricted to partial k-trees, there exist efficient solution algorithms
which exploit the following separation property of k-trees (Rose [15]): every minimal
separator of a k-tree consists of k completely connected vertices. This property, together
with the requirement that a graph is connected and does not contain a set of k + 2
completely connected vertices, is a definitional property of k-trees (Rose 15, Thm. 1.1]).

Partial k-trees have a similar bounded decomposability property (cf. Arnborg and
Proskurowski [3]): a sufficiently large partial k-tree can be disconnected by removal of
at most k (separator) vertices so that each of the resulting connected components aug-
mented by the completely connected separator vertices is a partial k-tree. Since the com-
ponent partial k-trees of a partial k-tree interact only through the minimal separators of
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the k-tree, solutions to subproblems on the component partial k-trees may be combined
to form a solution for the given partial k-tree. Using a succinct representation ofa bounded
number of optimal solutions to such subproblems (cf. Comeil and Keil [7]), Amborg
and Proskurowski [4] develop a general algorithm paradigm to solve efficiently many
difficult problems on graphs with this bounded decomposability property. The algorithms
presented there solve NP-hard optimization problems (like vertex cover, chromatic num-
ber, graph reliability) for partial k-trees given with a suitable embedding k-tree. However,
the presentation skirts two major problems: one is finding an embedding, a k-tree of
which the given graph is a subgraph; the other is finding the minimal value of such k,
which is important since the algorithms, though linear in the size of the input, are ex-
ponential or even superexponential in k. For small values ofk, recognition and embedding
problems for partial k-trees have been solved by reducing a given graph according to a
complete set of safe reduction rules, i.e., application ofthe reduction rules (in any order)
reduces a graph to the empty graph iff it is a partial k-tree (see Wald and Colboum 16]
for k 2, and Arnborg and Proskurowski [3] for k 3). In this paper, we first address
the question of determining the minimum value of k for which a given graph is a partial
k-tree. We show that the decision version of this PARTIAL K-TREE problem is NP-
complete. We then follow a "brute-force" approach to finding a k-tree embedding ofthe
given graph through examination of all its k-vertex separators. This yields a polynomial
time algorithm, assuming a fixed value of k. Not surprisingly, this new algorithm is
inferior to the reduction rules algorithms for k 2 and k 3.

2. Definitions. A graph G with vertex set V and edge set E will be denoted
G(V, E). The cardinality of the vertex set will be called the size of G. A partial graph of
G contains all its vertices and a subset of its edges, whereas a subgraph of G has a subset
of both edges and vertices of G. A supergraph of G is any graph of which G is a partial
graph. For general graph theoretical concepts, the reader is advised to consult a standard
text, e.g., Bondy and Murty [5].

A clique in a graph G(V, E) is a maximal complete subgraph of G. The clique
number o(G) is the size of a largest clique in G. For any vertex v V, the (open) neigh-
borhood of v is defined as the set of all vertices adjacent to v, I’(v) {u (u, v) e E}.
The closed neighborhood of v contains also the vertex v. The degree of v is the size of its
neighborhood, deg (v) Ir(v)l, and A(G) maxv v deg (v). A vertex v is simplicial if
the subgraph of G induced by I’(v) is complete. A graph G is k-decomposable iff either
G has k + or fewer vertices or there is a subgraph S of G with at most k vertices such
that G S is disconnected, and each of the connected components of G S augmented
by S with completely connected vertices is k-decomposable. A graph is chordal (or trian-
gulated) ifevery cycle oflength greater than three has a chord. Clearly, k-trees are examples
of chordal graphs. An elimination scheme of a graph is an ordering r of its vertices. The
filled graph of G(V, E) w.r.t. 7r is the graph G(V, E t3 F0, where F are the fill edges.
An edge (u, w) is a fill edge if there is a vertex v preceding u and w in ,r such that both
u and w are adjacent to v via original or fill edges but not to each other. The complete
set of fill edges is easily obtained by examining vertices in order r. A graph G has a
perfect elimination scheme, i.e., an elimination scheme with no fill edges (cf. Rose 14]),
if there exists an order of eliminating the vertices of G such that each vertex is simplicial
at the time of elimination. It is well known (Rose [14]) that a graph is chordal iff it has
a perfect elimination scheme, and that every edge-minimal chordal supergraph ofa graph
G is the filled graph of G w.r.t, some elimination scheme. Given A, a complete subgraph
ofgraph G, we say that G is an A-chordal path if there exists a perfect elimination scheme
r such that if u immediately follows v in r then u and v are adjacent, and the vertices



COMPLEXITY OF FINDING EMBEDDINGS IN A k-TREE 279

in A are last in r. A chordal graph G is a chordal path iff there is an A for which G is an
A-chordal path.

A k-chordal graph is a chordal graph G for which o(G) k + 1. Thus, in every
perfect elimination scheme ofa k-chordal graph, the neighborhood ofevery vertex, when
eliminated, induces Ki, a complete graph with vertices, -< k. We notice that a k-tree
with more than k vertices is a k-chordal graph. Since the neighborhood of a simplicial
vertex u in a k-chordal graph is a completely connected set of at most k vertices that
separate u from the rest of the graph, any k-chordal graph is k-decomposable. Given a
graph G, we define kt(G) to be the minimum k such that G is a partial k-tree. Similarly,
kc(G) is defined to be the minimum k such that G is a partial k-chordal graph. Not
surprisingly, we have the following lemma relating kt(G) and kc(G) for any graph G.

LEMMA 2.1. For any graph G that is not a complete graph, kt(G) kc(G).
Proof. From the definitions, we see that k(G) <= kt(G). To show that kt(G) <= k(G),

we let G’ be a k(G)-chordal supergraph of G. Since G’ is k(G)-decomposable, it follows
from Arnborg and Proskurowski [3, Thm. 2.7] that G’ is also a partial k(G)-tree, and so
is G. E3

A block ofa graph G is a maximal set ofvertices with the same closed neighborhood.
Clearly, the blocks of G partition V. A block-contiguous elimination scheme is one in
which the vertices of each block are eliminated contiguously.

Yannakakis [17] introduced the notion of chain graph: a bipartite graph
G(A U B, E) is a chain graph if the neighbors of the nodes in A form a chain, i.e., there
exists a bijection r A { 1, 2, IAI} such that r(u) < (v) iff I(u) I(v). Such a
permutation z is called a chain order. The neighbors ofthe nodes ofB also form a chain,
and thus the definition is unambiguous. Given a bipartite graph G(A U B, E) and an
ordering r ofA, a (G, r)-chain graph is any bipartite graph G’(A U B, E U E’) for which
r is a chain graph order. For a given bipartite graph G(A U B, E), the graph C(G) is
formed from G by adding edges to form complete subgraphs on A and B. The following
lemma relates chain graphs and chordal graphs.

LEMMA 2.2 (Yannakakis [17, Lemma 2.1]). A bipartite graph G(A U B, E) is a
chain graph iffC(G) is chordal. [3

In fact, we can strengthen this statement by a more detailed characterization of the
chordal graph C(G).

COROLLARY 2.3. A bipartite graph G(A U B, E) is a chain graph iff C(G) is an
A-chordal path. E3

If F is the vertex set of a graph G and z is a permutation of V, then we define the
linear cut value ofG w.r.t, r as

max I{(u,v)eE’r(u) < i<r(v)}lc,(a)
_i < IvI

The MINIMUM CUT LINEAR ARRANGEMENT problem (MCLA) is defined as fol-
lows: Given a graph G(V, E) and a positive integer k, does there exist a permutation r

of V such that cr(G) <= k? MCLA is NP-complete (see, for instance, Garey and Johnson
10]). In the next section, we use this fact to show the NP-completeness of the follow-

-ing PARTIAL K-TREE recognition problem: Given a graph G and an integer k, is
kt(G) <= k?

3. NP-completeness of PARTIAL K-TREE. In this section we will use the concepts
ofchain graph and chordal path to prove that the PARTIAL K-TREE problem is at least
as difficult as the MCLA problem, in the standard sense of polynomial reducibility.

Given an arbitrary graph G(V, E), we will construct a bipartite graph G’(A U B, E’)
in the following way: Each vertex x e V is represented by A(G) + vertices in A and
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A(G) deg (x) + vertices in B. We let Ax (resp. Bx) denote the set ofvertices in A (resp.
B) which represents x. Each edge e e E is represented by two vertices in B; this set of
vertices is denoted Be. Edges in E’ are ofthe following two types: (i) all vertices inA are
adjacent to all vertices in B; (ii) all vertices inA are adjacent to both vertices in Be ifx
is an endpoint of e. As an example of this construction, see the graph in Fig. 1. We note
that the vertex sets Av, By and Be form the blocks of C(G’).

Before proving the main result ofthis section, we relate block-contiguous elimination
schemes of a given graph G to chordal supergraphs of G.

LEMMA 3.1. LetH be a minimal chordal supergraph ofG. Then there exists a block-
contiguous elimination order r such that H is thefilled graph ofG w.r.t. r.

Proof. As stated in 2, H is the filled graph of G w.r.t, some elimination scheme.
A vertex is simplicial iff all other vertices in its block are also simplicial. Since the elim-
ination of any vertex preserves this property, any chordal graph has a block-contiguous
perfect elimination scheme. Given such a scheme any ordering ofthe vertices in a block
determines a block-contiguous perfect elimination scheme. If u and v belong to the same
block of G, then the addition of fill edge (v, w) implies the addition of fill edge (u, w).
Thus the blocks of G form a refinement (possibly trivial) ofthe blocks ofH. We now set
r to be a block-contiguous perfect elimination scheme forHwhich is also block-contiguous
for G.

We now establish the relationship between the linear cut value of a graph G and
values of k’ such that C(G’) is a partial k’-tree.

LEMMA 3.2. Given a graph G and a positive integer k, G has a minimum linear cut
value k w.r.t, some permutation r iff the corresponding graph C(G’) is a partial
k’-treefor k’ (A(G) + 1)(I V[ + 1) + k 1.

Proof Since a k’-tree is a k’-chordal graph, it follows from Lemma 3.1 that if C(G’)
is a partial k’-tree then there exists a block-contiguous elimination scheme r’ such that
no vertex has degree greater than k’ when it is eliminated. Let F be the filled graph of
C(G’) w.r.t, this permutation r’. F is also a supergraph of the filled graph of C(G’) w.r.t.

a

3
2

b

C
mb

Ac

Ad

G C(G)
FG. 1. Example ofthe bipartite graph construction.

B3

eb

B2

el

B4

ed



COMPLEXITY OF FINDING EMBEDDINGS IN A k-TREE 281

any perfect elimination order of F. But since F is chordal, its edges between A and B
form a chain graph by Lemma 2.2, and it is easy to see that F has a perfect elimination
ordering starting with all vertices in A in reverse chain ordering, which is also contiguous
in the blocks Av. Without loss of generality we can assume that r’ is such an ordering.
Let r be the ordering of blocks in A induced by r’. Assume without loss of generality
that the vertices of G are numbered in order r and are identified by their numbers.
Consider the graph resulting from elimination of vertices in the first blocks of
C(G’). In this graph, each vertex of Ai is adjacent to: the other A(G) vertices in Ai; the
A(G) + vertices in each of Ag +1, Air’l; the A(G) + degj) vertices in Bj for
j 1, (these are fill edges except forj i); and the two vertices in Be for each edge
e incident to at least one vertex in { 1, } (these are fill edges for e not incident to i).
These adjacencies sum up to

A(G) + (A(G) + 1)(1 V[- i) +(A(G) + 1) i- deg(j) + 2IE]I + 2lEVI,
j=l

where E] is the set of edges with exactly one vertex in { 1, }, and E the set with
both vertices in { 1, i}. Obviously, j= degr(j) 2lEVI + IE][, so the degree of a
vertex in Ai simplifies to (A(G) + 1)(IvI / 1) / IE]I. Since E] is the set of edges
between vertices in { 1, ..., i} and vertices in { + 1, vI ), in this particular ordering
r, the maximum size ofE] over all is the linear cut value of G w.r.t. r. This value also
determines the maximum size of a clique in C(G’). We have thus shown that the k’-
chordality implies the existence ofa linear arrangement with the cut value k. Conversely,
the existence of an ordering r w.r.t, which G has a linear cut value k implies that the
largest clique in F, the filled graph of C(G’) w.r.t. r’, has size k’ + (by examination of
an induced ordering r’ of its vertices.) This completes the proof. D

THEOREM 3.3. The PARTIAL K-TREE problem is NP-complete.
Proof (Hardness for NP): This follows from Lemma 3.2 and the fact that C(G’)

can be constructed from G in polynomial time. (Membership in NP): For a suitable
(nondeterministic) choice of vertex order, the elimination process is easily turned into a
polynomial time verification that a graph is a partial k-tree, v1

Let us define a k-chordal path to be a k-chordal graph which is also a chordal path.
A k-interval graph is an interval graph derived from a set of intervals, no k + 2 ofwhich
have a nonempty intersection (i.e., it has clique number k + or less). We now have:

COROLLARY 3.4. Thefollowing problems are NP-complete:
(i) Given graph G and integer k, is G a partial k-chordal path?
(ii) Given graph G and integer k, is G a partial k-interval graph?
Proof. Statement (i) follows from Theorem 3.3, Lemma 2.1 and Corollary 2.3. A

result ofGilmore and Hoffman 11 says that graph G is an interval graph iff the cliques
of G can be numbered C1, C2, Cm such that for each node x, x Ci f’) C, (i < j)
implies that x Ct for all ! such that < ! <j. So the class ofk-interval graphs is contained
in the class of k-chordal graphs but contains the class of k-chordal paths, from which (ii)
follows. E]

4. Recognition of partial k-trees for a fixed value of k. In the preceding section, we
have shown that the partial k-tree recognition problem is NP-complete if k is part ofthe
problem’s instance. Since the proof of our NP-completeness result (Theorem 3.3) builds
on the value of k growing polynomially with the size of the graph, one could expect the
complexity of partial k-tree recognition for fixed k to grow quickly with k. However,
when the value of k is fixed (i.e., all instances of the problem refer to the same k value),
the complexity status of the problem changes, as any dependence on k is considered
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constant. The recognition problems for partial 2- and 3-trees have been solved previously
(cf. Wald and Colbourn [16] and Arnborg and Proskurowski [3]) by exhibiting complete
sets of safe reduction rules, reducing to the empty graph precisely those graphs in the
relevant class.

Another approach proves successful for general, fixed values of k. This new approach
uses a dynamic programming technique in evaluating feasibility of proposed partial
embeddings of subgraphs of the given graph in a k-tree. Although there might be many
such embeddings, the set of all possible minimal separators in all embeddings has car-
dinality bounded by a polynomial in the size of the graph (the number of vertices), due
to the fact that all such separators have size k. Our algorithm considers the connected
components into which k-element vertex sets separate the graph and decides their em-
beddability in the order of their increasing sizes. Thus, successful embedding attempts
(which assume completely connected minimal separators) can be subsequently used to
embed a union of such connected components.

ALGORITHM 4.1 for the recognition of partial k-trees.

INPUT: A graph G, with n vertices.
OUTPUT: YES or NO.
DATA STRUCTURE: Family ofk-element vertex sets which are separators of G.

For each such set S, there is a set of connected components of G
into which G is separated by removal of S. Denoting S by Ci, we
denote by C, -< j =< l the subgraphs of G, each induced by S and
the vertices of the corresponding connected component, with the ad-
dition ofedges required to make the subgraph induced by S complete.
Each such C has an answer YES or NO (whether it is embeddable
in a k-tree or not) determined during the computation.

METHOD: {find the graphs C and C}
for each set S of k vertices in G do

if S is a separator of G
then insert C S and the corresponding graphs C into the data
structure

end-do
sort all graphs C by increasing size
{examine graphs C from smallest to largest and determine whether
the graph is a partial k-tree}
A graph C of size k + is a partial k-tree: set its answer to YES.
for each graph C an increasing order of size h do

for each v C do
examine all k-vertex separators Cm contained in Ci t_J {v};
consider all Ctm in (C- Ci) t_J Cm which are partial k-trees.
if their union, over all l’s and all m’s, contains C Ci

then set the answer for C to YES and exit-do.
end-do
if no answer was set for C

then set the answer for C to NO.
if G has a separator Cm such that all Ctm graphs have answer YES

then G is a partial k-tree: return (YES).
if each separator Cm of G has a Ctm with answer NO

then G is not a partial k-tree: return (NO).
end-do
{end of the algorithm}
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In the algorithm above we use C to denote both a graph and its vertex set, depending
on context. This slightly inaccurate usage will continue in the verification below. The
worst case time complexity of the algorithm is fairly straightforwardly bounded by a
polynomial in n, the size of G, since all the operations (searches and checks) can be
performed efficiently and there is a limited (polynomially bounded) number of them.

THEOREM 4.2. The execution time ofthe partial k-tree recognition algorithm using
suitably chosen data structures is oforder (9(nk+ 2).

Proof. The algorithm examines at most all k-element vertex sets; there are (9(nk) of
those, and it takes (9(n2) time to check if one is a separator of G. To be able to access
the subgraphs C in the increasing order of their sizes, they should be bucket-sorted, in
time proportional to the numer of them, at most (9(nk+ 1). The exit conditions for the
algorithm can be checked in constant time per examined subgraph, by incrementally
maintaining counts of partial k-tree components for each separator, and of incorrectly
guessed separators for the whole graph. There are less than n vertices in a subgraph C,
and the access to a ’related’ separator Cm (in the innermost loop) can be made in constant
time. Checking the union of the relevant partial k-tree components is again of order of
the size of C, and thus, the overall time complexity is (9(nk+ 2).

To prove the correctness of our algorithm we state and prove two lemmas. The first
one reflects the fact that partial k-trees are k-decomposable (cf. Arnborg and Proskurowski
[3, Thm. 2.7]).

LEMMA. 4.3. A given graph G ofsize at least k + 2 is a partial k-tree ifand only if
there exists a k-vertex separator Ci such that all subgraphs C (as defined in the algorithm)
are partial k-trees.

Proof. (By induction on the size n of G). Obviously true for n k + 2, since of
graphs with k + 2 vertices only Kk/ 2 is not a partial k-tree. Assuming the hypothesis true
for all smaller graphs, consider a graph G of size n >= k + 3. If G is a partial k-tree, then
it has a vertex v which in some k-tree embedding has a completely connected neighborhood
S. The graph G1 G {v } t_J S is also a partial k-tree with a postulated separator Ci (by
the inductive assumption). If this Ci is identical with S, then it fulfills the requirements
for G since S tA {v} (the new C containing v) is a partial k-tree. Otherwise, the C (of
the embedding of GI) that contains S can be extended by v to a partial k-tree. Hence,
the necessity is proved. The sufficiency follows immediately from the constructive defi-
nition of k-trees: G can be constructed using Ci as a base, and independently attaching
an embedding for each C.

The second lemma addresses the operation of the algorithm when computing the
partial answers. Note that C has a complete subgraph induced by Ci.

LEMMA 4.4. A graph C, as defined in the algorithm, is a partial k-tree iff there
exists a vertex v in C and a set F ofk-vertex separators Cm Ci contained in Ci t_J {v}
such that graphs Ctm Cm (for all l such that Ctm c C is a partial k-tree) partition
C-Ci-

Proof We recall that a k-tree can be constructed with any k-complete subgraph as
its base. IfC is a partial k-tree, then any k-tree T embedding it can be constructed from
Ci by first adding a vertex, v, adjacent to all vertices of Ci, and then constructing
the remainder of T as k-trees Ttm based on some k-complete subgraphs of Ci t.J {v}.
The k-trees Tm overlap only on Ci .J ,/), and thus their subgraphs Cm partition
C, Ci- { v}. This proves the necessity. If such a family F of separators exists, then a
k-tree T embedding C can be constructed from C by first adding v adjacent to all the
vertices of C and then building up the remainder of T as the union of embeddings of
the partial k-trees Ctm, each constructed with Cm as its base.

THEOREM 4.5. The algorithm correctly determines whether a given graph G is a
partial k-tree.
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Proof. The termination criteria ofthe algorithm’s main loop correspond to the view
of partial k-trees as k-decomposable graphs. By Lemma 4.4, every subgraph C of size
at most h is correctly classified. If G is a partial k-tree then the final decision (return of
YES) is reached when the size of the subgraph C increases to at most (n + k)/2 (this
corresponds to G having only k-path embeddings). E]

The algorithm discussed above answers the embeddability decision problem, but it
does not produce an embedding when one exists. It is obvious that this can be achieved
by storing an embedding for every C if and when it has been classified as a par-
tial k-tree.

Noteaddedinproof In arecent paper(Graph minors XIII: Thedisjointpathproblem,
manuscript, September 1986), Robertson and Seymour showmnonconstructivelymthe
existence of an O (n2) algorithm for recognizing partial k-trees. Such an algorithm would
require the knowledge of the set of all minimal forbidden minors for the class of partial
k-trees.
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DISTRIBUTION OF THE MINIMUM CHANNEL WIDTH
IN VLSI WIRING*

D. COPPERSMITHf, I. GOPAL AND C. K. WONGf

Abstract. Suppose we have N terminals on one side of a wiring channel, and N on the other side, and we
wish to achieve a given interconnection specified by a randomly chosen permutation function. We show that
the minimum number of horizontal channels necessary is close to N/2 most of the time.

Key words. VLSI, wiring channel width, random walk

AMS(MOS) subject classifications. 60J 15, 68A05

1. Introduction. The problem ofchannel wiring has become increasingly important
in VLSI design. Specifically, the problem is one of interconnecting two sets of terminals,
one set on each side of a wiring channel, and to accomplish this interconnection while
optimizing some objective function. Typically this objective function is the channel width
or the number of horizontal tracks necessary in the channel.

Several previous efforts have been directed towards obtaining minimum or near-
minimum width solutions for some given problem instance ], [2]. However, it is often
ofgreat use to the designer to obtain some idea ofthe minimum width without a complete
specification of the problem. Specifically, estimates of the distribution of the minimum
width can be of value in making layout and global routing decisions.

In this paper, we develop such estimates for a specific wiring model. We consider a
two layer wiring channel in which vertical wire segments are restricted to one layer and
horizontal wire segments to another, vertical and horizontal wire segments being joined
by means of via holes. All connections involve exactly one terminal on each side of the
wiring channel. Thus, if the terminals on the upper side of the channel are labeled
(from left to fight) a, a2, an, and the terminals on the lower side are labeled
hi, b2, "", bn, the connections are completely specified by the permutation function
r { 1, N} -- { 1, N} which specifies that ai is connected to bto for every i,
l<-i<=N.

Clearly, to complete the specification ofa problem instance it is necessary to specify
the embedding of terminals, i.e., the positioning of the terminals relative to each other.
We consider, in this paper, two very specific types ofembeddings. The first is the "uniform"
embedding shown in Fig. in which terminal bl is positioned between a and a2, b2 is
positioned between a2 and a3 and so on, with bn lying to the right of an. The second
type is the "optimal" embedding, where an "optimal" embedding for a given permutation
function r is defined as the embedding which allows a wiring ofglobally minimum width,
the global minimum now being taken over all possible wirings and over all possible
embeddings. Figure 2 shows an example of an "optimal" embedding. A previous paper
[3] presents an algorithm to find this optimal embedding for any specified permutation.

We note that, for both embeddings, there are no "vertical constraints" of the type
discussed in [5] and thus the minimum channel width is simply the maximum crossing
number [3]. (The crossing number at some vertical line through the wiring channel is
the number of connections with the left terminal on or to the left ofthe vertical line and
the fight terminal to the right of the vertical line. The maximum crossing number is the
maximum over all such vertical lines.)

Received by the editors June 30, 1982; accepted for publication (in revised form) October 30, 1986.
f IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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bl bz b bN

For both types ofembeddings, we investigate the distribution ofthe minimum chan-
nel width over all possible permutation functions, each of the N! permutations being
assumed equally likely.

We shall show that, for most permutations, under either embedding, the minimum
width is very close to N/2. In fact, for each e there is a c such that with probability

e, the width is between (N/2) c/- and (N/2) + c/-. The argument for the upper
bound will be by comparison with a random walk with fixed end points while the lower
bound will follow from a simple geometric argument. We also show that, for both embed-
dings, the expected value of the minimum width is at least (N- 1)/2.

2. Mathematical formulations.
DEFINITION. A path P of length L is a sequence of points (0, P0), (1, P1), "’’,

(L, PL) in the plane integer lattice. We consider only finite paths here.
DEFINITION. A generalized random walk W is a collection of paths of length L,

along with a probability density, such that
(1) Each path starts at (0, y) for some even integer y;
(2) Each step in a path is from (x, y) to (x + 1, y + 1) or to (x + 1, y 1) for some

integers x, y;
(3) There is an initial density i(y), 0 <= i(y) <-_ 1, i(y) 1, and a set of transition

probabilities t(x, y) t(x, y, IV), 0 <= t(x, y) _-< 1, such that the probability associated
with a path Y along the vertices (0, Y0), (1, Y), (2, Y2), (L, YL) is given by

prob (Y)= i(Yo) 1-I u(x, Yx, Yx/ 1),
O_x<L

where
u(x, y, y + 1) t(x, y),

u(x, y, y- 1) 1- t(x, y)

u(x,y,y’)=O ifly-y’l: 1.

In words, we start with some initial density fly) i(y, W) of positions along the y-axis
(even integers only). Then from any given point (x, y) we proceed to the right and up

Ol

bl b2
FIG. 2. An optimal embedding.



MINIMUM CHANNEL WIDTH 287

(to (x + 1, y + 1)) with probability t(x, y), or to the right and down (to (x + 1, y 1))
with probability t(x, y), independent of the history of our path to the left of point
(x, y). We continue to position (L, y’) for some y’.

The usual random walk starts with the initial density concentrated at 0 (i(0) 1),
and has uniform transition probabilities (t(x, y) 1/2, usually).

Ifwe have two generalized random walks, Wand W’, both of length L, we say that
W majorizes W’ in the event that, given any path P of length L, (0, Po), (1, P),
(L, PL), the probability that a path Y in Wlies below P (i.e., Yx <= Px, x O, 1, L),
is no greater than the probability that a path in W’ lies below P.

3. Bounds on minimum channel width.
LEMMA 1. Given two generalized random walks W and W’ of length L,

if the initial density i(y, IV) majorizes the initial density i(y, W’) (in the sense that
i(y, W) <- ,_i(y, W’)for allj), and ift(x, y, W) >- t(x, y, W’)for all (x, y), then
W majorizes W’.

ProofofLemma 1. Let g(x, y, W, P) denote the proportion of paths Yin Wwhose
initial segments (up to and including x) lie below P, and with Yx <= Y. By hypothesis on
i(y, W) and i(y, W’), we have g(0, y, W, P) -< g(0, y, W’, P) for all y and P.

Now use induction on x. Suppose first y <- Px, and that x and y have the same
parity. Set

G g(x, y, W,P), G’= g(x, y, W’,P),

A g(x 1,y+ 1, W,P), A’= g(x 1,y+ 1, W’,P),

B=g(x- 1,y- 1, W,P), B’=g(x- 1,y- 1, W’,P),

T=t(x- l,y + l, W), T’= t(x- 1,y+ 1, W’).

Then, from T >- T’, A’ -> A, A’ >= B’ >= B, and the relations

G=B+(1 T)(A-B)= TB+(1- T)A,

we calculate
G’= B’+(1- T’)(A’-B’)= T’B’ + (1- T’)A’,

G’- G (1 T)(A’-A) + T(B’- B) + T- T’)(A’- B’) >- O.

If y and x are of different parity, then g(x, y, W, P) g(x, y 1, IV, P). Also, if
Y > Px, then g(x, y, W, P) g(x, Px, W, P). This completes the induction.

In particular, letting P range over the constant horizontal paths, we see that if W
majorizes W’, then the distribution of maximum heights of the paths in W majorizes
that of W’. If Wmajorizes W’, then the expected maximum height of a path in W, is at
least as large as the expected maximum height of a path in W’.

We use this lemma to prove an upper bound on the distribution of widths for the
uniform embedding.

THEOREM 1. Let N be even. The width ofa random permutation ofN terminals,
under a uniform embedding, is majorized by the maximum height of a random walk
from (N/2, N/2) to (3N/2, N/2). Thus,for each e, there is a c such that (1 e) ofthe paths
have width less than N/2 + cV.

Proof For 0 -< k -< 2N, letf(k) be the number ofwires crossing a vertical line drawn
between a(k + 1)/2 and btk/23. The width of the channel will be max kf(k) as this is exactly
the maximum crossing number. It turns out that this function f(k) leads naturally to a
generalized random walk W’. The hardest thing to check is that the probability ofgoing
up from (k, f(k)) to (k + 1, f(k) + 1), i.e., Prob{f(k + 1) f(k) + }, depends only on
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k andf(k), not on the previous history off. But this is assured by the nature of random
permutations, and in fact we have that

t(x, y, W’) (2N-x- y)/(2N- x) ifx is even,

(2N-x- y)/(2N-x+ 1) ifx is odd.

We will consider only that portion of the path W’ lying between x N/2 and
x 3N/2. We will consider also the generalized random walk W, which assigns uniform
probability to all paths running from (N/2, N/2) to (3N/2, N/2). We will show that W
majorizes W’. Then, for the portions of W’ where 0 =< x < N/2 or 3N/2 < x <= 2N, it is
immediate thatf(x) < N/2. Thus it is only the middle portion, N/2 <= x <= 3N/2, which
is of interest.

It turns out to be easier to start from the middle and work outwards in both directions.
Consider first the density of y-coordinates at the point x N for both W and W’. (We
call this density i(y, W), and let our generalized random walk start at N instead of at 0.)
First,

i(y, W)=
\ y/2 N/2

since in order to go from (N/2, N/2) to (N, y), we must have taken y/2 steps up and
tN/2x(N/2) y/2 steps down, so that there are y/2J paths from (N/2, N/2) to (N, y); there are

y/2J paths from (N, y) to (3N/2, N/2); and there are (2) paths from (N/2, N/2) to
(3N/2, N/2).

tN/2,Consider fly, W’), on the other hand. Of the N! permutations, there are ,,,/2 ways
of choosing y/2 nodes from among the top left nodes al, aN/2 to connect to nodes
on the bottom fight; tu/2/2 ways ofchoosing y/2 nodes from among the top fight to connect
to nodes on the bottom left; (N/2)! ways of arranging the N/2 wires now leading to the
bottom left; and (N/2)! ways of arranging the N/2 wires leading to the bottom fight. Thus

i(y, W’)=
y/2

[(N/2)!12/N! i(y, W).

Since the initial densities are the same, each majorizes the other.
Let us proceed to the right, from x N to x 3N/2. For the walk W, we find that

t(x, y, W) (2N-x- y)/(3N- 2x),

since of the (3N/2 x) steps remaining to reach (3N/2, N/2), (2N- x y)/2 must be
upwards and (N- x + y)/2 must be downwards, and the uniform nature of Wdemands
that we respect this ratio in deciding our next step.

On the other hand, for W’ we have:

t(x, y, W’) (2N-x- y)/(2N- x) ifx is even,

(2N-x-y)/(2N-x+ 1) ifx is odd.

This is seen (for x even) by saying that of the (2N- x)/2 nodes on the top right (ai for
> x/2), there are (2N- x y)/2 nodes which connect to nodes on the bottom right,

and if ax/2 / is one of those, we will havef(x + 1) f(x) + 1. Similar arguments hold
for x odd.

Since x >- N, we have 2N- x + > 2N- x >= 3N- 2x, so that

t(x, y, W’) >= t(x, y, I4").
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Thus, by our lemma, we have shown that the portion of W’ with N <- x <- 3N/2 majorizes
the corresponding portion of W.

We can view the portions of W and W’ with N >- x >- N/2 as generalized random
walks running backwards, and remark that the portions with N >- x >- N/2 and the
portions with N <- x <-_ 3N/2 are independent, except for the value at x N. For
example, for W, any path from (N/2, N/2) to (N, y) can be joined with any path from
(N, y) to (3N/2, N/2), and the probability of the entire path is just i(y, W) times
Prob{dght-hand path [(N, y)} times Prob{left-hand path [(N, y)}.

Thus, the generalized random walk W majorizes the walk W’. In particular, the
maximum height achieved by Wmajorizes that achieved by W’. But Wis well understood.
For example, we can apply the reflection principle [4] to show that the probability that
a path in Wreaches height (N/2) + h is exactly

(N/2) + h N/2

and this decays as e-2h/u, so that for each e we can find a c so that the probability of
exceeding (N/2) + ellis less than e. By the fact that Wmajorizes W’, we have immediately
the same statement about W’, which is what we wanted.

Remark. Clearly, the results of Theorem apply to the optimal embedding. The
next theorem provides a lower bound on the average width of the optimal embedding
(and thus also on the uniform embedding).

THEOREM 2. Under the optimal embedding, the average minimum width is at least
(N 1)/2.

Proof Let r’ be the "reverse" permutation of r, namely r’(i) N + r(i). (Note
that this is not the "inverse.") This corresponds to flipping the bottom half ofthe wiring
channel. A simple geometric argument shows that width (r) + width (r’) >- N- 1. This
will show a lower bound on the average is at least (N- 1)/2.

Let there be given the optimal embeddings of r and r’. For simplicity, assume that
terminal a lies directly above terminal b only when they are connected by a wire
(j r(i)). (We can always do this without increasing the width of the embedding.) By
continuity, we argue that there is a vertical line x on the wiring channel realizing r, and
a vertical line x’ on the wiring channel realizing r’, such that:

(a) If x lies between ai and a+ on the top of r, then x’ lies between a and a+
on the top of r’;

(b) If x lies between b and bj+ on the bottom of r, then x’ lies between bv+-and bv-j on the bottom of r’;
(c) If x lies exactly on terminals a and b on r, then x’ lies exactly on terminals

a and bv+- on r’.
Then an easy argument shows that the number ofwires crossing x, plus the number

of wires crossing x’, is exactly N, unless x and x’ both lie directly on wires (from ai to bj
and from a to bv+ -j, respectively), in which case it is exactly N- 1. In fact, the wire
from ak to b,(k) crosses x if and only if the wire from a: to b’,(k) does not cross x’, with
the sole exception being k and j r(k).

The width of each embedding is at least as big as its width at this point x or x’. So
the widths of the two embeddings add to at least N- 1. In particular this is true of
minimal embeddings. Thus width (r) + width (r)’ >_- N- 1. By summing over all 7r, and
dividing by two we get our desired result.

Remark. Combining this proof with the previous result on upper bounds on the
distribution of widths, we get a lower bound on the distribution of widths under either
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TABLE

Minimum
width

Fraction of
experimental trials

0 0
0

2 0
3 0
4 0
5 0.04
6 0.16
7 0.25
8 0.3
9 0.21
10 0.04
11 0
12 0
13 0
14 0
15 0

type of embedding. That is, the probability that a width is less than (N/2) ct-, is
no more than the probability that a width (of the reverse permutation) is greater than
N/2 + cf, since the two must sum to at least N- 1.

4. Experimental results. In a previous paper [3], we presented an algorithm to find
an optimal embedding and the corresponding minimum width wiring for a given per-
mutation function. To verify our theoretical results of 3 we implemented the algorithm
in APL and ran it on 100 randomly generated permutation functions on 15 terminals.
Table reports the distribution of the minimum width obtained.

As can be seen the distribution is sharply peaked, with a mean of around 8, which
would tend to corroborate our theoretical results.
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TENSOR EQUIVALENTS FOR SOLUTION OF LINEAR SYSTEMS:
A PARALLEL ALGORITHM*

JOHN DE PILLISf

Abstract. In this paper, we develop a stationary iterative method to find the solution vector x for the
invertible n n linear system

(. ) ax (-,)x =f.
(I and Ik represent the appropriate k k identity matrix.) We find x by replacing (1.1) with the equivalent
system

(.2) 2=(-)=f, =Xo(R)X.

Solution vector x of (1.1) will be "easy to extract" from the solution of (1.2) since Xo (R) x is always a
decomposable tensor. For any quadratic polynomial where o(1) 1, we may construct tensor iteration matrix
/ of (1.2) whose eigenvalues _+, are all determined by o according to the equation (,)X o(#) where t runs
over the eigenvalues ofB in (1.1). With the ability to shape the spectrum of/ as per (,), we develop an optimal
stationary iterative algorithm to solve (1.2) in the special case when the spectrum of A in (1.1) is real. The
algorithm is further enhanced if its parallelism is exploited.

Key words, parallel algorithm, iteration, sparse matrix, tensor, linear system

AMS(MOS) subject classifications. 65F10, 68B99, 15A69

1. Introduction.
1.1 Equivalent systems. Systems (1.1) and (1.2) have solutions, both of which de-

pend on the same vector x. We call these systems equivalent whenever

(1.3) = (x0x), =P(R)I+Q(R)B and f=fo(R)f
where 2 2 matrices Q and P and 2-vectors Xo andj are to be determined in advance.
(Note" Tensor (R) definitions and basic properties are provided in the following sections.)
Substitution of (1.3) into (1.2) produces the equivalent tensor system

(1.4) (/n -/)(X0 (R) x) =J (R)f where/ P(R) I+ Q(R) B.

Having found tensor vector (x0 (R) x) in (1.4), we will "factor out" vector x0 to finally
obtain solution vector x of (1.1).

Remark (preserving decomposable tensors). From (1.4), we see that tensor iteration
matrix / must preserve decomposable tensors, i.e., I2n J sends decomposable
(x0 (R) x) to decomposable (j (R) f). Tensor definitions follow.

Why is system (1.4) (a special case of (1.2)) easier to work with than (1.1)? As we
shall see in (4.3), we may link the spectra of/ and B by means ofan arbitrary polynomial
o of degree twomthe only constraint on o is that o(1) 1.

Here is what we mean by the "linking" of a(B) with a(/): We are given linear system
1.1 and suppose o is any quadratic polynomial such that o(1) 1. Then 2 2 matrices
Q and P may be chosen so that/ of (1.3) has spectrum

(1.5a) o-(/)2 ,(o-(B));
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that is, each/ a(B) defines the pair of values ___k a(B) as follows:

(1.5b) k2 o(#), where o(1) 1.

Remark. The linking conditions (1.5a, b), are reminiscent of the well-known ei-
genvalue equation (1.7) of the SOR method for consistently ordered systems. Here is a
brief description (cf. [22], [23]). In the SOR method, linear systems involving invertible
A of (1.1) are put into the form

(1.6a) Ax (In L- U)x f
A is said to be consistently ordered relative to the splitting (1.6a) whenever the following
spectral invariance holds: for all scalars a, 4: 0,

(1.6b) a(otL + 0/-1 U) o’(/3L + -1 U).

If we set B (L + U) in (1.1), we obtain (1.6a). In the terminology of (1.3), the SOR
method induces a linear system which is equivalent to (1.1). To see this, substitute into
(1.2) as follows: -- x,

/=/ (I.- oL)-I [( O)In + oU], 0 < o < 2,

f (I.- coL)-f
A principal consequence of consistent ordering is that the spectra of the two iteration
matrices, B and/, are linked in a manner similar to (1.5). In fact, we have that t e a(B)
and e tr(/) are linked by the well-known functional relation

(1.7) (X + o )2 XO)2/.t2.
Equation (1.7) behaves like (1.5b) in that t implies k 1.

In (1.5), there is a good deal of freedom in "molding" a(B) once we know the
geometry of a(B). This paper considers one special case: when a(A), the eigenvalues of
A, are real and straddle the origin (equivalently, eigenvalues a(B) a(I- A) are real and
straddle the point z .) More exactly, we shall assume our matrices A have the property

o-(A) o-(I- B) [a, b] tO [c, d], a _-< b < 0 < c =< d.

Systems (1.1) with condition (1.8) include all symmetric Hermitian matrices A. This is
discussed in 8 along with a brief survey of the literature.

The success of stationary iterative methods depends entirely on the spectrum of an
iteration matrix like B of (1.1) or B of (1.4). We briefly describe the role of iteration
matrices in the creation of solution sequences and in measuring convergence rates of
these sequences.

1.2. Convergence rates of stationary methods. Consider the typical invertible
n n linear system, like that of (1.1) or (1.4), which is of the form (I- G)y g. Then
arbitrary initial n-vector Y0 produces the sequence

(1.9) yl= Gylc_ + g, k= 1,2,3, ....
Sequence Yk of (1.9) converges to solution vector y where (I G)y g, if and only if
p(G), the spectral radius of iteration matrix G, is less than one. The speed ofconvergence
of (1.9) increases as p decreases: The asymptotic convergence rate Ry, of the sequence
(1.9), is quantitized once we define

1.1 O) Ry --log (p(G)).

An interpretation of the convergence rate (1.10) is this: (1/Ry) is, asymptotically, the
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number of iterations which suffice to produce an added (decimal) place of accuracy in
Yk; cf., Varga [23]. Denote this number by step_count so that

(1.11) step_count
-1

log 10(p(G))"
It follows from (1.11) that fewer iterates will suffice to produce added accuracy as p(G)
becomes smaller.

1.3. Parallel processing. The question is not yet settled as to what the "optimal"
parallel architecture should be. For example, should our parallel machine allow message
passing as is the case in a hypercube topology? Or should all processors share a common
memory? In the former case, there are time delays in bundling the messages in order to
ship them from processor to processor; in the latter case, badly timed overwriting of
global variables (memory contention) is a potential problem.

In developing algorithms for parallel machines, we often look for parallelism in
current serial algorithms. One example is the computation of the inner product which
involves simultaneous multiplication ofscalar pairs. For another example, note that once
the scalar multipliers are known in Gaussian elimination, the sequence ofrow operations
which produce the zeros below the diagonal may just as well proceed simultaneously, or
in parallel.

Our algorithm involves several matrix multiplications and vector linear combina-
tions. (See the pseudocode in 6.) Therefore we may look for parallelism within these
standard matrix manipulations.

But there is a true parallelism in our algorithm that is indicated by (6.15) and (6.16)
of the pseudocode. The computation of co-sequences {Vk} and {Wk} may proceed in-
dependently within the same time frame. On a serial machine, of course, (6.15) and
(6.16) must be computed in sequence. Moreover, our theory has it that p separate co-
sequences result if the matrices P and Q are p p. In this work, we consider only the
special case p 2.

1.4. Structure of this paper.
Section 2 provides basic information and definitions on tensor products of ma-

trices.
Section 3 characterizes the spectrum of matrices that are sums of tensors. In

particular, vectors x0 andj are described in (3.11 for any given system 1.1 ). The matrix
B of (1.2) is characterized in (3.2).

Section 4 is devoted to characterizing the spectrum ofB of (1.2). In fact, we see
in Theorem 4.1 that any quadratic polynomial 9(1) defines matrices Q and P in
(1.2) which, in turn, leads to the linking condition (1.5).

Section 5 proves the optimality of the our algorithm, which produces an equiv-
alent tensor system (1.4) and follows it with a two-part acceleration; cf. [4], [14]. In our
case, optimality is with respect to the two-part splitting acceleration. That is to say, the
final spectral radius p(G) of(1.10) is determined by the zero-centered ellipse which contains
all the eigenvalues of iteration matrix/ given by (1.4). As required in the theory of two-
part splitting, we construct the enveloping ellipse for tr(/) and denote its four vertices in
the complex plane by

(1.12a) iV,-iV,H,-H where H, V>=0.

Then the sequence

(1.12b) yk-- (Xo (R) X)

converges to solution vector (x0 (R) x) of (1.4), with accelerated convergence rate

(1.12c) R -log (o(H, V))
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where

1/1 + V:Z-H2-1
(1.12d) to(H, V)

V-H

Different semi-axes H, V, ofcourse, produce different values ofo(H, V) in (1.12d) which,
in turn, produce different convergence rates Ry (1.12c). The optimal, i.e., smallest,
o o(H, V) of (1.12d) will be shown to occur when H 0. Thus, among the family of
tensor iteration matrices/ in (1.2), the optimal one with respect to two-part acceleration
turns out to be exactly the B with pure imaginary spectrum. (See Lemma 5.5.)

Section 6 presents a pseudo code for the implementation ofthe algorithm when
matrix A of (1.1) has straight-line spectrum (1.8). The parallel nature of our algorithm
can be seen, for example, in (6.15) and (6.16) which entail two simultaneous matrix-
vector products. Moreover, the stopping criteria, (6.17a) and (6.17b), require another
pair of simultaneous or parallel matrix-vector products. Also, the sequences {v} and
{ w}, account for several vector linear combinations which can be executed in parallel.

Section 7 offers concluding remarks on the algorithm including relation of our
techniques to condition number.

Section 8 presents a brief overview of the literature based on methods which
allow or do not allow a(A) to straddle the origin.

2. Tensor fundamentals. We recall some definitions and properties of tensor (Kro-
necker) products of vectors.

DEFINITION 2.1. X (R) Y, the decomposable tensor product ofX with Y: Given
p q matrix Xand r s matrix Y, where X (ai,), 1, 2, p,j 1, 2, q.
Then X (R) Y is the pr qs matrix defined by

(2.1) X(R)Y=(ai,jY), =l,2,...p, j=l,2,...,q.

Ifwe use the matrix product in our definition oftensor product, we obtain the equivalent
definition.

DEFINITION 2.1’. X (R) Y, the decomposable tensor product ofX with Y: Given
p q matrix X and r s matrix Y, then X (R) Y, is the linear transformation defined on
all q s matrices Z as follows:

(2.1’) X(R) Y:Z-XZY

where yt is the transpose matrix of Y.
If q s matrix Z is identified with the qs column matrix (write the entries

of Z in lexicographic order), then it is fairly direct to show the equivalence of (2.1)
and (2.1’).

DEFINITION 2.2. V (R) W, the tensor product ofvector spaces V and W, is the linear
span of all the individual decomposable tensors X (R) Y where X Vand Y W.

Property 2.3. Let matrices X, X’, Y, Y’ be compatibly dimensioned in the sense that
matrix products (XX’) and (YY’) exist. Then the product of decomposable tensors yields
another decomposable tensor, viz.,

(2.2) (X(R) Y)(X’ (R) Y’) XX’ (R) YY’.

In the special case that matrices Xand Yare square, a(X) and r(Y), the spectra ofXand
Y, respectively, are easily related to (X (R) Y). In fact, r(X (R) Y) r(X). r(Y). More
precisely, we have

Property 2.4. Suppose rn rn matrixXandp p matrix Yhave respective (distinct)
eigenvalues

a(X) {u,/, t,}, m’ -< rn
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and
a(Y) {k,,k2, ,X}, p’<=p.

Then X (R) Y has spectrum

(2.3) a(X(R) Y)--- {(]d,i" )kj)}, 1,2, ,m’, j= 1,2, ,p’.

A consequence of commutativity of the eigenvalues in (2.3), is that for any matrices X
and Y,

(2.4a) a(X(R) Y) a(Y(R)X).

The form of (2.3) suggests the notation a(X). a(Y) for a(X (R) Y). Accordingly, (2.3) and
(2.4a) together can be rewritten

(2.4b) a(X(R) Y) a(Y(R)X) a(X). a(Y).

The identity (2.4a) extends from single decomposable tensors X (R) Y to any linear com-
bination of decomposable tensors. That is,

This concludes our brief survey of tensor properties of matrices.

3. The spectrum of tensor sums. We now develop an eigenvalue characterization
for sums of decomposable tensors Li (R) Xi when the Xfs can simultaneously be put into
upper triangular form. Here is that theorem now.

THEOREM 3.1. Given arbitrary p p matrices {Li}, O, 1, 2, k. Given the
n n matrices {Xi} O, 1, 2,..., k and fixed invertible n n matrix S which
transforms each Xi to upper triangularform. That is,

i,2 *
(3.1) SXiS-1= * i=0, ,2, k.

0 0 0

Then the spectrum ofthe tensor sum

(k )(3.2) a

_
Zi()Xi

i=0

is the union ofthe spectra ofcertain p p matrices, viz.,

(3.3) I,.J r Z gi,jLi
J= i=0

Proof We pass from (3.2) to (3.3) as follows:

r Li()Xi o" Xi() Li from (2.5)
i=0 i=

(3.4) e SXiS-I@ Li from (2.2).
i=0
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Now from (2.1) and (3.1), we recognize the matrix in (3.4) to be the n n upper triangular
block matrix

(3.5)

i=0

0

0 0 0 0
k

#i,nLi
i=o

where each block is p p. The spectrum of this matrix is the union of the eigenvalues
of the diagonal blocks; that is, the eigenvalues of (3.5) are given by

tr lzi,jL
j=l i=o

The chain of equalities leading to (3.4) shows that (3.2) and (3.3) are equivalent. The
theorem is proved. D

Theorem 3.1 assumes the following form in an important special case when k 1.
COROLLARY 3.2. Given n n matrices I and B where

,,(B) (,,:, ,,,,),

for any p p matrices P, Q, the tensor sum (P (R) I) + (Q (R) B) has eigenvalues

(3.6) a((P(R) I) + (Q(R) B)),

which is equal to thefollowing union ofeigenvalues:

(3.7)
j=l

Proof Let n n matrix S define the similarity transformation which brings matrix
B I- A to Jordan normal form. That is,

(Ul) * 0 0
0 (#2) * 0

S(B)iS-I * O,

0 0 0 0 ()

which assures us that hypothesis (3.1) is satisfied; Theorem 3.1 may now be invoked.
Accordingly, displays (3.6) and (3.7) are just restatements and special cases of (3.2) and
(3.3), respectively. This proves the corollary.

Remark (Embedding vector x in a decomposable vector). What form may tensor
iteration matrix B take so that for all x Vn, we have (Inp B)(Xo (R) x) (fo (R) Ax).
That is, when does I, -/ send n-dimensional (decomposable) subspace x0 (R) V, to
(decomposable) subspace fo (R) A Vn. This condition is formulated by (3.11); the details
follow in the next theorem.

THFORZM 3.3. Given invertible n n matrix A (I- B) and given any p p
matrices P, Q where

(3.8a) e a(P+ Q);
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that is, for some Xo Vp we have

(3.8b)

ifwe define )0 andfo V2 by

(3.9)

(P+ Q)xo Xo,

=P(R)In+Q(R)B,

(3.1 O) fo Qxo,

then for all x Vn, we have the tensor equation

(3.11 (It,n )(Xo (R) x) fo 63Ax).

Proof We establish the validity of (3.1 1) with the following equalities:

(Ipn )(Xo () X) (Xo () X) (Xo(X)

which, from (3.9),
(Xo (R) x) (P(R) In + Q(R) B)(xo (R) x)

(I- P)xo (R) x- Qxo (R) Bx

(I1 P)xo (R) x Qxo 63 (x- Ax)

(Iv P- Q)xo 63x+ Qxo (R)Ax

Qxo63Ax from (3.8b)

=fo(R)Ax from (3.10).

This ends the proof. U]

Remark. The theory ofk-summability developed by W. Niethammer and R. Varga
starts with systems of the form (1.1). Then iteration matrix B induces the k-part (accel-
eration) sequence

(3.12) Ym (#oB + #1)Ym- -- #2Ym- 2 + 21- #kYm-k + #of,

for arbitrary initial vectors Y0, Yk- where m k + 1, k + 2, cf. [6], [7], [1 5].
Now the sequence (3.12) can be viewed as a special case of (2.9). In fact, write

Ym
#oB + #1 #21 * #m-kI

I 0 0 0
0 I

0 *

0 0 0 I 0

(3.13)

Ym -1
#o_.rq

Ym-k-

Now observe that matrix multiplication in the top row of (3.13) results in (3.12). At the
same time, (3.13) is exactly of the form (1.9) with iteration matrix G P (R) I + Q (R) B
where, from (2.1), we verify that

#1 #2 * #m-k #0 0 0 0
0 0 0 0 0 -0 0

0 * * 0 0 * *
P= 0 *

Q= 0

0 0 0 0 0 0 0 0 0

We see that Q, unlike P, has fixed rank; in the theory of summability, the rank of k k
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matrix Q is always one. This accounts for the fact that in the k-part sequence (3.12), the
iteration matrix B appears only once while scalars tXk are attached to the coefficients of
all other iterate vectors.

4. The spectrum of/ (P (R) I + Q (R) B). In this section, we show that for any
), r(/), where/ (P (R) I + Q (R) B) is given by (3.9), there exists/ a(B) such that
),2 o(z), where o is a quadratic polynomial that is arbitrary except for the fact that
o(1) 1, which is a consequence of (3.8a) or (3.8b).

Here is the theorem that produces the 2 2 matrices Q and P to match the pregiven
quadratic o.

THEOREM 4.1. Given the quadratic polynomial with arbitrary roots r, s 4 where
o(1) 1, i.e.,

(4.1) o(z)
(z- r)(z- s)

r)( s)’

then 2 2 matrices Q, P, may be chosen so that o provides a correspondence between
scalars and I, where

(4.2a) X 6 a(/), / (P(R) I/ Q(R) B)

and

(4.2b) tt 6 a(B).

The precise relationship between ) and t is given by the equation

(4.3a)

(equivalently)

(4.3b)

whenever the 2 2 matrices

(4.4) Q [ q

L q2,1

,(,/)2 o((B)),

(4.5a)

have their entries p, q, ql2 and q21 defined in terms ofthe roots r and s as follows:

P= (1 r)(1 -s)

p(r+ s)
(4.5b) q=-, and

2rs

(4.5c) qzq2 (q + p)2.

Proof The operator/ (P (R) I + Q (R) B) given in (4.2a) is a special case of (3.6)
once we replace L0 with P and replace L with Q. It follows from (3.7), therefore, that

a(/) U tr(uQ + P):# a(B).

Now , e a(B) tr(tQ + P) if and only if

(4.6) 0 det (/xQ + P- M) k2 (uq -[- p)z 2q12q21"

To accommodate condition (3.8a), viz., e a(Q + P), we see from direct computation
on 2 2 matrices that a(Q + P) if and only if 0 det (Q + P- I) if and only if

(4.7) q12q2! (q +p)2.
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This proves (4.5c). Now use (4.5c) to replace the product q12q21 in (4.6) above. We then
obtain

(4.8) 2 2qp p2)#2 + (2qp)# +/92.
Our proof is done once we show that the #-polynomial of (4.8) has the same roots as o
of hypothesis (4.1). Now the roots of (4.8) are not altered if we divide the RHS through
by (1 2qp p2) to produce the monic polynomial

2qp p2
#2 +

(1 2qp-p2)"/x + 2qp-p2) =/2_ (r+ s)u + (r. s).

This last equality follows since, for monic polynomials, the negative sum of roots always
forms the t* coefficient and the product of roots always produces the constant term.
Equating coefficients of the last two u-polynomials above, produces the equalities (4.5a)
and (4.5b). In fact, the matching of coefficients tells us that

(1 2qp-p2)
-2qp p2
r+s r.s

The fight-hand equality above implies that (4.5b) holds. Substitute the value of q from-
(4.5b) into the left-hand term above, equate to the third term, solve for p and (4.5a)
finally results. Recall that condition (4.5c) was established with (4.7). With (4.5a, b, c)
thus established, the proof of the theorem is complete.

5. Optimality of the algorithm. Let us briefly review our progress:
We have shown in (3.11) of Theorem 3.3 that our original linear system with

solution vector x and iteration matrix B, can be replaced by an equivalent tensor system
with solution vector (x0 (R) x). That is, given n n matrix A I B and n vectorf
we may construct vectors x0, J Qxo R2 and 2n 2n matrix/ such that n-vector x
satisfies both the following equations:

where

(I- B)x f and (I- B)(xo (R) x) fo (R)f

(5.2) B P(R) In + Q(R) B.

By choosing 2 2 matrices Q and P appropriately, the spectra of iteration matrices
B and/ are related via

(5.3) (B) o((B))

where 9 is any monic quadratic polynomial with the property that o(1) 1. (See Theorem
4.1.) Polynomial 9 is uniquely determined by its roots r, s 4 and therefore has form

(z- r)(z- s)
(5.4) o(z)

(1 r)(1 s)"

Remark. We assume, henceforth, that matrices Q and P induce the polynomial
o with real roots r _-< s where r, s 4 1. This means that o is real-valued over the real
line. Therefore, whenever the spectrum ofA (I- B) is real, then o will be real-valued
over r(B).

53. Sleetral assumltion. Until now, (A) r(I- B) was assumed to be arbitrary
except for the fact that 0 " r(A) (equivalently, a(B)). For the first time, we invoke
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property (1.8), which says that a(A) a(I- B) is real and straddles the origin. That is,
we consider the special case

(5.5a) r(A) [a, b] t.J [c, d], a =< b < 0 < c-< d.

If we set a a, b, /= c and di d, then we obtain the equivalent
statement

(5.5b) ()[,] U [, ], _-< < <_-<.
Given the spectral assumptions (5.5a, b), we choose roots r and s so as to tailor (B)
according to the linking condition (5.3). This means we can create the optimal config-
uration for a(/) in preparation for a final two-part splitting acceleration. The next section
provides details.

5.2. Use of two-part splittings. We see directly from (5.3) that values of tr(B) can
be determined by the quadratic polynomial of (5.4) which is defined over the intervals
(5.5b). Moreover, p(1) is uniquely defined by its roots r, s q= 1.

In the theory of two-part splittings [4], we capture (cover) a(/) with the smallest
ellipse possible. If this ellipse is symmetric with respect to the real and imaginary axes
and has real vertices _+ H and imaginary vertices _+ iV such that

(5.6) O<-H(r,s)< and 0<= V(r,s),

then a two-part sequence {)Tk} may be constructed such that convergence to the unique
solution vector is guaranteed. Here is how the two-part theory uses the scalars H and V
to construct the accelerated sequence {}.

First, we use the ellipse semi-axes H(r, s) and V(r, s) of (5.6) to define the utility
scalar p(r, s) where

VI+ V2-H-
(5.7) o(r,s) o(H, V)=

V-H

The two-part sequence of 2n vectors is defined as follows (see [4]): For arbitrary
2n vectors 370, )7 set

(5.8) 37k (1 + O0z)/37_ O#237_ 2 + (1 + Op2)(A (R)f)

for all k 0, 1, 2, where 0 (H- V)/(H + V).
Scalar p of (5.7) describes Ry, the asymptotic convergence rate, of { 37} -- Xo (R) x

by the relation

(5.9) R) -log (p(H, V)).

Once we choose the roots r, s for the quadratic p where p(1) l, then matrices Q and
P may be constructed so that the linking condition (5.3) holds. This is summarized in
Table 5.10.

5.3. Minimization. How do we minimize p(H, V) in (5.10[iv]), i.e., how do we
maximizeR in (5.1 0[v])? We will see that the answer depends only on the interior points
b, c of the spectral intervals in (5.5a). In (5.1 0[i]), choose real roots

r=3,=l-c and s=B =l-b.
As it turns out, the resulting optimizing iteration matrix/ will have pure imaginary
spectrum, i.e., H(r, s) 0. (see (5.10[ii], [iii] and Lemma 5.5). Here is the theorem now.
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TABLE 5.10
Construction ofoptimal algorithm via two-part sequence (5.8).

[i] Select roots r =< s 4:1 for the quadratic polynomial p of
(5.4) defined over r(B) of (5.5b), which

[ii] produces iteration matrix/ of (5.2) whose
spectrum (see (5.3)), in turn,

[iii] is covered by an ellipse, with semi-axes H(r, s) and
V(r, s) (see (5.6)), which

[iv] produces scalar o(H, V) (see (5.7)), which

[v] defines the final two-part sequence {37k} (Xo (R) X)
(see (5.8)) with convergence R; -log (o(H, V))
(see (5.9)).

THEOREM 5.1. Given the invertible n n linear system Ax (I- B)x b, and the
quadratic polynomial

z r)(z s). o(z)
(1 r)(1 s)’

which defines the 2n 2n iteration matrix B of(5.8), then the maximum convergence
rate Rfor sequence { 37k} (5.8) occurs when the real roots r, s are chosen such that

(5.12)

i.e., when

r= l-c and s =l-b,

(5.13) o(z)
(z- + b)(z- + c)

be

in which case the optimal convergence rate is given by

(5.14) Ropt -log (/)opt)

where

(5.15) Oot
/1 +M2-
M

and

(5.16) M2= max {(b-a)(a-c) (b-d)(d-c)}bc bc

The proof develops through the following sequence of lemmas.
Goal. To optimize the convergence of sequence (5.8), we must choose real roots

r =< s ofquadratic polynomial p which minimizes o(r, s) of(5.7). The following sequence
of lemmas shows this to happen when roots r and s meet condition (5.12), i.e., when
r=-y= 1-cands=/3= 1-b.

The first lemma says that if (5.8) converges at all, then the real roots r and s must
straddle (or lie on either side of) z 1"
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LEMMA 5.2. Let real roots r <= s define quadratic polynomial , which induces the
spectrum r() as per (5.3). If a(J) lies in the vertical strip -1 < Real (z) < 1, then the
real roots r <= s straddle the point z 1, i.e.,

(5.17) r< <s.

Proof Recall from (5.6) that it is necessary that a(/) lie in the vertical strip
-1 < Real (z) < if the two-part sequence (5.8) is to converge. Consider the case con-
trary to (5.17), i.e., either

(5.18) l<r<=s or r<=s<l.

Construction of o in (5.11) implies that o(1) 1. Therefore, ifboth real roots lie wholly
on one side of z 1, then o is concave upward over its real domain a(B) (see (5.5b)).
This means that for some #0 e a(B), we have < q,(tzo). Now the linking condition
a(/) +__fa-B) of (5.3) tells us two things: (i) If < ’(#0), then < Vo(u0) e a(/),
and (ii) The eigenvalues a(/) form a set which is symmetric with respect to the real and
imaginary axes. These two conditions together imply that any (necessarily symmetric)
coveting ellipse for (/) will have real semi-axis H > 1, a condition which, in the theory
oftwo-part splitting, guarantees divergence ofthe sequence (5.8). That is, condition (5.18)
cannot hold if convergence is to obtain. Therefore, (5.17) is established and the lemma
is proved. [2]

We have just shown that the roots r, s of o of (5.11) must straddle the point z
as per (5.17). We can now state that the crucial values H2, V2 of(5.6) and hence, of(5.7),
are necessarily among the five values -o(a), -o(6), o(/3), o(3’), 0. Here is the lemma that
demonstrates this fact.

LEMMA 5.3. Given quadratic polynomial , of(5.11) subject to condition (5.17). If
to of(5.7) is minimal, then the zero-centered ellipse that captures a() has semi-axes V
on the imaginary axis and H on the real axis given by

(5.19a) H2= max {0,o(/3),o(-)},

(5.19b) V= max {O,-(a),-o(6)}.

Proof Note that condition (5.17) implies that o, which is defined over intervals
(5.5b), is concave downward. Since o(1) 1, this maximum value is greater than or
equal to one. We first argue that the positive maximum ofo must occur over the interval
(7, ). If the maximum occurred anywhere outside this interval, then o would take on
a value greater than one over a(B), its domain (5.5b). From (5.3), a(/) would then have
a real value greater than one. This, in turn, would imply that the smallest coveting ellipse
for a(/) would have a real semi-axis H greater than one, which, from (5.6), is disallowed.

Since the parabola o over a(B) of (5.5) has its maximum over the open interval
(7,/3), its maximum nonnegative value over a(B) occurs at one ofthe interior end-points
/3 or 3’, while its maximum nonpositive value at the outside end-points a or 6. This
establishes the lemma. U]

The next lemma refines (5.19a) by showing that if to(H, V) of (5.7) is minimal, then
necessarily, o(/3) o(7).

LWMMh 5.4. Let quadratic polynomial p of(5.11) be chosen so that to of(5.7) is
minimal. Then H is defined by

(5.20) H- (/3) o(-y) >- 0.

Moreover, ifH O, then

(5.21) r=3,=l-c and s=/3=l-b.
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Proof
Case (H2 > 0). From (5.19a), we may suppose that H2 is determined by the value

of o at one of the interval end-points,/3, say. This implies that root s is to the fight of/3,
(see (5.5b) for a(B) and (5.11) for the definition of o defined over a(B)). That is,

(5.22a) o(/3) H2 > 0,

(5.22b) o(/3) > o(3"),

(5.22c) /3 =< s.

Along with constraints (5.22a, b, c) above, we always have as a consequence of (3.8a),
the fixed-point property

(5.23) o(1) 1.

As roots r and s vary so as to preserve the two fixed point properties, (5.22a) and (5.23),
we see that either roots r and s move away from each other or else they move toward
each other. As roots r and s move away from each other, the positive values -o(c) and
-o(6) both decrease and o(7) increases. That is,

if (1) 1, o(/3) H2, r decreases, s increases,
(5.24) then -o(c), -o(), both decrease while o(3") increases.

From (5.19b) we see that either -o(a) V2 or -o(/) V2. Condition (5.24) therefore
implies that V- decreases as roots r and s separate. At the same time, (5.24) tells us that
o(3,) increases while H is fixed.

But if V2 decreases as H is held constant, then p decreases. To see this, compute
the partials of p in (5.7) to obtain

0p
> 0 and(5.25) 0-- > 0.

This shows that p(H, V) decreases as either H or V decreases.
To minimize p, therefore, we seek to move roots r and s as far from each other as

possible. How far apart can they be? From (5.22b) and (5.22c), we see that this separation
of r and s may increase until o(3") increases to its maximum allowed value, viz., until
(3") qg() H2. This proves (5.20) when H > 0.

Case 2 (H2 0). In this case, it must be that both roots of o lie inside the closed
interval [3",/3]. That is,

(5.26) 3" -< r and s =</3.
Therefore, o is negative or zero over all of its domain tr(B) (see (5.5b), (5.19) and (5.11))
so that H 0 in (5.6). Now as roots r and s separate, i.e., as r + 3" and s ’/3, the value
of V decreases. Since (5.26) plus (5.19) implies that H is constant and equal to zero,
decreasing V implies that o of (5.7) decreases also. Thus, 0 is not minimal if r and s are
not maximally separated in (5.26). In other words, equality holds everywhere in (5.26).
This proves (5.21) for the case H2 0 and the lemma is done.

The next lemma tells us that if o is minimal, then equality must obtain everywhere
in (5.20).

LEMMA 5.5. Let quadratic polynomial o of(5.11) be chosen so that o of (5.7) is
minimal. Then H O.

Proof From (5.20) of Lemma 5.4, we know that H2 o(3) o(3"). This means
that the roots of quadratic o must be equidistant from the points/3 and 3’. Since o is
concave downward (see (5.17)), the roots lie outside the open interval (3", ). That is, for
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the single real parameter ->- 0, we may characterize the root pairs r rt and s st by
writing

(5.27) r=rt=’y-t and s=st=fl+t wheret>-0.

Then the one-parameter family of t/9 (5.11) takes on the form

(x- t- 3)(x + t-’y)
(5.28) (x)

(1 t-/3)(1 + t--y)

From (5.20) and (5.19b) respectively, we note that

H2 nt2 o,(/3)
while

V2= Vt2 =-pt(a) or -ot(6).

Differentiate Hz with respect to and evaluate at x 3. (By symmetry of the roots with
respect to/3 and "r, we could just as well evaluate the derivative at x 3’.) Similarly,
differentiate V with respect to and evaluate at x a or x 6. We then obtain

dH=d(5.29a) 2HH’

d V2 d
(5.29b) 2 VV’ -ot(O), 0 a, 6.

Through laborious calculation, it follows that the quotient of the derivatives (5.29a) and
(5.29b) is a negative constant N, which is independent of parameter t. In fact, the exact
value of negative N is

(5.30) N=_HH__’ (/3 1)(3’ 1) O a, 6.
VV’ (1-O)[//3,-(O/ 1)]’

We use N in the following calculation of o’, the derivative of p of (5.7) with respect to t.
Accordingly,

Op dH Oo dV
OH dt OV dt

Oo H’ Oo V’.

Multiply this equation by HV > 0 to obtain

Op
HH’

Op
l Vo’ + l-l-5-p vv’.

Substitutc HH’ NVV’ from thc LHS of (5.30) in the equation abovc; thcn divide by
HV> 0 to obtain

(5.31) p,=(/_d__+._ff_]0p10Pv,.

We now show that the sign of o’ is positive in a neighborhood of t 0 and that as
increases, this sign may change at most once. Now if for all positive t sufficiently close

to zero, r r(t) is arbitrarily close to 3’ and s s(t) is arbitrarily close to which implies
that H is arbitrarily close to zero. This means that N/H in (5.31) is arbitrarily large and
negative. At the same time, from (5.25), (Op/OH) > 0 and (Oo/OV) > 0. Finally, (5.24)
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has it that V’ < 0 so that we may conclude from (5.31) that 19’ > 0 over some neighborhood
O<-t<-No.

Now as increases, the derivative 19’ remains positive and changes sign at most once.
Note that V decreases as increases while H increases. That is, the absolute value of the
negative term N/H of (5.31) decreases while that of the positive term 1/V increases. As
increases, therefore, it is possible (not guaranteed) that the RHS of (5.31) will change

from positive to negative. In any event, a minimum value of 19 is realized when r
and s =/3. From (5.20), this guarantees that H2 0. This proves the lemma. [3

Remark. In theory, we could find 19opt in (5.15) by showing that d19/dt > 0 for all
>_- 0. First, write 19(t) as a function of using (5.7), (5.27) and (5.28). Secondly, compute

the derivative of 19 with respect to t. The derivative d19/dt was, indeed, computed using
MACSYMA, and the symbolic result for this derivative consisted of some two hundred
lines. This voluminous output, however impressive and accurate, refused to reveal the
sign of 19’(t). The lemmas above, therefore, serve as an alternative to the MACSYMA
result.

All the pieces are in place for the proof of Theorem 5.1.
Proofof Theorem 5.1. Lemma 5.5 assures us that H2 0, which, from (5.21), says

that r 3’ c and s -/3 b. Substituting these values for r and s into (5.11)
produces the form (5.13) of Theorem 5.1. The expression for M2 given by (5.16) is just
a restatement of (5.19b) after setting M V. Now 19 as expressed by (5.15) is obtained
from the definition (5.7) where H 0 and V M. Finally, convergence rate Root of
(5.14) is always given in terms of 19, as expressed in (5.14) (see e.g., [4], [23]). All the
conditions of Theorem 5.1 have been justified, so Theorem 5.1 is proved.

6. The basic algorithm. We now present a form of pseudocode that details the
implementation of the algorithm (see Table 6.1). The justification appears at the end of
this section.

TABLE 6.1
Optimal algorithm.

OBJECTIVE: To find solution vector x for the linear
system Ax f.

INPUT:
A invertible n n matrix,

a _-< b < 0 < c _-< d spectral parameters for matrix A,
(A) c [a, b] t3 [c, d],

f the n-vector output,
tol positive cut-off tolerance,

k_max maximum iteration count,
I)0, )1, W0, Wl arbitrary initial n-vectors.

OUTPUT:
x Ix01 x02 auxiliary 2-vector

1)k, W auxiliary n-vectors, k 2, 3,

step_count expected step count: estimated number of
iterations which suffice to produce each
additional decimal place of accuracy,

x :’- (Lk/X01) if Ark Xot f < tol and k < k_max,
x := (wk/xo2) if awk xo2fll < tol and k < k_max.
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(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

Step 1: Compute 2 2 matrices Q, P as follows:

Set r:= c,

s:= l-b,

.( rs
P’= r)(1 s)’

p(r+ s)
q’=-

2rs

q12 := /11 (p + q)2l,

q2 := (1 (p + q)2)/q2,

q21 -q

Step 2: Compute auxiliary 2 vectors Xo [Xo, Xo2], andj [j ,J2], as follows:

Xo := null vector of (Q + P- I)

i.e., Q +P- I)xo O.

(6.1 l) J:= Qxo.

Step 3: Compute constants M and o where

bc bc

/1 +M-I
(6.13) o: M

Step 4: Return the expected step count.

(6.14) step_count:=
-1

log 10(p)"

Step 5: Compute iteratively the sequence of n-vector pairs {Vk, Wk}, k 2, 3, 4,

REPEAT k 2, 3, 4, 5,

(6.15)

(6.16)

(6.17a)

(6.17b)

(6.17c)

UNTIL

Vk := (1 p2)[--A(qVk_ + q2wk- ) + (q +p)v_ + q2wc- ]

-}- P21)k- 2 + (1 O2)lf

Wg:= (1 --PE)[(qw-1--q2v- )--(qWp)W- + q2v-- ]

+ p2Wk- 2 + p2)af

[IAv- xof < tol

or l[Aw- xozf < tol

or k k_max.
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Step 6: If k < k_max, then return solution vector x, viz.,

(6.18a) x := Vk/XOl if (6.17a) holds,

(6.18b) x := Wk/XO2 if (6.17b) holds.

Table 6. l’ presents an overview of this algorithm along with references to the par-
ticular displays that justify Steps 1-6.

The justifying displays above which correspond to Step l, Step 2, Step 3 and Step
4 are fairly straightforward. Step 5 and Step 6, however, are more fully explained as
follows.

Step 5: To validate the simultaneous iterative steps (6.14) and (6.15), note that
Lemma 5.5 has it that H 0. We conclude from (5.8) that O -1. Thus, the two-part
sequence for { ffk} in (5.8) assumes the form

37k 02)/37k-1 + Oz)7- 2 + O2)(j (R)f),

which, from (5.2), gives us

(6.19) 37k (1--O2)(p(R)I+Q(R)B)Pk_I +O229g_2+(1--O2)(fo(R)f),

for all k 0, 1, 2, Now the sequence (6.19) above consists of 2n-vectors { 37} which
converges to the tensor vector (x0 (R) x), where Ax f; see (5.1). That is,

(6.20) y -- x0Wk [X01X

Note that (6.20) defines each 2n-vector )g in terms of the n-vectors Vk and Wk. Now
substitute the left-hand equality of (6.20) into (6.19) and use the tensor definition (2.1)
to obtain

[1)k ] (1-- p2) [PlonWk --pI,,
0 ][Vk-1]Wk_

(6.21)

q21B -qB Wk_ 2 p2Wk_ 2 [J2f]

Step l:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

TABLE 6.1’
Optimal algorithm.

Condition Justification

(6.2), (6.3) (5.12)
(6.4) (4.5a)
(6.5) (4.5b)

(6.6), (6.7) (4.5c)
(6.8), (6.9) (4.4)

(6.10) (3.8a, b)
(6.1 l) (3.1 l)

(6.12) (5.16)
(6.13) (5.15)

(6.14) (l.ll)

(6.15), (6.16), (6.17) see below

(6.18) see below
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If we replace B with (In A) in (6.21) then block matrix multiplication produces (6.14)
and (6.15), respectively. From (6.20), we see that Vk -- XoX and Wk -’)" Xo2X. Since
Ax f, we see that the stopping criteria, (6.17a, b, c) of Step 5, are justified.

Step 6: We see from (6.20), that solution vector x limk
wk/xo2. This validates (6.18a) and (6.18b) of Step 6 ifthe tolerance conditions (6.17a)
and (6.17b) are met.

7. Concluding remarks. We present some observations on the algorithm of the
previous section which concern possible shortcuts, the condition number, avoidance of
complex arithmetic, and some numerical results.

Short cuts.
Simplifying x0: Note that the vector Xo in (6.10) is a nonzero null vector of the

2 2 matrix Q + P- I. Its computation, therefore, involves a separate subroutine. Now
we may always set one of the entries of x0 to one, say x0 1. Then steps (6.18a) and
(6.18b) are simplifird in the sense that x0 does not have to be "factored out" in order to
return solution vector x.

A New Test Vector z(,): We have observed experimentally that on occasion, a
barycentric linear combination

(7.1) --+( -x)--,
X01 X02

will be closer to the solution vector x than either of the candidate vectors {vk/Xo } or
{ Wk/Xo2 }. (See (6.18a) and (6.18b).) That is, it may happen that for a certain scalar ,0,

(7.2) [IAZko(,0) -f < tol

for some ko that occurs much earlier than the k that we would find in (6.18a) or (6.18b).
During execution, then, periodic testing of vector Zk(,) for various values of h might
accelerate the convergence of the algorithm. In fact, if (7.2) obtains for some ko, and
(6.18a) and (6.18b) both fail, then overwrite all current vectors vk 1, wk 1, vk z, wk 2

with the closer approximating vector (7.1).

Condition number. Experimental results reveal that the condition number of our
original system (1.1) and of our tensor equivalent system (1.2), (1.3) are of the same
order of magnitude. That is, the condition number does not increase. One example we
tested was the system Ax f where A was taken to be a small 12 12 Hermitian matrix
constructed from the notoriously badly-conditioned Hilbert matrix. The spectrum ofA
lay on both sides of the origin. We applied our algorithm to Ax fand we used the
conjugate gradient method on the positive definite normal system A*Ax A*f Even
though the conjugate gradient method held the advantage ofa small dimension (in exact
arithmetic, the conjugate gradient method converges after 12 steps), the condition number
was high enough to render this method unstable. Our own method applied to Ax f
behaved as predicted by step_count of (6.14).

The linking condition (1.5a), (1.5b) allows arbitrary quadratic polynomials p(1) to
be used. Preliminary results now indicate that, in some special cases, the condition number
of the equivalent tensor system may be less (better) than that of the original system.

One more point on condition number: In (6.6) and (6.7) we construct matrix entries
q2 and q21, which have the same modulus. In fact, (4.5c) only requires the product q12q2

The PC-MATLAB software was extensively used for generating examples and condition number com-
putations. This software proved invaluable in this research.
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to equal (p + q)2; the individual factors are not constrained. It is our empirical
experience that equal moduli on the factors ql2 and q21 seem to improve the condition
or the stability of our algorithm.

Complex arithmetic. An equivalent expression for scalar p in display (6.4) is

( b)( c)
P:= bc

Since b < 0 and c > 0 (see (5.5a)), scalar p will be complex if and only if c < 1. To
guarantee that p is real, then, replace A andfin (1.1) with tA and tf, respectively, where
t > 1/c. Finally, note that only in (6.4) can complex scalars be created: in (6.5), (6.6) and
(6.7), real scalar input results in real output.

Maximum iteration count. One of our input parameters is k_max, which denotes
the maximum tolerable iteration count. It may be convenient, however, to calculate
k_max from the computed value (6.14) for step_count, the expected number ofiterations
for each decimal place of accuracy. For example, to assure six-place accuracy, the user
may wish to set k_max := (6* step_count).

Numerical results. Empirical observation suggests that the step_count estimate (6.14)
is fairly accurate. Recall from 1.11 that step_count is 1/Re, the reciprocal ofthe asymp-
totic rate of convergence. Accordingly, we compare Ry, our rate .of convergence, to
R(e/N), the convergence rate of Eiermann and Niethammer [6], which treats the case

(7.3) tr(A)c [-1,-e] U [e, 1].

The resulting asymptotic convergence rate (and corresponding step_count) is

log [1-2](7.4) R(E/N)
step-count(E/N) 2 -!- 2

From our theory, the convergence rate Ry for (7.4) is

log [1-]Ry= step_county- --The Laurent expansion (using MACSYMA) of the ratio of these two convergence rates
is

step-count(E/N)_ Ry 2 2e
+ + +...

step_county R(E/N) e - -- -which shows that (Ry[R(E/N)) --* c as e goes to zero, i.e., as the condition number ofA
increases.

8. Related work. Known iterative methods exist for solving (1.1), e.g., Gauss-Seidel,
conjugate gradient, successive overrelaxation. But for the most part, these methods require
either that the spectrum (A) lies wholly within an open hyperplane having z 0 on the
boundary, or that A possesses additional structure such as symmetry or normality. Here
are some of these methods.

8.1. Algorithms for which tr(A) cannot straddle the origin. The successive overre-
laxation (SOR) method considers Ax (I B)x fwhere iteration matrix B L + U.
In the terminology of(1.2), the SOR method studies the parameterized class ofequivalent
systems as described in (1.6). The Gauss-Seidel method results when w 1. In theory,
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then, the eigenvalues ofA may be well scattered about the complex plane. But practical
a priori calculation of optimal parameters is possible only for certain special casesmone
ofthese occurs whenA is consistently ordered in which case we assume that the spectrum
ofB L + U lies in the open real interval (-1, 1); cf., [22], [23], [24]. This implies that
a(A) may not straddle the origin.

The early work in semi-iterative methods by Gene Golub and Richard Varga [11 ],
develops a nonstationary method (constants are updated at each iterative step) but the
spectrum r(A) is presumed to lie within the real interval (a, b), where 0 ’ (a, b).

Tom Manteuffel 12] presents a nonstationary Chebyshev semi-iterative method for
the class of matrices A where r(A) is contained inside an ellipse which, in turn, excludes
the origin.

A stationary method in the form of k-part splitting is given by de Pillis in [4], where
tr(A), the spectrum of matrix A, must be contained within an ellipsemmoreover, zero
must lie outside this ellipse.

The assumption of diagonal dominance for A which guarantees success of Gauss-
Seidel and Jacobi iteration for irreducible matrices, also forbids a(A) to lie on both sides
of the origin.

8.2. Algorithms for which (A) straddles the origin. As we have noted in the in-
troduction, system (1.1) includes all symmetric (Hermitian) systems. The following special
case arises in several contexts:

(8.1)
0

where H= H*.

(Symbol H* indicates conjugate transpose of matrix H.)
For example, in T. Markham, M. Neumann and R. Plemmons [13] a large scale

linear least squares problem is studied for the (m + n n) over-determined system

where n n matrix A1 is invertible. The authors show that (8.2) is equivalent to the
linear system

(8.3) A I 0 r b
0 A A rl 0

If we interchange the first and third block columns of (8.3), then we see that the least
squares problem can be cast in form (8.1) with H Im + n-

In a very recent work of Plemmons [19], the minimization problem

(a.4) 1/2(lx, x)- {s,x) where Ex=

is considered where matrix A is positive semidefinite. Once again, system (8.3) is converted
to the equivalent linear system

(a.5
0 #

which is of form (8.1).
Iterative methods for solving (8.5) appear in Dyn and Ferguson [5], where various

splittings are used. Conjugate gradient techniques can be found in Axelsson’s work [1 ].
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The work of Fix, Gunzburger and Nicolaides [10] discusses mixed finite element
schemes. (Mixed schemes are finite element approximations based on stationary varia-
tional principles instead of strict maxima or minima.) These authors develop their work
by viewing the mixed method as abstract Galerkin methods applied specifically to operator
equations of the form (8.1).

Recently, Wilhelm Niethammer and Richard Varga 15] presented a k-step stationary
method in which each vector iterate Vn, n > k, depends on the k previous vectors as
indicated by (3.12). In this work, any compact configuration for a(A), straddling or not,
can (theoretically) be accommodated for given invertible A if k is taken sufficiently large.
But calculation ofthe parameters in general is not yet practical. The case k 2, however,
is well understood--a(A) may lie within any ellipse with z 0 in it exterior. The case
of straight line spectrum for A is obtained when the ellipse is degenerate. But when
k 2, zero is in the exterior of any allowable ellipse--the origin may not be straddled.

The conjugate gradient method traditionally treats the case A is positive definite
Hermitian. Hence, tr(A) can not straddle the origin. However, Concus and Golub [2]
present a nonstationary variation which can deal with matrices of form (8.5). In a more
recent work, V. Faber and T. Manteuffel [9] extended this technique to the wider class
of matrices A which are either (i) Hermitian or (ii) a linear combination of the identity
and a skew symmetric S -S*. Thus, (A) may straddle the origin but matrix A must
always be normal (AA* A’A). Also, the conjugate gradient method is nonstationary.

A very general class of matrices is treated by C. Paige and M. Saunders [17]. Here,
solution of (1.1) is regarded as a minimization problem in a least squares setting which
uses the Golub-Kahan lower bi-diagonal reduction ofA. This method is nonstationary.
Also, in the work of Opfer and Schober 16], the general n n matrix A is treated by
constructing a polynomial with a specified min-max property. One interesting result
(Corollary 5.1) is this: ifthe iteration scheme is to be stationary, then the theory guarantees
existence of an optimal polynomial for matrix A if and only if a(A) does not straddle the
origin. (Our paper presents a stationary scheme for straight-line spectra which do straddle
the origin.)

Solution to (1.2) is also given by Y. Saad [20] for the zero-straddling case
a(A) c [a, b] t3 [c, d] where a < b < 0 < c < d. This iterative technique is reminiscent
of the Chebyshev semi-iterative methods except that least square polynomials are used
in place of the Chebyshev minimax polynomials. Note that A must be self-adjoint. Sim-
ilarly, in the work of de Boor and Rice [3] an optimal Chebyshev type of polynomial is
developed under the assumption that matrixA is real and symmetric. (Our paper assumes
a straight line spectrum for A but requires neither the real or symmetric properties.)

In a similar vein, D. Smolarski [21 deals with "boomerang shaped" spectra. This
is, (A) lies in a polygon which is symmetric with respect to the real axis. This method
is nonstationary.

In the work by M. Eiermann and W. Niethammer [6] Euler summation theory is
the cornerstone for treating r(A) of arbitrary bounded shape. A nonstationary algorithm
is developed for straight line zero-straddling r(A) in [a, b] t3 [-b, -a] where a < b < 0.
(See (7.4).)

A comprehensive overview ofiterative methods may be found in the paper ofHoward
Elman [8]. See also [18] by Patterson.

Acknowledgments. Many thanks to Professors A1 Kelley, University of California,
Santa Cruz and Fred T. Metcalf, University of California, Riverside, for many helpful
discussions regarding MACSYMA.
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INHERITED MATRIX ENTRIES: PRINCIPAL SUBMATRICES
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Abstract. For a nonsingular n-by-n matrix A [aij], let a
_

1, 2, n} and let A[a] denote the principal
submatrix ofA lying in the rows and columns indicated by a. We determine the combinatorial circumstances
under which the (i, j) entry of the Schur complement (A-[a])-l equals ao, and under which the graph of this
Schur complement is contained in the graph ofA[cd.

Key words, digraph, Gaussian elimination, inverse, principal submatrix, Schur complement, sparse matrix
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1. Introduction. Let A [aij] be an n-by-n nonsingular matrix and let N
{ 1, 2, n}. For index sets a,/3

___
N we denote the submatrix of A lying in rows a

and columns/3 by A[cl/]; in case a, the submatrix is principal and we abbreviate
this to A[a]. The set N- a is denoted by ac. We index the entries of A[a] with their
indices from a, so that each entry retains the indices associated with its position in A.

We are interested in questions of the following qualitative type. When do certain
entries in a matrix derived from A coincide identically with the corresponding entries of
A, or when is the zero pattern in A preserved in a matrix derived from A? For example,
provided the inverses exist, it is a familiar fact that

(1.1) (A-I[])-1 A[a], or equivalently A-I[ot] (A[o])-1,

ifA is triangular and c is a consecutive set of indices; i.e., inversion may be carried out
"locally." The matrix (A-[a])-1 is the Schur complement of A[ac] in A (see e.g., [3],
11 ]) and arises naturally in Gaussian elimination. It is obvious that (1.1) is valid for any
nonempty index set a if A is a nonsingular diagonal matrix. IfA is a restricted type of
upper triangular matrix, namely

(1.2) A
D2 J

where D1 and D2 are nonempty nonsingular diagonal matrices and A l2 is an arbitrary
rectangular matrix, then (1.1) still holds for all a. IfA is tridiagonal, then (1.1) does not
in general hold; however, for a a consecutive set of indices, the graph of (A-l[a])-1 is
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contained in the graph ofA[a]. This follows from the often noted fact that ifA is tridiagonal
and nonsingular, then so is the inverse of any nonsingular principal submatrix of A-(see, e.g., [1, Cor. 3.3]). So in this case there is preservation of the zero pattern rather
than particular matrix entries. Our results here unify and generalize these familiar facts
by determining the most general combinatorial circumstances under which there is entry
preservation or graph containment.

We now state a list of general questions to be addressed, and then give some more
notation and definitions which we need.

(QI)

(QII)

Under what combinatorial circumstances is the i, j entry of (A-l[19/])- equal
to aij
(a) For a given a and particular i, j a?
(b) For a given a and all i, j a?
(c) For given i, j and all a with i, j a?
(d) For all a and all i, j a?

Under what combinatorial circumstances is the graph of (A-l[a])- contained in
that ofA[a]
(a) For a given a?
(b) For all a?
(c) For a given a, assuming A is combinatofially symmetric with all akk : 0?
(d) For all a, assuming A is combinatorially symmetric with all akk 0.9

We consider both the directed and undirected graphs of A. Given a matrix A, its
directed graph, D(A), has node set Nand a directed edge (i, j) from toj iff aij =P O. Given
any directed graph, we say that a matrix B is consistent with that graph if bij 0 whenever
there is no edge between and j in the graph. (Note that bij may be zero when such an
edge exists.)

As our questions are combinatorial in nature, we neglect the possibility ofaccidental
cancellations (see, e.g., [2]). Given a directed graph D, we say that two numbersfand g
computable from the entries of a matrix consistent with D are equal generically (written
f=g (genetically)) if f(A)= g(A) for all A consistent with D. With D given and for
i, j e a N, we say that j is reachable from through ac if there exists a path of
length >= 2 in D, say -- p -- P2 - -- Pk -’ j, in which all the intermediate nodes
p, pk e a and are distinct. This is similar to the definition in [8] but there a
path can have length 1, i.e., be just the edge (i, j). From our definition, a path has
length =< Icl / 1, and in case j it is a cycle.

When A is combinatorially symmetric (ai 4:0 iff aj 4: 0) we also work with the
undirected graph, G(A), which has node set N and an undirected edge (i, j) between
and j iff aij =/: O. In this case we assume that all ag are nonzero. Given an undirected

graph G the definitions of"A is consistent with G" and "f= g (genetically)" are analogous
to those for the directed graph. In questions (QII) the graph is directed in (a), (b), and
undirected in (c), (d). The graph ofA[a] is the subgraph ofA generated by the nodes in
a; thus, the graph of A[a] is contained in the graph ofA for all a.

We now state and prove our main results, which enable us in 2 to answer questions
(QI) and to make some observations concerning the relation of our results to Gaussian
elimination for sparse matrices. Then, in 3, we give graphical interpretations to the
results to answer questions (QII). Finally, in 4, we give examples to illustrate our results;
a reader might like to consult these during the course of reading the next two sections.

2. Submatrix results. We begin with a relationship between minors of A and of
the Schur complement ofA[ac] in A. We abbreviate the determinant ofA to det A, and
if a , then det A[a] 1.
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THEOREM 2.1. Let A be an n-by-n nonsingular matrix and suppose that a c_ N is
an index set such that A[a] is nonsingular. Then for index sets I, J c_ a with
we have

det A[aCk3 I[aCt.J J]
det [(A-l[a])-][I]J] (- 1)

det A[ac]

where s gi(ri + i)+ ,jj(cj +j) and rg(cj) is the position of row (column j) of
A in A[a].

Proof By repeated use of Jacobi’s identity (see, e.g., [11, p. 21 ]) we have, for s
ieI ri + Yjj cj, s_ ii + ,jj, and s s + sz:

(-1)s, detA-[a-J[a-I]
det [(A-[a])-’][I[J]

det A-[a]
(- 1)s’(- 1)s2 det A[acu Ilacu J]

det A det A- a]

detA[aCUIlaCUJ]
(-1)’ D

det A[ac]

Note that if I and J have cardinality one, i.e., I { i} and J {j }, with i, j 6 a,
Theorem 2.1 specializes to a formula for the i, j entry of (A-[a])- in terms of minors
ofA.

COROLLARY 2.2. Let A be an n-by-n nonsingular matrix and suppose that a N
is an index set such that A[ac] is nonsingular. Then, for i, j a with s rg + + cj + j
we have

1)det A[acu { } [acu {j }](A-l[c]) (-
det A[ac]

We note that this gives an expression for the i, j entry of the Schur complement,
which is also the i, j entry of the reduced matrix of Gaussian elimination obtained after
eliminating on the rows specified by a (provided A[ac] has an LU factorization). The
results ofTheorem 2.1 and Corollary 2.2 are also given in [4] and [7, p. 26], respectively,
for the case a { 1, 2, p}.

To facilitate statements, we introduce the following hypothesis which specifies a
class of matrices to which our results apply.

(H) Let a c_ N, let D be a given directed graph on the node set N, let A [ai] be
any nonsingular matrix consistent with D and with A[ac] nonsingular.

We now state our main result, which provides a necessary and sufficient condition to
answer (QI)(a). Although our question is about matrices, our characterization uses graph-
theoretic ideas.

THEOREM 2.3. Assuming (H), given a and particular i, j a, then we have

(2.1) (A-[a]);) ai (generically)

iffeither
(i) j is not reachablefrom through a N- a, or
(ii) ifj is reachablefrom through vertices p, P2, Pt o{, then

det A[ac- {Pl, ,Pt}] 0 (generically).

(Note that the "/f" implication still holds ifthe equalities are not generic.)
Proof From Corollary 2.2, we have (A-l[a])) a,. iff

det A[aCU { } [actA {j }] (- 1)a,. det A[aC].



316 BARRETT, JOHNSON, OLESKY, VAN DEN DRIESSCHE

Expanding the determinant about the th row,

(2.2) detA[acu{i}laU{j}] =(-1)qaijdetA[a]

+ , +__ ait,,al,p2 a,, det A[ac- {p, ,pt}

where the summation is over all simple paths from to j through nodes p,/92,

Pt a, >- 1; q ri / cl where ri(ci is now the position of row (column j)
ofA in A[aC t3 (i)lact3 (j)] and the + sign in the summation depends on i,j, o and the
length of the path.

It can be shown that s / q 2(i 4- j 4- 1), which is even. This can be seen by first
taking fl ( 1, l)

_
a, and deleting one index at a time until a is obtained.

Thus, if (2.1) holds, each term in the summation in (2.2) must be zero. So either
there is no path in D from to j through a (condition (i)), or if such a path exists, then
the complementary minor must be zero genetically (condition (ii)).

Conversely, if condition (i) is true, then there is no nonzero term
in the expansion (2.2), and so (A-[a])) =ail. Alternatively if condition (ii) is true, then
whenever ao,a,,,_ a,j is nonzero, the complementary determinant

detA[c(-{p ,-.. ,p}] =0,

so in this case also (A-[a]) aij. [--1

Note that ifA[a L) { } la k3 {j } is reducible with respect to A[aC], then (2.1) holds,
but the converse is not necessarily true. It is possible that (A-[a])7) aj tbr noncom-
binatorial reasons (i.e., this equality is not genetic); see Example 4.1. The fact that the
result of Theorem 2.3 holds for a whole class of matrices consistent with a given D is
illustrated in Example 4.6.

If D contains a self loop for each node in ac, then the determinant in (ii) is never
genetically zero, and so the characterization rests solely on (i).

COROLLARY 2.4. Assuming (H), given a and particular i, j a, and assuming D
contains a self loop on each node in ac, then (2.1) holds iffj is not reachable from
through ac.

This yields the following monotonicity result.
COROLLARY 2.5. Assuming (H), given a and particular i, j a and [3 such that

a

_
{3
_
N with A[c] nonsingular, and assuming D contains a self loop on each node

in ac, then (A-l[a]) aij (generically) implies (A-[/3]) aij (generically).
Proof Since there is no path from toj through a, there is none through tic. [2]

There is a vast literature concerning sparse matrix computation using graph-theoretic
techniques to analyze fill-in during Gaussian elimination. Corollary 2.4 (for the case that
ai 0) is essentially the fundamental theoretical result upon which this sparse matrix
analysis is based. Thus our main results in Theorems 2.1 and 2.3 may be viewed as part
of the theoretical foundation of this analysis. The application of Corollary 2.4 to the
modeling of Gaussian elimination using reachable sets may be found in [8], and indeed
may be traced back to [12], but our more general theorems do not seem to be in the
literature. Whereas the literature on Gaussian elimination for sparse matrices focuses on
the preservation of zero entries in the Schur complement (and indeed in the LU facto-
rization ofA), our results characterize the preservation ofboth zero and nonzero entries.

Question (QI)(b) can now be answered by requiting the conditions of Theorem 2.3
to hold for all i, j e given a, giving necessary and sufficient conditions for the entire Schur
complement ofA[ac] in A to be genetically equal to A[a].

COROLLARY 2.6. Assuming (H) and given a, then (1.1) holds (generically) ifffor
each i, j a either (i) or (ii) of Theorem 2.3 holds.
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From Corollary 2.6, we have the following special case.
COROLLARY 2.7. Assuming (H), given a and assuming D contains a self loop on

each node in ac, then 1.1 holds (generically) iffthere exists a permutation matrix P such
that

(2.3)
0 A[t ] d

where t_J [3 t.) ,y N and either one of[3, " may be empty.
Proof This form is obtained by noting that under the hypotheses (1.1) holds (ge-

netically) iff there is no path in D from any node in a to any node in c through c. It
can be shown that this path condition is satisfied iffNcan be written as the disjoint union
of c and sets/3, , such that there is no edge in D from/3 to a, from/3 to 3’ and from c

to ,. This in turn is equivalent to the existence of a permutation matrix P such that
(2.3) holds. [2]

Next suppose we are given particular i, j N and want this entry to be inherited for
all a containing {i, j} (i.e., question (QI)(c)). Since we must now assume that A[ac] is
nonsingular for all such c, the determinant in condition (ii) of Theorem 2.3 can never
be zero, so we have the following characterization.

COROLLARY 2.8. Assuming (H)for all containing a given i, j, then (2.1) holdsfor
all such c iffthere exists a permutation matrix P such that

whereA, A2, A22 are arbitrary matrices consistent with (H), and aj is the only (possibly)
nonzero entry in its off-diagonal block.

Proof Condition (i) of Theorem 2.3 holds for all c containing { i, j } iff there is no
path from to j through any intermediate nodes. Equivalently, removal of the edge
(i, j) from D makes A reducible and this occurs iff (2.4) holds for some permutation
matrix P. [3

If, in addition to the hypotheses of Corollary 2.8, A is assumed to be combinato-
rially symmetric, then there can be no path from j to through any intermediate nodes;
removal ofthe edge (i,j) in the undirected graph causes andj to be in different connected
components. (We note that such an edge is often called a bridge.) Thus there exists a
permutation matrix P such that

(2.5)

whereA and A22 are arbitrary combinatorially symmetric matrices consistent with (H),
and aij, ai are the only (possibly) nonzero entries in the off-diagonal blocks. Note that
tridiagonal matrices with nonvanishing principal minors are ofthis type; and the property
of tridiagonal matrices that (2.1) holds for all c G N, a, j + a extends to
general matrices of this type. Note that in this case when A is combinatorially symmetric
and j, then node can be connected to no other node.
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Our fourth submatrix question, (QI)(d), requires equality (genetically) for the Schur
complement ofA[ac] in A for every a.

COROLLARY 2.9. Assuming (H)for all a, then (1.1) holds (generically)for all a iff
there exists a permutation matrix P such that PTAP has theform (1.2). [2]

Equality in this case is equivalent to having no simple path of length >_- 2 in D. If
in addition A is combinatorially symmetric, then (1.1) holds (genetically) for all a iffA
is a diagonal matrix.

Clearly we can also use Theorem 2.3 to characterize generic equality of a particular
set of submatrices. Upper triangular matrices (considered in the introduction) are an
example where it is natural to consider a as any set of consecutive indices. As another
example, there is a simple but useful sufficient condition for

(2.6) (A-[a]))= ai

to hold for an entire row or column ofA[a].
COROLLARY 2.10. Let a

_
N and let A be a nonsingular matrix with A[c(] nonsin-

gular. Iffor somefixed a, aik Ofor all k ac, then (2.6) holdsfor allj a. (A similar
result holdsfor a fixedj .)

Proof This follows from the if part of Theorem 2.3 applied to D(A), since there is
no edge from to any node in a. E]

Corollary 2.10 and its analogue show that a simple sufficient condition for (2.6)
is that either A[{i}[c(] or A[al{j }l be a zero matrix. This is far from necessary in gen-
eral. But in the case that a= {k}, then the result of Corollary 2.2 reduces to
(A-[N {k} ])Tj aij aikak/akk, and thus the vanishing ofaik or of akj. is necessary and
sufficient for (2.6) to hold.

3. Graph containment results. We now consider the graph containment questions
raised in (QII). These focus on the zero-nonzero pattern in A, and require that
the zero entries are inherited, that is, no new edge is created. Given a nonsingular ma-
trixA and a set a

_
Nwith A[a] nonsingular, we write D(A-[a])- _

D(A[a]) iffwhen-
ever aij 0 for i, j a, then (A-l[ot]) 0. We write D(A-[a])- _

D(A[a]) (geneti-
cally) if for any nonsingular matrix B with B[a nonsingular and D(B) D(A) we have
D(B-l[a])-1

_
D(B[a]). Graph containment for the undirected graph of a combinatori-

ally symmetric matrix is defined similarly. On restricting D D(A) in Theorem 2.3, the
following result answers question (QIl)(a) and thereby specifies conditions for which
the digraph of the Schur complement (A-[a])- is a subgraph of the digraph ofA[a].

COROLLARY 3.1. Given nonsingular A and a

_
N with A[ac] nonsingular, then

D(A-I[a])- _
D(A[a]) (generically) ifffor each i, j such that ao 0 either (i) or (ii)

of Theorem 2.3 holds with respect to D D(A). []

In case a {k}, we have digraph containment iff there is an edge (i, j) in D(A)
whenever there are edges (i, k) and (k, j), and a self loop at node whenever there are
edges (i, k) and (k, i). In the terminology of[ 13], this containment condition is equivalent
to the deficiency of k equal to the empty set and node k not in any 2-cycle -- k -with aii O.

On restricting A to be combinatorially symmetric with all diagonal entries nonzero,
condition (ii) is not required in Corollary 3.1 (as we are considering the "genetic" in-
heritance ofzeros); this provides an answer to (QII)(c). In the case that a is a single node
k, we obtain an answer to this question which involves a well-known concept from the
study of Gaussian elimination on sparse matrices (see, e.g., [8]). The remark following
Corollary 2.10 allows us to omit "genetically" here.
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COROLLARY 3.2. Let A be an n-by-n nonsingular combinatorially symmetric ma-
trix having all akk O. Thenfor k N

G(A-’[N- {k}])-’ G(A[N- {k}])

iffevery two neighboring nodes ofk are connected by an edge in G(A). V1

Equivalently, the above condition can be stated as node k is simplicial in G(A) (see,
e.g., [10]), and Corollary 3.2 embodies the well-known fact that pivoting on a simplicial
node causes no fill-in in Gaussian elimination (that is, no zero entries become nonzero).
However, when Icdl > 1, it is possible that none of the nodes in ac is simplicial (see
Example 4.4), but that the undirected graph containment holds. In order to obtain a
necessary and sufficient condition in this case, we introduce a new definition. A set of
connected nodes V of an undirected graph G is called simplicial in G if the set of all
nodes not in V and adjacent to any node in V induces a complete subgraph in G.

THEOREM 3.3. Let A be an n-by-n nonsingular combinatorially symmetric matrix
having all akk 4: O. For a given a

_
N such that A[ac] is nonsingular, let Gc(A) denote

the subgraph of G(A) induced by the node set ac. Suppose ac t3’= {3k where flk are
mutually disjoint and the subgraphs Gek(A are the connected components of G,,c(A).
Then

G(A-1 [a])-I G(A[a]) (generically)

iffeach set ofnodes [3k (1 <-_ k <= m) is simplicial in G(A).
Proof Suppose first that each set of nodes/3k is simplicial in G(A). If i, j a with

aij 0, then this implies that node j is not connected to node by a path with nodes
solely in ac. Thus G(A-[a])- G(A[a]), by Theorem 2.3.

Conversely, if G(A-[a])-1 G(A[a]) (genetically), then (as all akk 4: 0) condition
(i) of Theorem 2.3 must hold for all i, j a such that aij 0. Thus any two nodes in a
which are adjacent to nodes in some set/3k must be connected by an edge, i.e., each set
/3k is simplicial in G(A). V]

Corollary 3.1 does not seem to have been stated in the literature, although the graph
structure ofthe Schur complement is considered in [2]. We note that this graph structure
is important in partitioned (or block) methods of solving sparse linear systems (see [2],
[5]). Corollary 3.2 is also well known (see, e.g., [8]), but our generalization (Theorem
3.3) and the concept of simplicial sets of nodes is new.

Coming now to our final pair of questions (QII)(b),(d) we have to consider all
index sets a. In the directed graph case, if digraph containment holds for every choice
of a

_
N, then A[ac] must be nonsingular for all a, implying that all akk 4: 0. Thus

D(A-[a])- _
D(A[a]) (genetically) iff the deficiency of each node is empty. Note that

the deficiency ofeach node being empty means that the graph D(A) is transitively closed.
In this event D(A-)

_
D(A) (see, e.g., [9]). If D(A) is transitively closed, then so is

D(A[a]), and thus D(A-[a])- _
the transitive closure of D(A-l[a])

_
D(A[a]). Similar

reasoning via transitive closure verifies the converse, providing an alternate elementary
verification of the answer to (QII)(b).

For the undirected case we have the following theorem.
THEOREM 3.4. Let A be an n-by-n nonsingular combinatorially symmetric matrix

having all principal minors nonvanishing. Then

G(A-[a])- G(A[a]) for every a
_
N

iffeach node is simplicial, that is iffG(A) is a direct sum ofcomplete graphs.
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Proof If the graph containment holds, then using Corollary 3.2 with ac {k} each
node k must be simplicial. Conversely, if each node is simplicial, every connected set of
nodes in G(A) must form a complete subgraph. Therefore the subgraph induced by the
neighbors ofany connected subset Vofnodes ofG(A) must also form a complete subgraph,
and thus V is a simplicial set of nodes in G(A). Theorem 3.3 gives the graph contain-
ment. D

Finally, we mention a different approach to inherited zeros, one which utilizes the
structure ofA-1 corresponding to a given zero pattern in A. The main tool is the following
rank result recently proved independently (see [6, Cor. 3]).

THEOREM 3.5. Let .4 be a nonsingular n-by-n matrix and let [3, "r N with cardi-
nalities p and q, respectively. Then

rank A-l[Vcl1 rank A[Iv] + n-p- q.

Application ofthis identity gives a less direct method ofascertaining inherited zeros
than the results above, but in some cases yields insights that the graph theoretic approach
does not. It can also be used to give simpler and more informative proofs for Theorems
2.1 and 3.1 in [1 ]. We illustrate the use of Theorem 3.5 in Example 4.7.

4. Examples. We now give examples to illustrate our results and answers to ques-
tions (QI) and (QII).

Example 4.1. We note that if(A-[a])-1 aij (in which the equality is not necessarily
genetic), then neither (i) nor (ii) ofTheorem 2.3 necessarily holds, as the following example
shows. Let a { 3, 4} and

2 -5 3
2 0 0 -1

A 2 6 0
so A-I

-2 4 -1 0
0 0 -1

and (a-l[o/])- a34 0. The preservation of this zero entry is due to the fact that
det A[ { 1, 2, 3 }1{ 1, 2, 4 }] 0 because of the numerical values of the entries, not because
of the graph D D(A). Relative to D this is an example of"chance cancellation," rather
than a genetic identity.

Example 4.2. Let G denote a "straight-chain" graph on n nodes with a self loop at
each node:

Let A be any n-by-n nonsingular combinatorially symmetric matrix which has all
akk q 0 and G(A) G. Let a {p, p + 1, ..., q} where < p _-< q < n.

IfA[ac] is nonsingular, then using Theorem 2.3 with the corresponding D(A) implies
that (1.1) holds except for app and aqq (as the only paths through a between two nodes
in a are cycles from node p to node p, and from node q to node q).

By Theorem 3.3, G(A-[a])-_ G(A[a]) (genetically) since G,(A) has two con-
nected components (one with node set { 1, 2, p } and the other with node set
{q + 1, q + 2, n}) and both of these node sets are simplicial sets in G(A).

Example 4.3. Let G and A be as in Example 4.2, but now consider

aC={p,p+l,...,q},
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where < p-< q < n. Suppose A[ac] is nonsingular. By Theorem 2.3, equality (1.1)
holds except for the entries ap-l,p-1, ap-l,q+ 1, aq+l,p-i and aq+l,q+ 1. As

aq+ l,p- ap-l,q+ 0

and these entries become nonzero in (A-l[a])-1, deafly G(A-I[a])-1 G(A[a]) (generi-
cally). This can also be seen from Theorem 3.3 since the set of nodes {p, p + 1, q}
is not a simplicial set (as its adjacent nodes p and q + are not connected). As noted
in the Introduction, (A-l[a])-1 is also tridiagonal; thus, the zero pattern is preserved
despite the lack of graph containment.

Example 4.4. Let A be a nonsingular combinatorially symmetric matrix with the
following undirected graph:

Let a { 1, 4, 5}. If A[ac] is nonsingular, then G(A-I[o])-1
___

G(A[a]) (genetically) by
Theorem 3.3 as the set of nodes {2, 3 } is a simplicial set in G(A). Specifically, the zero
entries a15 and a51 are inherited by (A-lion])-l, and G(A-I[cz])-1 is as follows:

Note that neither node 2 nor 3 is simplicial in G(A).
Example 4.5. In this example only, we consider the undirected graph of a matrix

that has a zero entry on the diagonal. With respect to the result of Theorem 3.3, each
set of vertices Bk simplicial in G(A) implies G(A-I[c])-1

_
G(A[a]) (genetically) even

when some akk 0 for k ac. However, the converse of this result does not follow, as
this example illustrates.

Let A be a nonsingular combinatorially symmetric matrix with the following un-
directed graph:

Letting c { 1, 2}, the set of nodes cc= {3, 4, 5 } is not a simplicial set, however,
G(A-I[])-1

_
G(A[]) (genetically) as the zero entries are inherited, using the fact that

a55 0 (cf. with Example 4.4).
Example 4.6. Consider the following directed graph D:
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Let c { 3, 4}. If A is a nonsingular matrix with D(A) D and A[ac] is nonsingular,
then either Theorem 2.3 or Corollary 2.6 implies that (A-l[a])- A[c] (genetically)
since the only path between two nodes in a passing through c is 3 -- -- 4; however,
det A[c { } =- a22 0. This remains true for all A consistent with D such that A[cc]
is nonsingular, specifically any or all of a, a4, a3 can be set to zero.

Thus, the Schur complement of A[{ 1, 2}] in A is identically equal to the diago-
nal submatrix A[( 3, 4}]. It is interesting to note, however, that the (3, 4) entry of the
Schur complement ofA[( }] in A is nonzero (as can be seen from the remark following
Corollary 2.10).

Example 4.7. Let A be a 5-by-5 nonsingular matrix with a3 a5 a43 a45 0
and remaining entries arbitrary. Let ( 1, 2, 3 }, { 1, 4 } and 3’ { 3, 5 } and assume
A[a] is nonsingular. Clearly rank A[fll3’] 0, so rank A-[3,I#] by Theorem 3.5.
Thus rank (A-[a])[{ 1, 2}1(2, 3}] =< implying that rank (A-[a])-l[{1}l(3}] =< 0 by
Theorem 3.5; thus the zero entry a3 is inherited. This also follows from Theorem 2.3(i)
with D D(A).

REFERENCES

[1] W. W. BARRETT AND P. J. FEINSILVER, Inverses of banded matrices, Linear Algebra Appl., 41 (1981),
pp. 111-130.

[2] J. R. BUNCH, Block methodsfor solving sparse linear systems, in Sparse Matrix Computations, J. R. Bunch
and D. J. Rose, eds., Academic Press, New York, 1976, pp. 39-58.

[3] D. CARLSON, What are Schur complements, anyway? Linear Algebra Appl., 74 (1986), pp. 257-275.
[4] D. CARLSON AND T. L. MARKHAM, Schur complements ofdiagonally dominant matrices, Czechoslovak

Math. J., 29 (1979), pp. 246-251.
[5] I. S. DUFF, Research directions in sparse matrix computations, in MAA Studies in Math., 24, Studies in

Numerical Analysis, Gene H. Golub, ed., 1984, pp. 83-139.
[6] M. FIEDLER AND T. L. MARKHAM, Completing a matrix when certain entries of its inverse are specified,

Linear Algebra Appl., 74 (1986), pp. 225-237.
[7] F. R. GANTMACHER, Matrix Theory, Vol. I, Chelsea, New York, 1959.
[8] J. A. GEORGE AND J. W. H. LIU, Computer Solution ofLarge Sparse Positive Definite Systems, Prentice-

Hall, Englewood Cliffs, NJ, 1981.
[9] J. R. GILBERT, Predicting structure in sparse matrix computations, Cornell Univ. Report CS-86-750,

Cornell Univ., Ithaca, NY, 1986.
10] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
11 R. HORN AND C. R. JOHNSON, Matrix Analysis, Cambridge Univ. Press, London, 1985.

[12] S. PARTER, The use oflinear graphs in Gauss elimination, SIAM Rev., 3 (1961), pp. 119-130.
[13] D. J. ROSE AND R. E. TARJAN, Algorithmic aspects of vertex elimination on directed graphs, SIAM J.

Appl. Math., 34 (1978), pp. 176-197.



SIAM J. ALG. DISC. METH.
Vol. 8, No. 3, July 1987

(C) 1987 Society for Industrial and Applied Mathematics
003
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Abstract. The theory ofdigraph decompositions introduced by W. Cunningham and the theory of isotropic
systems introduced by the author are unified. A basic combinatorial tool is the operation oflocal complementation
at a vertex of a digraph, a generalization of the similar operation already known for simple graphs. This allows
us to unify in a single class the semibrittle digraphs characterized by W. Cunningham and to devise a more
efficient algorithm for searching for a split of a digraph.
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1. Introduction. Graphs and digraphs considered throughout this paper will be finite
and simple. Thus a digraph (graph) is defined by a finite vertex-set V(G) and an arc-set
A(G)

_
{(x, y) x, y V(G), x :/: y} (edge-set E(G)

_
{ {x, y} x, y V(G), x 4: y}). As

usual the notation {x, y} for an edge will be simplified into xy. It will be convenient to
consider graphs as special cases of digraphs by identifying any edge xy with the pair of
reversed arcs { (x, y), (y, x) }. If v is a vertex ofa digraph G then the subgraph ofG induced
on V(G)\(v) will be denoted by G\v. For the most part, our terminology and notation
follows ].

A simple decomposition of a digraph G is a pair { G’, G" } of digraphs satisfying the
following properties: (i) V(G’)I, IV(G")[ >- 3; (ii) V(G’) fq V(G") contains precisely one
vertex v called the marker; (iii) V(G) V(G’\v) tO V(G"\v); (iv) D(G) D(G’\v)
D(G"\v) t_J { (x, y) (x, v) D(G’) and (v, y) D(G") or (x, v) D(G") and (v, y) D(G’)}.
Condition (i) is introduced essentially to avoid trivialities. Nonsimple decompositions
can be defined inductively from simple ones, but we shall not consider them in this
paper, and the term decomposition will always mean simple decomposition.

Decompositions of digraphs have been introduced in [8] by W. Cunningham. They
encompass the notion of graph separability and the substitution decomposition or
X-join. Moreover, there are a number of combinatorial optimization problems which
can be solved more efficiently on each member of a decomposition. This is the case, for
example, for the optimal stable set problem for simple graphs. The reader is referred to
the Introduction of Cunningham’s paper for details. We want to discuss another appli-
cation to the recognition of circle graphs.

A circle graph is the intersection graph ofa finite number ofchords ofa circle. Three
independent efficient algorithms have recently been found for recognizing circle graphs
[4], [5], 10], ]. In each case the property that a simple graph G with a decomposition
{ G’, G" } is a circle graph if and only if G’ and G" are themselves circle graphs is used in
a first step. Thus the problem is reduced to the indecomposable graphs, also called prime
graphs, for which it can be proved they are uniquely realizable by chords of a circle [4],
[5], [10]. This unique realization property and some way for reducing prime graphs are
then the main lines of the algorithms described in [4], [5], [10].

We have recently introduced the notion of an isotropic system [2], [3] as a means
for unifying some properties of 4-regular graphs and some autodual properties of binary
matroids. It appears, moreover, that each isotropic system is associated to a class of
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simple graphs defined up to local complementation, where the local complementation of
a simple graph G at one of its vertices v is the operation which consists of replacing the
subgraph induced by G on n(v) (w vw E(G)) by the complementary subgraph. We
have proved in [5] that the splits (see 6) of a simple graph are invariant under local
complementation, which implies that a prime graph remains prime after a local com-
plementation.

Our purpose in this paper is to extend to arbitrary digraphs the properties which
have been derived when studying isotropic systems. For that we shall define the Eulerian
systems which are a relaxation of isotropic systems and we shall extend the definition of
local complementations to digraphs. So we shall prove that the semibrittle digraphs de-
scribed by W. Cunningham constitute a single class ofdigraphs under local complemen-
tation. Moreover the use of local complementation will allow us to improve the time-
complexity ofCunningham’s algorithm for finding a split of a digraph. Apart from these
main applications, we shall establish some properties which will be used in future papers.

2. Basic definitions and notation. If V is a finite set we consider its set of parts,
P(V), as a vector-space over GF(2) where the addition is the symmetric difference. For
any v e V we shall frequently simplify the notation {v} into v. Thus in further compu-
tations, an expression like H + v where H

_
Vand v e V will be read as H A {v).

If E and V are two sets and if we have defined an operation (e, v) -- e,v from
E V into E then, where V* is the free monoid on V, we shall implicitly extend the
operation from E V* into E by means of the recursive formula (e,m),v e,mv for
every m V* and v V.

Throughout this paper we consider a fixed vector-space K of dimension 2 over
GF(2). Thus K has precisely one null element and three nonnull elements. We letK’
K\(0}. For any finite set V we shall consider Kv as a vector-space of dimension 21VI
over GF(2). The support of a vector A Kv is (v A(v) 4 0}. A complete vector is a vector
with a support equal to V. In other terms a complete vector is an element ofK’v. Two
supplementary vectors are two complete vectors A and B such that A(v) 4 B(v) for every
v e V. For a vector A Kv and a subset W

_
V, we denote by AW the vector of Kv

defined by A W(v) A(v) if v e W and A W(v) 0 if v W. We shall denote by the
set {A W" W_ V}. This is a subspace of dimension IV[ in Kv.

By convention, for any vector A Kv and for any algebraic expression Exp whose
value is a subset P V, the value ofthe expression A[Exp] is equal to AP--the expression
A(Exp) would be ambiguous. For example, where W’ and W" are subsets of V, we have
the equality AW’W" A[W’ W"].

Let S (L, V) be a pair with a finite set V and a subspace L of Kv. A complete
vector A is called an Eulerian vector for S if.4 and L are disjoint. The pair S is called an
Eulerian system if it admits some Eulerian vector and if dim (L) IV[. We notice that
the condition dim (L) ]V[ is not sufficient for the existence of an Eulerian vector. A
counterexample is constructed by choosing V and W_ V satisfying[W[ IV[/2 and
letting L Kw.

Isotropic systems are introduced in [2], [3]. They are defined in the following
way. We consider on K the bilinear form (x, y) - xy such that xy if and only if
0 4: x 4: y 4: 0. For any finite set Vwe define on the vector-space Kv the bilinear form(A,
B) - AB Z,(A(v)B(v)" v V). We have clearly that AA 0 for any A Kv.
An isotropic system is a pair S (L, V) where L is a subspace of Kv which is totally
isotropic, i.e., AB 0 whenever A, B e L- and is of dimension IV[. It is proved in [2]
that every isotropic system has some Eulerian vector. Therefore Eulerian systems gen-
eralize isotropic systems. How to associate isotropic systems to 4-regular graphs is also
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described, and it appears that Eulerian vectors correspond bijectively to Eulerian tours,
which explains the present terminology.

3. Graphic presentations and switching property. The neighborhoodfunction of a
digraph F is the linear endomorphism n of P(V) satisfying n(v) { w (v, w) D(F)}
for every vertex v. Thus for any We P(V) we have n(W) (n(v) v W).

PROPOSITION 3.1. Let (F, A, B) be a triple with a digraph F on the vertex-set Vand
two supplementary vectors A and B ofK, and let n be the neighborhoodfunction ofF.
Then

(i) The mapping c I4/-- An(W) + BW is a linear injection from P(V) into K
(let L Im(a));

(ii) The pair S (L, V) is an Eulerian system, and A is an Eulerian vector orS.
Proof. The mapping c is clearly linear from P(V) into K. Therefore L is a subspace

ofKz. For every W_ Vand every v W, c(W)(v) is either equal to B(v) or B(v) + A(v).
Since A and B are supplementary, we have always 0 q= a(W)(v) q A(v). This implies two
consequences. First, the kernel of a is reduced to the empty set, which proves (i) and
implies dim (L) VI. Second, no nonnull vector of L is in , and so A is an Eulerian
vector of S. [2]

DEFINITION. The triple (F, A, B) will be called a graphic presentation of S, and F a
fundamental graph of S. The image by a of the canonical base of P(V) will be called the
fundamental base ofL induced by A. This fundamental base is {An(v) + By v V}.

Two complete vectors A and B of Kv are said to be neighbours at v e V if they
satisfy A(v) : B(v) and A(w) B(w) for every w : v in V. A subset 2

_
K’v satisfies the

switching property if for every A e 2; and every v e V there exists precisely one vector
B e 2; which is neighbour ofA at v. Then we shall say that B is obtained by switching A
at v, and it will be denoted as A.v. Since IK’I 3, the switching property means equivalently
that for every A e E and every v e V there exists precisely one complete vector C 2;

which is neighbour ofA at v.
PROPOSITION 3.2. The set of the Eulerian vectors ofan Eulerian system satisfies

the switching property.
Proof. Let S (L, V) be the Eulerian system. Let A be an Eulerian vector ofS and

A’ and A" be the two complete vectors which are neighbours of A at v. We prove first
that A’ and A" cannot be both Eulerian. If this was the case, L would be disjoint from
X .4 t_J ’ t2 ". But X is the subspace of all the vectors a Kv satisfying a(w) A(w)
or 0 for every w V\v, and a(v) is arbitrary in K. This subspace has a dimension equal
to vI / 1, and so it cannot be disjoint ofL whose dimension is equal to vI, Finally we
prove the impossibility that A’ and A" can both be noneulerian. If this were the case there
would exist some vectors a’ eei’ fq L and a" e " fq L. We have necessarily a’(v) A’(v)
since otherwise a’(v) would be null and so a’ would belong to ,4, a contradiction
since A is Eulerian. Similarly we have a"(v) A"(v). Let a a’ + a". We havea(v)
A’(v) + A"(v) A(v), and a(w) A(w) or 0 for every w V\v. Therefore a A, a
contradiction since A is Eulerian. Vq

PROPOSITION 3.3. For every Eulerian vector A ofan Eulerian system S (L, V)
there exists precisely one graphic presentation (F, A, B).

Proof. Following the switching property, there exists for each v e V precisely one
complete noneulerian vector A which is a neighbour ofA at v. Let B be the complete
vector defined by B(v) A’(v) for each v e V. The subspace fq L contains some nonnull
vector Ao. This vector satisfies Ao(w) A(w) or 0 for every w q: v in V, and Ao(v) B(v)
or 0. The equality Ao(v) 0 is ruled out since otherwise Av would be an element of A
when A is Eulerian. If Co is another vector of;, fq L it also satisfies Co(v) B(v). The
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vector Do Ao + Co satisfies Do(v) 0 and Do(w) A(w) or 0. This implies that Do e A,
and Do 0 because A is Eulerian. Therefore Av is the single nonnull vector belonging to
d’vfqL.

Let Fbe the digraph defined by V(F) VandA(F) {(v, w) Ao(w) A(w)}. Ifn
is the neighborhood function of F, it is easy to verify that we have Ao An(v) + Bv for
every v e V. This implies that An(W) + BW L for every W_ V. Therefore the Eulerian
system S’ (L’, V) induced by the graphic presentation (F, A, B) satisfies L’

_
L. The

equality holds because L and L’ have the same dimension.
Let (F’, A, B’) be another graphic presentation of S, and let n’ be the neighborhood

function of F’. For every v V let A be the complete vector which is a neighbour ofA
at v and satisfies A(v) B’(v). The vector An’(v) + B’v belongs to L because it is induced
by the graphic presentation (F’, A, B’). This vector is contained in A. Therefore A is
noneulerian. Since there is a single noneulerian vector which is a neighbour ofA at v,
we haveA A. This implies that B’ B. Finally we have already noticed that for every
v V, there is a single nonnull vector in J f3 L. This implies that n’(v) n(v), and thus
F’ F. Vq

We shall say that the graphic presentation (F, A, B) is induced by the Eulerian
vector A.

The results proved in [3] imply that an Eulerian system S is an isotropic system if
and only if there exists some fundamental digraph of S which is a simple graph. In fact
every fundamental digraph of S will be in this case a simple graph. We notice also that
(3.2) and (3.3) are direct generalizations of similar properties of isotropic systems.

4. Local complementation. If GP (F, A, B) is a graphic presentation ofan Eulerian
system, and v e V, we denote by GP, v the graphic presentation induced by A v and we
shall say that GP, v is obtained by switching GP at v. In this section we give the formulas
for computing GP, v.

Let F be a digraph on the vertex-set V. A pair (x, y) of distinct vertices that is not
an arc of F will be called a coarc. A transitivity arc (transitivity coarc) at a vertex v is an
arc (a coarc) (x, y) such that v 4: x 4: y 4: v, (x, v) and (v, y) are arcs of F. To locally
complement F at v is to exchange the transitivity arcs at v with the transitivity coarcs at
v. The resulting digraph will be denoted as F, v. It is easy to verify that the present
definition oflocal complementation encompasses those for simple graphs. The following
property is the generalization to Eulerian systems of a similar one proved in [3] for
isotropic systems.

PROPOSITION 4.1. Let GP (F, A, B) be a graphic presentation of an
Eulerian system S (L, V) and let v V. If n is the neighborhood function ofF then
GP, v (F,v, A + By, B + A[n(v) fq n-(v)]).

Proof. Let {Au An(u) + Bu u V} be the fundamental base ofL induced by A.
We define a new base {A u V} by a kind of pivoting at v. We let

A’ Ao,

A’u Au +Ao if u q v and A(v) O,

A’u Au if u 4: v and Au(V) O.

Expressed in terms of the neighborhood function n, this yields

A’ An(v) + By,

A’=An(u)+An(v)+Bu+Bv if uq:v and vn(u),

A’u=An(u)+Bu ifuq:vand vn(u).
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Let n" V P(V) be defined by

n"(v) n(v),

n"(u) n(u) + n(v) if u 4: v and v n(u),

n"(u) n(u) if u 4: v and v n(u).

If we let A’ A + By, then the reader will easily verify that

A’u=A’n"(u)+Bu forevery u6 V.

It is also easy to verify that the neighborhood function n’ of F’ F. v satisfies

n’(u)=n"(u)+u if un(v)f3n-(v),

n’(u) n"(u) otherwise.

Thus if we let B’ B + A[n(v) f3 n-(v)], we find that

A’ A’n’(u) + B’u for every u V.

Therefore if S’ (L’, V) is the Eulerian system induced by the graphic presentation
(F’, A’, B’), then {A u V} is the fundamental base ofL’ induced by A’, which implies
L’= L. I-1

Remark. The switching A, v of a complete vector A at a vertex v is defined with
respect to a given Eulerian subset Z

___
K’v satisfying the switching property. On the other

hand, the local complementation F, v of a digraph at one of its vertices v is defined
absolutely. Similarly the switching GP,v ofgraphic presentation GP is defined absolutely.
The preceding proposition tells us that GP and GP, v are graphic presentations ofa same
Eulerian system. We prove in the next section that any graphic presentation ofan Eulerian
system is accessible from a given one by a succession of switchings.

5. Switching property and accessibility. For every finite set Vand any two vectors
A and B of KV we consider the Hamming distance d(A, B) ]{v :A(v) 4 B(v)}l. The
length of a word m e V* is denoted as

PROPOSITION 5.1. Accessibility property. If V is a finite set, and Z,
_
K’V satisfies

the switching property, then for every pair of distinct vectors A and B of , there exists
m V* such that B A,m and Ira[ =< 2d(A, B) 1.

Proof We proceed by induction on d d(A, B). If d the result is an immediate
consequence of the switching property. Let us consider two vectors A and B in K’V such
that d(A, B) d > 1. Let K’ {x, y, z}. Let v e Vbe such that A(v) 4 B(v). We suppose
that A(v) x and B(v) y. Let A’ A, v and B’ B, v. The value of A’(v) is either
equal to y or z. In the first case d(A’, B) d- 1, and by induction there exists m’ e V*
such that B A’, m’ and Im’l --< 2d 3. Thus B A vm’, and the proposition is proved
with m vm’. The value of B’(v) is either equal to x or z. In the first case we proceed as
before. Thus it remains the case where A’(v) B’(v) z. We have then d(A’, B’)
d 1. By induction there exists m’ e V* such that B’ A’, m’ and Im’l --< 2d 3. Thus
B A, vm’v, and the proposition holds with m vm’v.

COROLLARY 5.2. For any two Eulerian vectors A and B (graphic presentations GP
and GQ, fundamental graphs F and G) ofan Eulerian system S (L, V) there exists
m . V* such that B A,m (GQ GP, m, G F, m) and Iml --< 21Vl 1. [--1

DEFINITION. Two digraphs F and G on the same vertex-set V are locally equivalent
if there exists m e V* such that G F, m. The preceding corollary says that the fun-
damental digraphs of an Eulerian system constitute a class of local equivalence. Since
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any digraph is a fundamental digraph of some Eulerian system we have the following
result in graph theory.

COROLLARY 5.3. For any two locally equivalent digraphs Fand G on a same vertex-
set V there exists rn V* such that G F, rn and

PROPOSITION 5.4. For every Eulerian system S there exists an integer k > 0 such
that anyfundamental digraph F ofS appears in precisely k graphic presentations ofS.

Proof Let S (L, V). We consider the simple graph Q defined by V(Q)=
{g:g is a graphic presentation of S}, E(Q)= {gh:g, h V(Q) and there exists v e V
such that h g,v}. We consider also the simple graph Q’ defined by V(Q’) {g’: g’ is
a fundamental graph ofS}, E(Q’) {g’h’ g’, h’ V(Q’) and there exists v e Vsuch that
h’ g’,v}. The mapping g - g’ from V(Q) onto V(Q’), where g’ is the fundamental
graph ofS occurring in g, is a coveting mapping of Q over Q’. Following (5.2) the graph
Q is connected. Therefore the statement holds with the index k of the coveting
mapping.

DEFINITION. The integer k in the preceding proposition will be called the index of
the Eulerian system S.

6. Cut-matrices. For an Eulerian system S (L, V) and a subset V’
_
Vwe denote

by L V’ the subspace constituted by the vectors of L whose support is contained in
V’, and we set c(V’) V’I dim (L V’).

For a digraph F on the vertex-set Vand a subset V’
_

V, the cut-matrix of V’ is the
binary matrix r (r’")u’v’,"v\v’ such that r,,, if and only if (v’, v") is an
arc of F.

PROPOSITION 6.1. Let F be a fundamental digraph of an Eulerian system S
(L, V), and let r be the cut-matrix in F ofa subset V’

_
V. Then c(V’) rank (r).

Proof The proof is the same as the proof of(3.1) in [6]. [2]

COROLLARY 6.2. c(V’) >= O.
COROLLARY 6.3. Local complementations do not change the ranks of cut-ma-

trices.

If V’ is a subset of vertices of the digraph F, we set

6(V’) {(v’,v")eA(F):v’e V’,v"e V\V’}.

We note that 6(V’) if and only if the cut-matrix of V’ has a null rank.
The transitive closure of F is the digraph F defined by V(Ft) V(F), A(Ft)

{(v, w) v 4: w, there exists a directed path from v to w in F}.
COROLLARY 6.4. Local complementations do not change the transitive closure ofa

digraph.
Proof There exists a path from a vertex v’ to a vertex v" of a digraph F if and only

if for any V’
_

V(F) which contains v’ and not v", we have 6(V’) 4: . This means that
the cut-matrix of V’ has a nonnull rank, and this property does not change after a local
complementation, ff]

A digraph F is said to be diconnected if its transitive closure is a complete digraph.
This means that for every proper subset V’ ofvertices, 6(V’) is nonempty, or equivalently,
the cut-matrix of V’ has a nonnull rank. We shall say that the Eulerian system S is
diconnected if c(V’) > 0 for every proper subset V’ of V. From now on we shall deal
only with diconnected digraphs and diconnected Eulerian systems.

A split of the digraph F is a bipartition { W’, W"} of its vertex-set such that [W’[,
[W’q >_- 2 and there exists two subsets W’+ and W’- of W’ and two subsets W"/ and
W"- of W" satisfying 6(W’) W’+ W"- and 6(W") W"+ W’-.



DIGRAPH DECOMPOSITIONS AND EULERIAN SYSTEMS 329

PROPOSITION 6.5. A bipartition { W’, W"} ofthe vertex-set ofa diconnected digraph
F is a split ifand only if lW’l, W"I >= 2 and the cut-matrices of W’ and W" have ranks
equal to 1.

Proof Let r be the cut-matrix of W’ in F. Since r has coefficients in GF(2),
rank (r) if and only if the nonnull fines of r are equal. Thus if W’+ is the index-set
of the nonnull fines and if W"- is the index-set of the nonnull entries of these fines, then
6 W’ IV’+ W"- A similar argument can be used for the cut-matrix of W". ff]

COROLLARY 6.6. Local complementations do not change the splits ofdigraphs.
We define a split of a diconnected Eulerian system S (L, V) as a bipartition

{ W’, W"} of Vsatisfying IW’I, [W"[ >_- 2 and c(W’) c(W") 1.

7. Deeomlositions. The reader is referred to for the definition ofa decomposition
{ G’, G"} of a digraph G. He will easily verify that if G is diconnected, the same holds
for G’ and G". The basic property, proved in [8], about digraph decompositions is the
following one:

PROPOSITION 7.1. If G -- { G’, G"} is a digraph decomposition then
{ V(G’\v), V(G"\v)} is a split of G. Conversely for every split { V’, V"} ofG and every
marker v V(G) there exists precisely one decomposition G -- { G’, G"}. D

The decompositions of digraphs fall in the general theory of decomposition frames
formulated by W. Cunningham and J. Edmonds [7], but this will no longer be true for
the decompositions of Eulerian systems, which will now be defined, because of property
7.3. However these decompositions can be encompassed by generalized decomposition
frames proposed by W. Cunningham [9]. This theory is not developed here but the idea
is that there is a group G such that for each object N (the reader is referred to [7] for the
terminology), each cell e ofN and each g G there is another object Ne’) that satisfies
some obvious axioms. In our case the group G will be equal to GL(K) defined below.

Let S’ (L’, V’) and S" (L", V") be Eulerian systems, and let W V’ t.J V". We
shall always identify a vector a KWwith a vector ofKv’U v, by letting a(v) 0 for every
v (V’ U V")\ W. Thus L’ and L" will be considered as subspaces ofKv’U v,, and their
sum L’ + L" can be defined as a subspace ofKv’ v,.

A pair of Eulerian systems {S’, S"}, S’ (L’, V’) and S" (L", V"), is called a
(simple) decomposition of an Eulerian system S (L, V) if the three following condi-
tions hold: (i) V’N V" contains precisely one vertex v called the marker, (ii) V
(V’ t.J V")\{v}, and (iii) L (L’ + L") V.

PROPOSITION 7.2. If {S’, S"}, S’ (L’, W’ t_J { v }) and S" (L", W" U {v}), is a
simple decomposition ofan Eulerian system S (L, V) with the marker v, then

(i) {W’, W"} is a split ofS,
(ii) L W’= L’ W’,
(iii) L W"= L" W".
Proof Since L (L’ + L") V and W’

_
V, we have

(a) L’ W’___ L W’,
which implies that

(b) dim (L’ W’) =< dim (L W’).
Since the dimension ofK over GF(2) is equal to 2, we have

(c) dim (L’ W’) >_- dim (L’)- 2 w’l- 1.
This implies that c(W’) _-< 1, and since S is diconnected the equality holds. Therefore
inequalities are also equalities in (a)-(c), and this implies c(W’) and (ii). Similarly,
c(W") and (iii) holds.

It will be proved further that any split induces some simple decomposition. Here
we show that a same split no longer induces a unique decomposition as was the case for
digraphs.



330 ANDRI BOUCHET

Let GL(K) be the group of the linear endomorphisms of the vector-space K. We
notice that GL(K) is the set of the permutations g of K satisfying g(0)= 0. For a
vector a e Kv, v e V and g GL(K) let a’ a (v’g) denote the vector of Kv defined by
a’(w) a(w) if w 4: v, and a’(v) g(a(v)). For an Eulerian system S (L, V), v e V
and g e GL(K) we let S’= S(v’g) denote the Eulerian system (L’, V) defined by
L’ {a(v’g) a L}.

PROPOSITION 7.3. Two pairs {S’, S’ } and {S’, S’} are simple decompositions of
a same Eulerian system S with a same marker v and a same split if and only if there
exists g GL(K) such that S’2 S’(o’g) and S S(o’g).

Proof Let S (L, V’) and S’[ (L, V") for and 2. If {S’, S’} and
{S, S} are decompositions of S (L, V) with the same marker v and the same
split { W’, W"}, following (7.2) we have

(1) L’ W’= L’ W’= L W’,
(2) L’ W"= L W"= L W",
(3) (L’ + L’) V (L + L) V L.

For each x 6 K and each 6 { 1, 2 ), let Lx {a L a(v) x), and let Lx be similarly
defined. We have

(L + L’[) V= t_J(Lx + L’[x x K).

We notice that L0 L V’ and Li"o L V". Therefore equalities (1)-(3) imply that
{Lx + L’[x x K} is the set of the cosets of L W’ + L W" in L. Therefore there
exists g GL(K) such that L’zx + L’x L’g(x) + L’g(x) for every x K. If we make a
projection onto Kw’ of the two members of the preceding equality, we obtain
L’zx L’g(x). Similarly we have Lx L’g(x). This implies the direct part ofthe statement.
The converse is an easy verification. I--]

Digraphs and Eulerian systems are related by graphic presentations; thus in order
to relate the decompositions of digraphs and those ofEulerian systems, we introduce the
decompositions of graphic presentations. A pair of graphic presentations {(F’, A’, B’),
(F", A", B")} is a (simple) decomposition ofa graphic presentation (F, A, B) ifthe following
conditions hold: (i) {F’, F"} is a decomposition of F with a marker v and a split
{ IV’, IV"}; (ii) the restrictions ofA and B to W’ are respectively equal to those ofA’ and
B’ to W’, and similarly the restrictions ofA and B to W" are respectively equal to those
ofA" and B" to W"; (iii) A’(v) B"(v) and A"(v) B’(v).

PROr’OSITION 7.4. Let {(F’, A’, B’), (F", A", B") } be a decomposition ofa graphic
presentation (F, A, B). IfS, S’, S" are the Eulerian systems which are respectively induced
by (F, A, B), (F’, A’, B’) and (F", A", B") then {S’, S"} is a decomposition orS.

Proof It presents no difficulty but it involves a lot of computation. Let S (L, V),
S’ (L’, V’), S" (L", V"), v be the marker ofthe decomposition ofF. We let the reader
verify the following lemma which is elementary algebra.

LEMMA. Let x and y be two nonnull and distinct elements ofK. Let E’ be a base of
L’ and E" be a base ofL" satisfying thefollowing properties:

in E" satisfying e’x(V) e(v) x andinE’, exandeyThere exist ex and ey
e’y(v) er(v)= y,

For every e’ E’\{ e’x, e’y} and every e" E"\{e, e) we have e’(v) e"(v) O.
Then the set E E’\{e’x, e’} tO E"\{e, e’} U {e’x + e’, e’y + e’} is a base of

(Z’+L")x V. 3
Since F’ is diconnected we can choose w’ 6 V’ such that (w’, v) A(F’). Similarly

we can choose w" V" such that (w", v) A(F"). We set

V’ {v’ V’ (v’,v)CA(F’),v’#v},

V’2 {v’ V’ (v’, v)rA(F’), v’ # w’},
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’ {v" V" (v", v) cA(F"), v" # v}

V’ { v"e V" (v", v) eA(F"), v" # w"},

x A’(v) B"(v); y A"(v) B’(v),

n, n’, n" neighbourhood functions ofF, F’, F".
We notice that

V= V(F) V’l t.J V’2 t.J V’{ tO V tO { w’, w"}.
We consider the fundamental base of L’ induced by the graphic presentation (F’, A’, B’),
say

{A’, A’n’(v’) + B’v’ v’ V’},
and we construct a new base E’ {a," v’ V’} defined by the formulas

a’v,=A’, ifv’ V’ t.J {v, w’}, a’, =Ao,+A’w ifv 6V.
Similarly we consider

{A’, A"n"(v") + B"v" v" V"},
and we construct a new base E" {a’;," v" V"} of L" by the formulas

,= Aw, v" V’a" V’[ w"}v,=Av ifv t_J{v, a A + if

The bases E’ and E" satisfy the conditions of the lemma with e a w,, ey a,,
ex" av," ey" aw.." Therefore, ifM (L’ + L") V, we have a base E of 34 defined by

(1) E {a, :v’e V}, E7 {a,, :v"e VT},
E E’l U E’2 U E U E U {a’w, + av, a + a w,,}.

It remains to verify that E is also a base of L for proving that S (M, V). From the
definition of the digraph composition it follows that the neighborhood function n is
defined in terms of n’ and n" by the following formulas:

n(v’) n’(V’) if v’e V’,

n(v’) n’(v’) + n"(v) + v if v’ V tO { w’},

n(v") n"(v") if v"e V’2,

n(v") n"(v") + n’(v) + v if v" V’l U { w"}.
Let us consider the fundamental base of L induced by the graphic presentation
(F, A, B), say

{Aw=An(w)+ Bw: we V}.

We derive from it a new base H {aw w V} by the formulas

a,,,=A,,, ifv’eV’U{w’},

a,,, A,, + Aw, if v’ V,

a,,,=A, if v" V’{U {w"},

ozo, A,,, + Aw" if v" V.
For v’ V’l we have

ao, A,,, An(v’) + By’= A’n’(v’) + B’v’ A’o, a’,,,.
Therefore

(2) E’l (co, :v’e V’),
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and similarly
(3) E (ao,," v" e V’f).

For v’ e I/’ tO { w’} we have
(4) Av, A[n’(v’) + n"(v) + v] + By’.

This implies for v’ e V
cv, A, +Aw, A[n’(v’) + n’(w’)] + B[v’ + w’] a’o,.

Therefore
(5) E (ao," v’ e V’2),

and similarly
(6) E (a,," v" e V).

Let us consider again formula (4) for v’ w’. We can write

Aw, A[n’(w’) + v] + An"(v) + Bw’.

Since n’(w’) + v
_

V(F’\v) and n"(v)
_

V(F"\v), we have

Aw, A’[n’(w’) + v] + A"n"(v) + B’w’

A’n’(w’) +A’v + A"n"(v) + B’w’.

The equality A’(v) B"(v) is equivalent to A’v B"v. This implies that

Aw, A’n(w’) + B’w’ +A"n"(v) + B"v.
Therefore

(7) Cv, Aw, aw, + av,
and similarly

(8) ao,, Aw,, aw,, + ao.
Thus equalities (1)-(3), (5)-(8) imply E H.

COROLLARY 7.5. For every split { W’, W"} of an Eulerian system S (L, V)
and every marker v g V we can construct a decomposition {S’, S"} such that
S’ {L’, W’U {v}) and S" (L", W"U {v}).

Proof Let (F, A, B) be a graphic presentation of S. It follows from (6.1) and (6.5)
that { W’, W"} is a split of F. Following (7.1) we construct a simple decomposition
{F’, F"} of F with the marker v and the split { W’, W"}. Let V’ W’U {v} and
V" W" U {v}. We choose two distinct and nonnull elements x and y of K, and we
define

A’ Kv’ by A’(v’) A(v’) if v’ W’ and A’(v) x,
Kv" B"(v") v" W"B" by B(v") if e and B"(v) x,

Kw’B Kv’ and A" similarly with B’(v) A"(v) y.
Thus we have a decomposition ((F’, A’, B’), (F", A", B")) of (F, A, B), and we apply the
preceding result for constructing a decomposition of S. [2]

8. Semibrittle Eulerian system. A digraph F with vertex-set V (Eulerian system
S (L, V)) is semibrittle if vl >_- 4 and there exists an ordering v0, vl, vn-1 of
V such that the splits of F are precisely the bipartitions {{vi, Vi/l, "", vi+j-},
{vi+j, vi-1} }, where 0 =< < n, < j < n and subscripts are taken modulo n.

If F is a fundamental digraph of S, then the results of the preceding section imply
that S is semibrittle ifand only ifF is semibrittle. Thus to characterize semibrittle Eulerian
systems is equivalent to characterizing semibrittle digraphs. This has been done by Cun-
ningham [7].

A transitive tournament is a digraph G such that for some ordering v, v2, , vn
of V(G) we have E(G) { (1)i, l)j) <- < j <= n }. A circle oftransitive tournaments
(CTT) is a digraph obtained from a sequence To, TI, -.., T_ oftransitive tournaments
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which are of order at least 2 by identifying for each the last vertex of Ti with the first
vertex of Ti +1 where the subscripts are taken modulo k. Each vertex produced by
an identification is a hinge. More formally it will be convenient to define a CTT
in the following way. If P is a circular permutation on V and (x, y) e V V then let
n(x, y, P) inf (j "j ->_ 0, y P(x)). The open interval ]x, y[ is equal to

{pi(x)" 0 < < n(x, y, P)}.
For a nonempty subset H

_
V, the CTT denoted by C(H, P) is the digraph F defined by

V(F) V, E(F) { (x, y)" x 4: y, ]x, y[p fq H }. The set of the hinges of C(H, P) is
H. For example C(V, P) is the graph of the circular permutation P.

PROPOSITION 8.1 [7]. A graph is semibrittle ifand only if it is a CTT. [--1

Since the fundamental digraphs of an Eulerian system are defined up to local com-
plementation, we study now the effect of this operation on a CTT.

PROPOSITION 8.2. The local complementation ofC(H, P) at a vertex v is equal to
C(H + v, P) ifH 4 {v}, otherwise it is equal to C(H, p-l).

Proof Let F C(H, P). Where

T= {(x, y)" v 4: x 4: y 4: v, (x, v) and (v, y) E(F)},
we have A(F.v) A(F) + T. We simplify the notation Ix, y[p into ]x, y[. Let us suppose
first that v H. We have

T= {(x, y) v 4: x4: y4: v, ]x, v[ f"lH= ]v, y[ f"lH= }
y)- v v, v[ {v} Iv, yD {v} }.

In the above formula the subset I ]x, v[ tO {v} LI ]v, y[ must either be equal to the
open interval ]x, y[ or to V. The second case is excluded because I fq H {v}, and we
have assumed that v H. Therefore

T {(x,y)’x=/=y,]x,y[fqH=
Let H’ H + v and F’ C(H’, P). We have

A(F’) {(x,y)’x4:y,]x,y[f"lH’=

{(x,y) x y, ]x,y[ f)H= or ]x,y[ fqH= {v} }
{ (x, y)" (x, y) A(F) or (x, y) 6 T}.

In the above formula the "or" is obviously exclusive, and so we have A(F’) A(F) + T.
Therefore F’ is equal to F. v, which proves the statement when v H. If v H and
H 4: { v} the statement is proved because F’ F. v is equivalent to F F’. v.

Let us now consider the final case where H {v}. For every vertex x 4: v, neither
Ix, v[ nor Iv, x[ contains v. Therefore (v, x) and (x, v) are arcs of F. For every pair of
vertices {x, y} satisfying v 4: x 4: y 4: v, one and only one of the open intervals ]x, y[
and ]y, x[ contains v. Therefore one ofthe pairs (x, y) and (y, x) is a transitivity arc when
the other one is a transitivity coarc. This implies that F. v is obtained by reversing the
arcs of F. But for every pair of vertices {x, y} clearly we have ]x, y[v- ]y, x[p. This
implies that C(H, p-l) is also obtained by reversing the arcs of C(H, P). And so
C(H, p-l) F. v.

The following notation will be used. If P is a cyclic permutation and s + or
s then P P if s + and ps p- if s We prove naturally that -s is the
opposite of the sign s. We let P’(V) {(H, s)" 4: H

_
V, s + or s -}. For every

(H, s) P’(V) and v Vwe let (H, s).v (H + v, s) ifH 4: {v} and (H, s).v (H, -s)
ifH= {v}.
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PROPOSITION 8.3. P’(V)= {(V, +),m m e V*}.
Proof If Vl, v2, Vn is an ordering of V it is easy to verify that:

(V,+),VlV2... Vk=(V\{vl,VE, ,Vk},+) ifk<n,

(V,+),VlV2 VnVn-I Vk=((Vn, Vn-I, ,Vk},--) ifk<-n.

The result follows, ff]

PROPOSITION 8.4. For every semibrittle Eulerian system S (L, F) we can find a
cyclic permutation P on Fand a pair {X/, X-} ofsupplementary vectors ofKv such that,
ifwe let X X/ + X-, the set ofthe graphic presentations ofS is

{ GP(H, s) (H, s)e P’(V)}
where

GP(H, s) (F(H, s),A(H, s), B(H, s)),

F(H, s) C(H, ps),

A(H, s) X+ XSH,
B(H,s)=X if[HI> 1, B(H,s)=X+X-SH iflHI 1.

Proof If we consider a fundamental digraph of S, it is a CTT. Let it be equal
to C(H, P). Let vlv2"’vk be an ordering of V\H. Proposition 8.2 implies that
C(H, P). vlv2 vk C(V, P). Therefore C(V, P) is a fundamental digraph of S,
and we can consider a graphic presentation of S of the form (C(V, P), X, X/). We prove
that the statement holds with the values of P, X, X/ which are so determined and
X- X + X/. First we notice that GP( V, +) (C( V, P), X, X/) is a graphic presentation
of S. Let us show first that the statement will be proved if

(i) (GP(H, s)).v GP((H, s),v), (H, s) e P’(V), v e V.
Indeed if Z is the set of all the graphic presentations of S, we have

Z= {(GP(V, +)).m" me V*} by (5.2),

{GP((V, +),m)" me V*} if(i) is true,

{GP(H,s)’(H,s)eP’(V)} by (8.3).

From now on the verification of (i) is based on (4.1). First we define notation consistent
with (4.1):

GP GP(H, s), F= F(H, s), A X+XH,

B X if IHI > and B X +X-H if IHI ,
n neighborhood function ofF,

F’ F. v, A’= A + By, B’= B +A[n(v) f3 n-(v)].
Verifying (i) amounts to verifying successively

(ii) F’ F((H, s) . v),
(iii) A’= A((H, s), v),
(iv) B’ B((H, s) . v).

First we notice that (ii) is directly implied by (8.2). Let us verify (iii). We have

A’= A + Bv (X+XSH) + By.

If [HI > this implies that

A’ (X+XH) +XSv X+X[H+ v].
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If IHI-- and H {w} 4: {v} this implies that

A’= (X+ XSw) + (X + X-Sw)v

X+XSw +XSv X+X[H+ v].

IfH {v} this implies that

A’ (X+Xv) + (X +X-v)v
X+XSv +Xv +X-v X+X-SH.

In each case we have well A’ A((H, s). v). In order to vrify (iv) we compute first the
value of n(v) f’) n-(v). If we simplify the notation ]x, y[ps into ]x, y[, we have

n(v)f’ln-(v) {w# v ]v, w[n= ]w, v[ On= }.
For any two distinct vertices v and w, we have

]v, w[ u ]w, v[ v\{v, w}.
Therefore

n(v) f) n-’(v) { w 4: v" H
_

{v, w} }.
If IHI > 2 or IHI 2 and v H, we have n(v) f-1 n-(v) . This implies that

B’ B Xs.
From now on it will be convenient to express A as X + X-s + XH. If IHI 2 and
v H, let H {v, w}. We have n(v) fq n-(v) { w}. Therefore

B’= B +Aw X + (X +X-s + XS[v + w])w

X +Xw+X-Sw +X.w X+X-Sw.

If [HI and H {w} 4: {v}, we have n(v) f3 n-l(v) {w}. This implies that

B’ B +Aw (X +X-w) + (X +X +XSw)w
X +X-Sw+XSw+ X-Sw+XSw X.

IfH {w}, we have n(v) fq n-(v) V\v. Let V’= V\v. We have

B’ B +A V’ (X + X-Sv) + (X +X-s + X-Sv) V’

X +X-Sv +XV +X-sv X-+Xv.
In each case we have well B’= B((H, s).v).

Let us apply the preceding proposition when IV[ 3. We let V { 1, 2, 3} and
K {0, x, y, z). Every complete vector a Kv will be represented by the sequence
a(1)a(2)a(3). If we have X/ xxx and X- yyy then the set of the Eulerian vectors is
equal to

{yyy, yyz, yzy, zyy, yzz, zyz, zzy, zzx, zxz, xzz, zxx, xzx, xxz, xxx}.
We notice that the Hamming distance between a yyy and a2 xxx is equal to 3 when
a shortest word m satisfying a2 al .m is, for example, m 12321. Thus the upper
bound of the accessibility property 5.1 is reached. We shall prove in a future article that
it is in some sense a characteristic property of semibrittle Eulerian systems.

COROLLARY 8.5. A semibrittle Eulerian system S (L, V) is of index if
Ivl >_- 3.

Proof Following (8.4) each fundamental digraph F(H, s) is equal to C(H, P) for
(H, s) P’(V). These CTT’s are pairwise distinct. L--]
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If IV[ 2 there are six graphic presentations, and all the fundamental graphs are
reduced to a single edge.

9. An algorithm for searching for a split of a digraph. Such an algorithm has been
devised by W. Cunningham [8]. If the given digraph G has n vertices, then the time-
complexity ofCunningham’s algorithm is O(n4). In this section we describe an algorithm
with an O(t/3) time-complexity.

For W
_

V(G) and s V(G)\Wwe say that a split { V’, V"} of G separates Wfrom
s if W_ V’ and s e V". It has been proved by Cunningham, [8, Problem and Thm. 13]
that such a split can be found in O(n2) time if we know two arcs (v, s) and (s, w) of G
such that v, w e W. Throughout this section we identify by SEPAR (G, W, v, s, w) such
a procedure. Where m IA(G)I we notice that in Cunningham’s algorithm G is represented
in O(m) space by keeping the in-list and the out-list of each vertex of G. This will no
longer be possible with the present algorithm which will perform local complementations.
Thus G will be represented by its adjacency matrix which takes O(n2) space. However
this does not change the time-complexity of SEPAR.

The variables used by the algorithm are a subset W
_

V, a stack S of vertices of G,
and a vertex w e W. We initialize with W { w} where w is an arbitrary vertex and S is
empty. The properties satisfied by the variables W, S, w each time they are read are the
following:

(i) Every split { V’, V"} satisfies either W
___

V’ or W V";
(ii) If S is nonempty and if s is the vertex at the top of S then s W, (s, w) A(G),

and there exists a vertex v e W such that (v, s) A(G).
If S is empty and [WI -< n 2 then the algorithm calls a procedure FILLSTACK

which places some vertices in S and determines w such that (ii) holds. If S is nonempty
the algorithm removes the vertex s at the top of S, searches for v satisfying (ii) and calls
SEPAR (G, W, v, s, w). If SEPAR returns with a split which separates W from s then
the algorithm stops, otherwise it lets W W+ s. The property (i) is again satisfied and
the algorithm iterates. If the graph G is found to be prime then the time-complexity
involved by the successive calls of SEPAR is O(n3) and it is O(n) for the successive
searches for v e W satisfying (ii).

Throughout the end of this section we define a path of a digraph H as a sequence
of pairwise distinct vertices I’ Zo, ZI, Zm such that (Zi, Zi+ 1) is an arc of H for
every 0, 1, m 1. A chord of I’ is any arc (zi, z) such that 0 =< < j =< and
j- > 1. We call (Zo, Zm) the extremal chord of I’. We notice that arcs (zi, zj) with >
j are not considered to be chords of I’.

The first step ofFILLSTACK is to construct in G a path So, Sl, , so, so+ without
nonextremal chord and such that q > 0, So and sq/l W, Sl, s2, "", so W. This can
be done in O(m) time by searching for an arc (So, a) such that So e Wand a g W(such
an arc exists because G is diconnected), constructing a shortest path I’ from a to Wby
means of a classical algorithm, taking for s the last vertex of I’ such that (So, s) A(G)
and defining s, s2, Sq+ as the subpath of I’ starting at s. The second step pushes
Sl, s, Sq into S (so that the main algorithm will use successively so, so-1, s),
lets w Sq+, and performs successive local complementations at s, sz, ..., so, which
does not change the splits by (6.6). The time-complexity of FILLSTACK is qO(n2)
for pushing q vertices into S, so that the overall complexity involved by the calls to
FILLSTACK when G is prime is again O(n3).

In order to prove that FILLSTACK returns S and w satisfying (ii) we let Go G,
Gi G.s1s2 si for each 1, 2, , q, and we verify by induction that the following
properties hold for 0, 1, q:
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(a) So, si+ 1, Sq+l is a path of Gi without nonextremal chord except possibly
when q;

(b) (sj, si + ) A(Gi) (1 <= j <= i);
(c) either (So, s) A(Gi) or there exists j’ > j such that (s,, s) A(Gi) (0 < j <- i).
We notice that Gu G at the return of FILLSTACK, and we show that properties

(b)-(c) for q imply (ii). Any s removed from the top of S is equal to some s
(1 -_< j =< q) and we have w Sq+ , so that (b) implies (s, w) A(G). Moreover the vertices
Sq, Sq_ , sj+ belong to W when s is removed from the top of S and (c) implies
that either (So, s) or (s,, s), j’ > j, is an arc of G, so that we find actually a vertex v (either
So or sj,) in W satisfying (v, s) A(G).

Properties (a)-(c) are clearly satisfied for 0. We assume that they hold for some
>= 0. Property (a) holds for + 1: First we verify that (So, si + 2) E A(Gi + l) except possibly

when + q. Indeed this arc does not appear in A(Gi) since otherwise it would be a
nonextremal chord of So, si/ , sq+ , and it appears in A(Gi+ 1) because (So, si/ ),
(si+, si / 2) E A(Gi). Now we verify that (sk, sk / ) A(Gi) for + =< k =< q. Indeed it is
an arc of Gi, and for disappearing in Gi + it would be necessary that (Sk, Si / l) A(Gi)
and (si / 1, Sk / l) e A(Gi), which is possible for the second arc only if k + but then
the first arc cannot be in Gi. Thus So, si / 2, Sq / is a path of Gi + . To verify that it
has no nonextremal chord is similar, and (b) is also similarly verified for + 1. Let us
verify (c) for + 1. First we notice that (So, si / ) is an arc of Gi / because it is already
an arc of Gi (Property (a) for i) and no arc of Gi incident to si / is modified by the local
complementation at si +1. Thus let us consider any j satisfying 0 < j < + 1. In Gi we
have either the arc (So, sj) or (sj,, s) with some j’ > j. If this arc is not removed from Gi
after the local complementation at Si/l, all is done. Otherwise the arc (Si/l, s) must
exist, and so we can let j’ + 1.

Finally we have proved the following:
PROPOSITION 9.1. There exists an algorithm in 0(?/3) time and O(n2) space for

finding an eventual split ofa diconnected graph G oforder n. l--1
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PERMUTATIONS WITH RESTRICTED DISPLACEMENT*
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Abstract. The permanent of an n by n (0, 1) circulant matrix is known to be equal to the number of
permutations on n objects satisfying certain positional restrictions. The size ofthis number is of major importance
for the design of certain analogue speech scramblers, as well as being a generalisation of certain "classical"
enumeration problems. In this paper a new method is given for evaluating this permanent, which gives as
corollaries many of the previously known results. The analogue speech scrambling scheme is also used to
motivate a second enumeration problem, about which little seems to be known.
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1. Introduction. In this paper we consider a permutation enumeration problem
that is of interest for two main reasons. First, it is a classical combinatorial problem, the
study of certain cases ofwhich goes back to the last century. Second, it is of considerable
practical significance in the field of cryptography, in particular to the designers of time
element speech scramblers.

The set of permutations that concern us here we call A(n, k), where _-< k _-< n, and
A(n, k) contains permutations of { l, 2, n}. More formally, we define

A(n,k)= {rS" ir {i,i+ 1, ,i+ k- } for every i}
where the indicates the equivalence class modulo n.

In a combinatorial context, IA(n, k)l has been studied under many guises; in particular
note that evaluating IA(n, k)l for k n is the "problme des rencontres," and for
k n 2 is the "problme des mrnages." In addition, IA(n, k)l is equal to the permanent
ofa certain (0, 1) n by n matrix. For a study ofresults in this context the reader is referred
to Minc’s unique book [11 ].

IA(n, k)l is also ofconsiderable practical significance because it is equal to the number
of different "scrambling patterns" that can be used in a certain type of time element
scrambling speech encryption device. For a more general introduction to this type of
application see ]-[4] and 12].

In this paper we consider a new approach to the evaluation of [A(n, k)l which
gives a direct method of computing it as the sum of the traces of the nth powers of
[(k 1)/2] matrices containing only zeros and ones. This new approach gives as immediate
corollaries both the recurrence relations ofMetropolis, Stein and Stein [9], and a number
of previously well-known results.

Although the computational method requires a prohibitively large amount ofcom-
puter storage for practical use in computing IA(n, k)l for values of k much in excess of
12, it enables the computation of IA(n, k)l for values of n and k not previously accessible.
In particular, since the running time of the computation method is polynomial in n for
fixed k, values of [A(n, k)l can be directly computed for relatively large values of n given
that k is sufficiently small. It is not surprising that computing IA(n, k)l seems a difficult
problem, since Valiant ([ 17] and [18]) has shown that evaluating the permanent of a
(0, 1) matrix is a #P-complete problem (see also Garey and Johnson [5]).
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2. The combinatorial problem. Throughout this paper we will write a(n, k) for the
cardinality of the set A(n, k), i.e.,

a(n,k)= I{rS" i-e {i,i + 1, ,i + k- 1} for every i}1.
As in [11 ], a(n, k) can also be defined as the permanent of the n by n matrix Q(n, k),
where

k-I

O(n,k)= , ei
i=0

and where P denotes the n by n permutation matrix with a one in positions (1, 2),
(2, 3), ..., (n 1, n), (n, 1).

Explicit formulae for a(n, k) have only been derived for values of k either near 0 or
near n. We first consider the known results for which k is close to n.

Clearly A(n, n) S,, and hence a(n, n) n!. As noted above, evaluating
a(n, n 1) is the well-known "problme des rencontres," and a(n, n 1) is equal to the
number ofelements ofS, having no fixed point. The number a(n, n 1) is often written
as Dn (the "derangements number"), and is discussed in many combinatorial texts, see
for example [7, pp. 541-542]. Similarly, evaluating a(n, n 2) is also a well-known
problem, commonly called the "problme des mrnages." The solution for both these
problems goes back to the last century; according to [6], a formula for a(n, n 2) was
obtained by Cayley and Muir in 1878.

The evaluation of a(n, n 3) was first considered in 14], which contains no explicit
formula but does give an asymptotic result. Yamamoto [20] considered the same problem,
but it was Moser [13], who first produced an explicit formula for a(n, n 3), which is,
however, rather complex. Whitehead [19] has more recently considered the problem of
evaluating a(n, n 4).

In summary we have the following.
Result 2.1. (i) a(n, n) n!, n >- 1.
(ii) a(n, n 1) n! ’=0 (-1)i/i!, n >= 2.
(iii) a(n, n 2) Y=0 (-1)i.2n. (2n;-i).(n i)!/(2n i), n >= 3 (Touchard (see [6]

and [15])).
For Moser’s formula for a(n, n 3) the interested reader is referred to [13].

Second, we consider results for small k. The cases k and 2 are trivial, and simple
recurrence relations for k 3 and 4 have been derived by Minc (see [10] or [11 ]). In
addition, Metropolis, Stein and Stein [9] give recursion formulae for a(n, k) for k -< 9.

In summary we have the following.
Result 2.2. (i) a(n, 1) 1, n >= 1.
(ii) a(n, 2) 2, n >_- 2.
(iii) a(n, 3) a(n 1, 3) + a(n 2, 3) 2, n >_- 5, a(3, 3) 6 and a(4, 3) 9.
(iv) a(n, 4) a(n 1, 4) + a(n 2, 4) + a(n 3, 4) 4, n >= 7, a(4, 4) 24,

a(5, 4) 44 and a(6, 4) 80.
The recursion formulae of [9] for 5 _-< k =< 9 are much more complex.

3. Time element speech scramblers. The practical application of permutations in
A(n, k) is in a certain kind of speech scrambler called a time element scrambler. There
are a variety of types of time element scrambler systems, but they all employ the same
general principle. The technique relies on the scrambler "recording" segments of speech,
and then transmitting these segments in a different order.

More specifically, in a conventional so-called hopping window time element scram-
bier, the analogue speech signal is first divided into equal time periods called frames.
Each flame is then further subdivided into a fixed number n of small equal time periods
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called segments, where the length of a segment would typically be of the order of 25-50
milliseconds. The scrambling is then achieved by transmitting the segments within a
frame in a permuted order. At the receiver the inverse permutation is used to recover
the original speech.

A typical system for n 8 is illustrated in Fig. below. For a more detailed discussion
of the design considerations for such a device, such as the choices for n, the segment
length and the selection of permutations to use in the scrambler, the reader is referred
to [3]. The important thing to note here is that the system delay for such a device will
be 2nT seconds, given that T is the segment length.

Thus, if T is, say, 50 milliseconds, and if n 8, then the system delay will be 0.8
seconds, which is large enough to be noticeable. For larger n and Tthis delay will become
unacceptably long, and yet, if n 8, the total number of available permutations is only
8! 40320. So a problem can arise over choosing n sufficiently large to give a wide
enough choice of enciphering permutations, and choosing n small enough to make the
system delay acceptably short.

The idea of sliding window time element scramblers is to reduce the inherent time
delay ofthe system, whilst at the same time increasing the number ofpossible scrambling
patterns that can be used. There are a number ofdifferent types ofsliding window systems,
and for a description of some of these see [13] and 12]; we consider here one particular
type, which we call overlappingframe sliding window time element scrambling, chosen
for its ease of implementation.

As in a straightforward time element scrambler, the speech is again divided into
frames ofn segments, where each segment is Tseconds long. However, we restrict ourselves
to using a special subset of permutations from S,, and we use these permutations in a
slightly different way.

We first choose an integer k less than n. As we shall see, the choice of k directly
affects the total system delay, which is equal to (k + 1)T seconds. Thus if k 16 and
T 30 milliseconds then the system delay would be 0.51 seconds. Note also that the
system delay is independent of the choice of n.

Having fixed k, we then restrict our choice for scrambling permutations from S, to
those permutations r satisfying:

ir e {i 1, i- 2, ..., i- k} for each (1 =< =< n)
where denotes the residue class of modulo n. The idea is that at time t the segment
spoken at time s is transmitted, where k- tr and =< t s -< k; this is possible because
r satisfies the above property.

Analogue

input

Frame length
I-----I Segment length

-1817161514131211

Permuter I 2181 6 13 I1 17 15 14

FIG. 1. Hopping window time element scrambling.

Scrambled

output
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In Fig. 2, the use of such a permutation is illustrated for a system having n 8,
k 3 and

r= (1 2 3 4 5 6 7 8).6 8 3 2 5 4 7

In the figure we have used different letters to distinguish between frames, so that A1,
A2, ..., A8 are used to denote the eight segments of the first frame, B 1, B2, B8
denote the segments of the second frame, and so on.

Because of the condition imposed on the permutation, we know that each segment
will be transmitted at most 3T seconds after it has been spoken, and hence the receiver
can output the recovered descrambled speech signal 4T seconds after it has been input
to the transmitting device. In general, each segment will be transmitted within kTseconds
and thus the total system delay will be (k + 1)T seconds. This assumes that each segment
must spend at least T seconds in both the transmitting and receiving devices.

As we have stated above, the only permutations that are usable in this type ofsliding
window time element scrambler are those permutations r e Sn satisfying:

ir { i- 1, i- 2, i- k} for every i.

In this paper we are concerned with the problem of enumerating these permutations,
which is obviously a problem of considerable practical cryptographic significance.

As in above, we thus define:

A*(n,k)= {rSn ir {i- 1,i-2,... ,i-k} for every i}
and we are interested in a(n, k) IA*(n, k)l.

For the purposes of the theory which follows it is easier to consider the set:

A(n, k) {r Sn ir { i, + 1, + k- 1} for every i}
and it is clear that a(n, k) [A(n, k)l.

Time (t)

Speech
input to
transmitter

Transmitted
speech

Speech
output at
receiver

0 8T 16T
Frame A I. Frame B

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B71 B81 C1
,I

A1 A3 A2 A51 A4 A7 A6 B1 A8 B3 B2 B5 B4 B71 B6

A1 A21 A3 A4 A5 A6 A7 A8 B1 B2 B31 B41 B51

System delay 4T secs.

FIG. 2. Overlappingframe sliding window time element scrambling.
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4. The main result and some corollaries. In this section we state the main results
of this paper without proof; the proofs of all the results given here can be found in the
next section.

Before stating the main theorem we first need a little notation. If r e Sn and
e (1, 2, n}, then define

Xk(r,i)={jr,f{i,i+ 1, ,i+k-2} "j---{j,j+ 1, ,i+k-2}}.
Clearly by definition, 0 =< IXk(r, i)[ =< k- 1.

We now state the following result, which is of fundamental importance.
LEMMA 4.1. If 7r - A(n, k), then there exists an integer r, r {0, 1, k },

such that
IXkOr, i)l r for every i { 1,2, ,n}.

Because of this result, we make the following definition:

A(n, k, r) {rA(n, k) IXk(r, i)1 r for every i}, O<=r<__k-1.

By Lemma 4.1 it is clear that A(n, k) is equal to the disjoint union of the A(n, k, r)’s for
r satisfying 0 =< r -< k 1, and hence, if we let a(n, k, r) IA(n, k, r)], then we have the
following lemma.

LEMMA 4.2.
k-1

a(n,k)= ., a(n,k,r).
r=0

In fact, in order to compute a(n, k) using this lemma it is only necessary to compute
a(n, k, r) for r satisfying _-< r =< [(k 1)/2], since we also have the following.

LEMM 4.3. (i) a(n, k, r) a(n, k, k r), 0 <-_ r <= k- <-_ n 1.
(ii) a(n,k,O)-a(n,k,k- 1)= 1,0=<k- l_-<n- 1.
Now suppose k and r are integers satisfying 0 =< r _-< k 1, and let (k- ). Label

the distinct r-subsets of {0, -1, ..., -k + 2} R, R2, Rt, and let

R’ {j+ :j.Rg- {0}},
for every e { 1, 2, t}.

Then define the by matrix H(k, r) (ho) by

h= I ifR? is a subset fRJ
otherwise

We can now state the main result.
THEOREM 4.4. a(n, k, r) Trace(H(k, r)n).
This result, in combination with Lemmas 4.2 and 4.3, provides a direct method for

computing a(n, k). Unfortunately, for k much larger than 12, H(k, r) becomes extremely
large, and the method is unusable because ofthe computer storage requirements. However,
for fixed k =< 12, a(n, k) can be computed for large n without much difficulty.

Furthermore, this theorem has as an immediate corollary, the recurrence relations
of[9]. By the Cayley-Hamilton Theorem, H(k, r) satisfies its own characteristic equation,
and hence, since Trace is a linear function, a(n, k, r) satisfies the characteristic equation
of H(k, r). The following corollary results.

COROLLARY 4.5 (Metropolis, Stein and Stein). Suppose that

det (H(k, r) xI) cix.
i=0
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Then

cia(n+ i,k,r)=O.
i=0

Moreover, since the Trace of a matrix is equal to the sum of its eigenvalues, we
immediately have the following corollary.

COROLLARY 4.6. Suppose q, q2, qt are the eigenvalues ofH(k, r). Then
(i) a(n, k, r) ,= .
(ii) Ifs {1, 2,..., t} satisfies [qsl > [qil for every {1, 2,..., t} (s}, then

a(n, k, r)/(qs)n tends to as n tends to infinity.
Note that (ii) above has as an immediate corollary a conjecture of [9], namely that

a(n + 1, k, r)/a(n, k, r) tends to qs as n tends to infinity; [9, Table IV] lists the maximal
eigenvalues of H(k, r) for k 4, 5, 6, 7, 8, 9 and all r satisfying -< r =< [(k 1)/2].
Corollary 4.6 (ii) also implies that, for a fixed k, a(n, k) is asymptotic to (qmax)n, where
qmax is the maximum value from the set of eigenvalues for all the matrices H(k, r),
0 =< r-< [(k- 1)/2].

Although a(n, k, r) has meaning only if n >= k, H(k, ?.)n exists for every n >= 1. We
can thus define a(n, k, r) to be Trace (H(k, r)n) for every n satisfying =< n -< k- 1.
These values of a(n, k, r) will clearly satisfy Corollary 4.5, and so they can be used as
initial values for the recurrence relation.

The case r is an especially tractable one, and we give below a complete solution
for this case. The first of the results is given in [9], but the second seems to be previously
unknown.

Result 4.7. (Metropolis, Stein and Stein).
k-2

a(n+k- 1,k, 1)= a(n+i,k, 1), n>= 1.
i=0

THEO.M 4.8. If <= n <--_ k then a(n, k, 1) 2 1.
Note that Result 4.7 and Theorem 4.8 provide a recurrence relation and sufficient

initial conditions to easily compute a(n, k, 1) for any reasonable values of n and k. Also
note that in combination with Lemmas 4.2 and 4.3, the above two results have as an
immediate corollary Result 2.2.

We have thus seen that Theorem 4.4 is the basis of straightforward proofs of all the
results known previously on the computation of a(n, k) for "small" k.

5. Proof of the main results. In this section we prove the results given in 4 above.
We first consider Lemmas 4.1-4.3.

ProofofLemma 4.1. Choose r A(n, k), and suppose i, j { 1, 2, n} satisfy
j + (where, as always, the bars denote residue classes modulo n). By inspection:

fX(r,i)-X(r,j)=
{hr} ifir{i,i+__ 1, ,i+k-2},

if ir + k- 1,
and

{/+k-l} ifi+k-lr{(i+l)Tr,’",(i+k-1)Tr},
X(Tr,j Xk(Tr, i)

ck if ir + k- 1.

Hence ]Xk(r, i)1 [X(r, j)l and the result follows. V1

Lemma 4.2 is immediate from the definition, and we also have the following proof.
ProofofLemma 4.3. (i) Define the mapping k from Sn into S, by:

(r) maps to (n + 1) sr, where s { 1,2, n} and Y= -i- k+ 2.
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Then we claim that bk is a one-to-one mapping from A(n, k, r) into A(n, k, k r).
This will establish the result.

It is not difficult to see that k permutes the elements of Sn, so we need only show
that Ck maps A(n, k, r) into A(n, k, k r) to complete the proof of (i).

Choose 7r e A(n, k, r) and define r* (r). By definition, if e { 1, 2, n } then
ir* -s(i)r, where s(i) e { 1, 2, n} and s(i) -i-k+ 2. Now since r A(n, k),
we know that

s(i)r {-i- k+ 2,-i- k+ 3, "",-i+ },
and hence

ir*{i+k- l,i+k-2, ,},
and so r* e A(n, k). Now, by definition,

Xr*, n k+ 2)= {flr*, s(j) e {, n 1, ,n-k+ 2}" s(j)Tr

e {s(j) + k- 1, s(j) + k- 2, } }
and since r e A(n, k, r), IX(r, n k + 2)1 r, i.e.,

[{jr, fe{n-k+2,n-k+3, ,)"js{j,j+ 1, ,7})1 r,

and hence [X(r*, n k + 2)1 k- r, and (i) follows.
(ii) If r s A(n, k, 0), then it is straightforward to show that ir + k- for every

i, and hence IA(n, k, 0)] 1. The result follows from (i).
In order to establish Theorem 4.4, it is necessary to prove a number of preliminary

results. We first make some definitions.
If 0 =< r =< k and k >- 2, then define E(k, r) to be the class of all (k- 1)-subsets

E of {-k + 2, -k + 3, k } satisfying the property that E contains precisely r
elements of {-k + 2, -k + 3, 0}.

IfE e E(k, r) then define Uk(E) to be the set:

{(Cl,C2,""" ,Ck-l)" {Cl,C2, ,Ck-1}=E, cie{i-k-t 1,i-k+2, ,i}}.
In addition let Uk(E) U(E)I.

Lastly, for any set of integers E {el, e2, es}, say, let E {, , },
where, as always, we are working modulo n.

As an immediate result we have the following lemma.
LEMMA 5.1.

IE(k, r)[ (k-l) 2

O<=r<-k-1, k>=2.
r

We may now state the following important result, which justifies the definition
of Uk(E).

LEMMA 5.2. Suppose 0 <= r <= k and 2 <= k <- n. Then (c, c, ..., c_ ) U(E)
for some E {cl, c2, ck-l} satisfying E E(k, r) and [/[ k 1, ifand only if
there exists r A(n, k, r) satisfying:

jr I Ci ifflr < j

ci+n ifflr>-j
wherej n k+ + i,

Proof First suppose r A(n, k, r), and let (cl, c2, Ck-l) be as in the statement
of the lemma. Then ifE {cl, c2, Ck-l}, we must show the following:

(i) Il=k- 1,
(ii) E E(k, r),
(iii) (c, c, c_) U(E).
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Item (i) follows since //= (n- k + + i)Tr for every { 1, 2, k } and U U if
and only if j (since r e Sn).

Next, since r e A(n, k), we know that

(n-k+ + i)re {n-k+ + i,n-k+ 2 + i, ,n+ i}.

Hence if (n k + + i)r >= (n k + + i), then

(n-k+ +i)r{n-k+ +i,n-k+2+i, ,n},
i.e.,

ci=(n-k+ +i)r-n{-k+ +i,-k+2+i, ,0}.
Similarly, if (n k + / i)r < (n k + / i), then

i=(n-k/ +i)r{1,2, ,i}.

We have thus shown that E E(k, s), where

s=l{j{n-k+2,n-k+3, ,n} :jr>=j}l,

and moreover that ci {i k + 1, k + 2, i} for every i, and so we have
shown (iii).

Now r A(n, k, r), and hence IX(r, n k + 2)1 r, i.e.,

I{jr, j{n-k+2,n-k+ 3, ,n} "j{j,j+ 1, ,ff}}l =r.

Butj6 {j,j+ 1, ,if} iffjTr {j,j + 1, n} iffjr >=j. Hence s rand (ii) follows.
Now suppose (cl, c2,’", Ck-) U(E), where {c, c2, ck-} E, and

E E(k, r) has the property: I1 k 1.
If O {i, ., i} -/, then IDI n k + 1. Hence let {dl, d2, dn-k+l }

be the set satisfying the following three properties:
(i) D {d, d2,’", dn-+},

(ii) di{1,2,’",n}foreveryi{1,2,’",n-k+ 1},and
(iii) di < di/ for every { 1, 2, n k}.

Note that by (ii) and (iii) it is immediate that

i<=di<=i+k -1 foreveryi{1,2,...,n-k+l}.

Define r Sn as follows. Let:

d if <=j<=n-k+ 1,

jr= c; ifn-k+2-<j=<nandci>0 wherei=j-n+k-1,

ci + n if n k+ 2 =<j___< n and ci <= 0 where j- n + k- 1.

It is clear that r is well defined, since, by definition,

{-’C1,’2, ,Ck-1,dl,a2, ,an-k+ 1} { 1,2, ,rT}.

Again by definition, die { 1, 2, ..., n} for every i. Finally if ci > 0, then

i { 1,2, ,k- },
and if ci -< 0, then ci e {-k + 2, -k + 3, 0}, and hence

ci+ne{n-k+2,n-k+3, ,n}.
Now supposej=n-k+ +i, ie{1,2,...,k- 1}.Then

ci if ci > 0
jr= andci{i-k+ 1,i-k+2, ,i} for all i.

ci + n if ci -< 0
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Hence ifjr ci then C " O, and so i E { 1, 2, i}, i.e., jr --< i. Now

j=n-k+l+i>i,

i.e., jr < j. Similarly, ifjr ci + n, then we have ci =< 0, and so

ciE{i-k+ 1,i-k/2, ,0},
i.e., jr >= n k + + j. Hence

ICi ifjr <j,

Ci + n ifjr >=j.

We now only need show that r A(n, k, r). By (1), j =< dj- <- j + k and hence
jr 6 {j, j / 1, j + k- } for every j 6 { 1, 2, n k + }. Also, if n k + 2 =<
j-< n, thenj-= c-5 {i-k+l,i-k+2,’", {},where j= n-k+ + i. Thisim-
plies that jrE{j,j+l,.., j+k-1}foreveryj6{n-k+2, n-k+3,...,n},and
so 7r 6 A(n, k).

Finally, by definition,

Xk(Tr, n-k+ Z)= {jTr, j6 {n-k+ 2, n-k+ 3, ,n} "jTr6 {j,j+ 1, ,if}}

{jTr, jE {n-k+ 2,n-k+ 3, ,n} "jTr >- j}.

Hence, by the above arguments,

IX(r,n-k+ 2)[ [{citE" ci-<0}l r, since EE(k,r).

The result follows. U]

The above result gives us a means of classifying the "endings" of permutations in
A(n, k, r), where the ending of a permutation r is the (k 1)-tuple ((n k + 2)7r,
(n k + 3)7r, mr). The next result gives us a way of enumerating the number of
"starts" for each possible ending.

LEMMA 5.3. Suppose 0 <- r <- k 1, 2 <= k <= n, and let c (cl, c2, ck-1) and
d (dl, d2,’", dk_ 1) be elements of U(E)for some E E(k, r). IfP(c) is the set of
permutations 7r A(n, k, r) satisfying

c ifjr < j,
jr= k-

ci+n ifjr>=j,
j=n-k+ +i, i6{1,2,..., },

and P(d) is the set ofpermutations r* A(n, k, r) satisfying

di ifjTr* < j,
jr*= j=n-k+l+i, iE{1,2,...,k-1},

di+ n ifjr* >=j,

then Ie(c)l- Ie( )l,
Proof We define b which maps P(c) into P(d) by:

iTr if <-i<-_n-k+
where 7r* is any element of P(d).ib(Tr)=

ir* ifn-k+2=<i=<n

We now show why b is well defined. First suppose 7r* and 7r*’ are two elements of
P(d), and then, by definition, iTr* ir*’ for every {n k + 2, n k + 3, n}.
Second, (r) Sn, since if r 6 A(n, k, r) satisfies

c ifjr <.j,
jr= j=n-k+l+i, i6{1,2,...,k-1},

ci + n ifjr>-j,
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r* A(n, k, r) satisfies

I di ifjTr < j,

di + n if jTr >= j,
j=n-k+l+i,

and (Cl, C2, Ck-1), (dl, d2, dk-) e Uk(E), then it is clear that

{jr: n-k+2<=j<-_n} {jr* n-k+2<=j<=n}.

Third, it is straightforward to see that (r) is an element ofA(n, k) since 7r, r* e A(n, k).
Fourth, since X((r), n k + 2) X(r*, n k + 2), and since r* e A(n, k, r), it is
clear that (r) e A(n, k, r). Finally, by definition it is clear that (r) e P(d). We have thus
shown that is well defined.

To conclude the proof we show that is one to one. Suppose that (r) (7r’),
where 7r, 7r’ A(n, k, r) and where r, r’ e P(c). Then ir ir’ for every satisfying

=< -< n k + 1. But since r, r’ P(c) we know that ir iTr’ for every

i6{n-k+2,n-k+3, ,n}.
Hence, r r’ and the result follows.

Because ofLemma 5.3 we can make the following definition, the relevance ofwhich
is apparent in the next result. If e (c, c2, Ck-) U(E), and P(e) is as in the
statement ofLemma 5.3, then let vn,g(E) IP(e)l. vn.(E) is well defined precisely because
of Lemma 5.3. We can now state the following important result.

THEOREM 5.4. IfO <-- r <= k and 2 <= k -< n, then

a(n, k, r) , Uk(E)Vn,k(E).
E E(k,r)

Proof By definition,

a(n, k, r) [A(n, k, r)[

U(E) [P(c)[) (by Lemma 5.2)

where denotes the sum over all E E(k, r) satisfying I/1 k- )
u(E)Vn,k(E) (by Lemma 5.3)

_, uk(E)Vn,k(E)
E E(k,r)

since if I/1 < k 1, then it is clear that l)n,k(E O. [--]

We have thus transformed the problem of evaluating a(n, k, r) into the problem of
evaluating ln,k(E) and Uk(E) for every E E(k, r). In the next two results we show how
these values may be computed.

THEOREM 5.5. Suppose 0 <- r <= k and 2 -< k <-_ n, and let E E(k, r). Then
(i) Ifn k then

ifll k-1,
V,,k(E)

0 iflff]<k- 1;
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(ii) vn+ l,k(E) ,l)n,k(F), where ,. represents the sum over all F E(k, r)
which contain the set E* which is defined to be the union of {i" E, > 0} and
{i+ l’iE,i<O).

Proof First note that Uk(E) is nonempty for any E E(k, r), since an element of
Uk(E) can always be produced by assemblying the elements of E in ascending order.

(i) Suppose n k. First let I/[ < k 1, and then, using the notation of
Lemma 5.3, suppose that r A(n, k, r) is an element of P(c) for some
c (Cl, C2, Ck-1) E Uk(E). Then, since 1/[ < k 1, there exists a pair ci, cj
(i : j) with . . Hence (i + 1)r (j + 1)r, i.e., (i + 1)r (j + 1)r, which
is a contradiction since r is a permutation. Hence Vg.k(E) 0 if [/[ < k 1.

Now suppose I1 k 1, and choose a c (cl, c2, cg_ 1) Uk(E). If
r E P(c) (r exists by Lemma 5.2) then, by definition, {2r, 37r, kTr} E,
and hence { 1--} {i, ., :} -/. So lr is fixed by the choice of E, and,
by definition, 27r, 3r, kr are also fixed since r e P(c). Thus r is uniquely
defined, and so v,(E) 1.

(ii) First note that the elements ofE are all distinct modulo n + if and only if the
elements of E* are all distinct modulo n. Hence we assume that both these
statements are true, since otherwise both sides of the equation are zero by
(i) above.

First, choose c (c, c2, Ck-1) Uk(E). If 0 e E, then let h satisfy Ch 0, and,
if 0 E, then set h 0. Then, by definition, if r e A(n + 1, k, r) satisfies r e P(c) we
have

(n-k+2+h)r=n+ 1.

Next, suppose that F {d, d2, dk_ 1} E(k, r) contains E*.
Then, if 0 E we have F E*, and we let

f Ci-]-1 if ci<0,
de

ci if ci > O,
l<=i<__k-1.

Note that if 0 E then it is clear that E* E E(k, r).
If 0 e E, then we let dl, d2, dk- be defined as follows:

dl is the element of (-k + 2, -k + 3, -.-, 0} E* that is contained in F.

di-- I Ci-lq-1 ifci_l<O,

ci- if ci-1 > O,
2<-i<=h,

I ci’}- ifci<0,a=
ci if ci > O,

h+l<-i<=k-1.

Now let dF (d, d2, dg_ ) and we now show that dFe U(F). To do this we need
only show that die {i k + 1, k + 2, ..., i} for every e 1, 2, .--, k }. First,
suppose that =< h:

If 1, then d E {-k + 2, -k + 3, ..., 0} E*, i.e.,

dl{-k+2,-k+3, ,1}.
If > 1, then we have

I ci-+l ifci_l<0,

ci- if ci- > O.
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IfCi_l<0thend=ci_+ l{i-k+ 1, i-k+2,...,i},sinceeeUk(E).
Ifci_l>0thendi=ci_le{1,2,...,i- 1},i.e.,

die{i-k+2, i-k+3, ,i},

since c e Uk(E) and ci- > 0. Second, suppose that > h:
Then we have

Ici+l ifci<0,
d,

ci if c> 0.

Ifci<0thendi=ci+ le{i-k+2, i-k+3,-.-,0},sinceceUk(E).
If ci > 0 then di ci e { 1, 2, i} (since c e Uk(E)), i.e.,

di e {i-k+ 1,i-k+ 2, ,i}.
Hence de e Uk(F).

Now, using the same notation as before, let P(c) and P(dF) be sets of permutations
from A(n + 1, k) and A(n, k) respectively, defined as in the statement ofLemma 5.3. We
will show that

IP(c)I- IP(d-)l,

where, as in the statement of the theorem, . represents the sum over all F E(k, r)
which contain E*. This will establish the result. We actually prove this claim by exhibiting
a one-to-one correspondence b between P(c) and the union of the sets P(dF), which are
clearly all disjoint. We define as follows:

Suppose r e A(n + 1, k, r) is contained in P(c), i.e., suppose that

ci ifjr < j,
jr= j=n-k+2+i, ie{1,2,-..,k-1}.

ci + n + ifjTr>-j,

Then define r* b(r) by

iTr
ir*

(i + 1)r

if <=i<=n-k+ +h,

ifn-k+2+h<=i<=n.

We now show that r* is an element of P(dF), where F e E(k, r) contains E*, and hence
show that b is well defined.

First, note that r* e Sn since r e Sn / and h is chosen so that (n k + 2 + h)r
n+l.

Second, observe that r* e A(n, k). We show this as follows:
If =< -< n k + then, since r e A(n + 1, k), we have

ir*=irr{i,i+ 1, ,i+k- 1}.

If n k + 2 -< -< n k + + h (which only applies if h > 0) then, since
reA(n+ 1, k),ire{i,i+ 1,...,n, 1,2,..-,i-n+k-2};notethatia’=/=n+
since g= n k + 2 + h. Hence ir* {i, i+ 1,.", n-, -[, 72, ..., i-n+k-2}, i.e.,
ir* e {i, i+ 1, ..., i+k-2}.

If n k + 2 + h -< -< n then, since r e A(n + 1, k), we have

hr* =(i+ 1)r {i+ 1,i+2, ,n, 1,2, ,i-n+k-1};
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note that ir* 4: n + since + 4: n k + 2 + h. Hence

iTr* e {/+ 1,i+2, ,i+k- 1}.
Thus 7r* e A(n, k).

Third, note that 7r* e A(n, k, r). This can be demonstrated by considering
Xk(Tr*, n k + 2). By definition,

Xk(r*, n k+ 2)

{jTr*,jr{n-k+2,n-k+ 3, ,n}’jTr*6{j,j+ 1,-.-,n}}

the union of {jr, je {n- k+ 2, n- k+ 3,

n-k+ +h} "jTrr{j,j+ l, ,n}}
and

{jr, je {n-k+ 3 + h,n-k+ 4 + h, ,n+ 1} :jTre {jre {j- 1,j, ,n}}}.
Now since r e A(n + 1, k), where n + > n >= k, we know thatjr =/: j for any j, and
hence

Xk(r*,n--k+ 2)= {jr,je {n-k+ 2,n- k+ 3, ,n},

j#n-k+2+h:jTr{j,j+ 1, ,n}}.
Also note that (n k + 2 + h)r n + and hence Xk(r*, n k + 2) Xk(r, n k + 2)
and hence r* A(n, k, r).

Fourth, we let

E* ifh 0,
F=

the union ofE* and {(n-k+ 2)r-n} if h>0.

Then F contains E* by definition. We claim that F E(k, r), and, defining l]v as above,
we also claim that r* P(dv).

We first show that F E(k, r).
If h 0 then 0 t E and hence F E* 6 E(k, r).
If h > 0 then 0 E and hence E* contains r elements of

{-k+Z,-k+3, ,0}
and k r elements of { 1, 2, k }. Now since

rA(n+ 1,k),(n-k+2)Tr{n-k+2,n-k+3, ,n+ 1},
and hence (n k + 2)r n {-k + 2, -k + 3,.-., 0, 1). Now since h > 0,
(n k + 2)r :/: n + 1, i.e., (n k + 2)r n :/= 1. Hence

(n-k+ 2)r-n {-k+ 2,-k+ 3, ,0},
and so to show that F E(k, r) we need only show that (n k + 2)7r n t E*. But since
r A(n + 1, k), (n k + 2)r (n + 1) t E and the result follows.

To see that r* P(dr) we need only examine the values of jr*, where
j n k + + and { 1, 2, k }. Choose such aj.

If > h then

jr* (j +
i ifjTr < j

since P(c)
ci + n + ifjTr>-j
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I di iffir < j
since, given i> h,

di+ n ifflr>=j

ci if ci > 0
di and ci < 0 iffflr -> j.

ci + ifci<0
If -< h then we have two cases to consider: and > 1.
If then

jr* (n- k+ 2)r* (n- k+ 2)r {n-k+ 2,n-k+ 3, ,n}, i.e., jr >=j.

Now, by the above, (n k + 2)r n F, (n k + 2)r n {-k + 2, -k + 3, 0}
and (n k + 2)7r n t E*. Hence d (n k + 2)r n, i.e., (n k + 2)r* =dl + n
and (n- k + 2)r >= n k + 2.

If2 _-< =< h then

I Ci- ifjTr < j,
jTr* =jTr

ci- +n+ iffir>=j,

I di ifjTr < j,

di + n iffir >_- j,

since, given =< h,

di I ci- ifci_>0

ci- + ifci_<0
and ci- < 0 iffflr >_- j.

Hence r* e P(dF) and we have shown that b is well defined.
To complete the proof, we need to show that is one to one and onto.
First, suppose that 7rl, r2 e P(c) satisfy b(Tr) (r2). Then, by definition of

ir i7r2 for every e { 1, 2, n + } except for n k + 2 + h. However, since
7r and r2 are permutations, they cannot disagree in exactly one position and hence
r r2 and thus we have shown that is one to one.

We now show that b is onto, and hence complete the proof. Suppose that
r* A(n, k, r) is contained in P(dF), where F e E(k, r) contains E*.

Then let r e S, / satisfy

ir* if <=i<=n-k+ + h,

ir= n+ if i=n-k+2+h,

(i-1)r* ifn-k+3+h<-i<=n+ l.

Note that r is clearly in S,+ since r* S,.
It is now straightforward to verify that r G A(n + 1, k, r), and moreover that

7r P(c) and (Tr) r*. This establishes that is onto and the result follows.
THEOREM 5.6. Suppose 0 <= r <= k 1, 2 <= k and n 2k 2, and let

E E(k, r). Then uk(E) v,,k(F), where F E(k, r) is defined by

F {ie{-k+2,-k+3, ,k- 1}" i=j+k- 1,

j6{-k+2,-k+3, ,k- 1}-E}.
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Proof. We first show that F as defined in the statement of the theorem is always in
E(k, r). By definition, F e E(k, s), where

s= ]{ieF" i {-k+ 2,-k+ 3, ,0}}l,
and so we need only show that r s.

Suppose e {-k + 2, -k + 3,..., 0}. Then, by definition, e F if and
only if i-k+ E, since n 2k 2 (note that bars denote residue classes modulo
n 2k- 2). Hence, again by definition,

s=k 1-1{iF" ie{-k+2,-k+3, ,0}}1

r (since EeE(k,r)) and thus FeE(k,r).

Now choose an element d (dl, d2, dk-l) from Uk(F). We must show (using
the above notation) that [Uk(E)I Ie(d)l, and we will then have completed the proof.
To do this we define b which maps Uk(E) into P(d), as follows:

Suppose c (cl, c2, Ck- 1) Uk(E). Then r b(c) satisfies
(i)

[ci+k-1 ifl_-<i=<k-1,
l’lt’-" l di-k+l ifk<--i<-2k-2,

(ii) iTre{1,2,...,n}, =<i=<2k-2.
We must first show that is well defined, i.e., that r e P(d). We first show that r e Sn.
By definition, r maps { 1, 2, n} into { 1, 2, n}, and hence we need only show
that r is one to one. Also, since q: . and di (i j), we need only show that
ci+k-1 : .for any i,j {1, 2, ,k- 1}.

Suppose ci+k-1 d; then, by definition of F, d. s+k-1, where
s e {-k + 2, -k + 3, k } E. Hence t g, where s E and c e E. This gives
us the required contradiction, and hence r e Sn.

We next show that r e A(n, k). If =< -< k 1, then

ir c + k- e { i, + 1, + k- } (since c e Uk(E)).

If k-< =< 2k- 2, then i- a_k/ e {i-2k+2, i-2k+3,’", i-k+l} (since
d Uk(F)) {i, + 1, + k- } (since n 2k 2). Hence r e A(n, k).

Next observe that, by Lemma 5.2, since F e E(k, r) and d e Uk(F) there exists a
r* A(n, k, r) satisfying ir---- i- for every e {k, k + 1,..., 2k 2}. Hence
Xk(r, k) Xk(Tr*, k), and so r e A(n, k, r). Finally, note that r e P(d) by definition, and
so is well defined.

By definition it is clear that is one to one, and so to complete the proof we need
only show that is onto. Suppose r e P(d). We must show that if c (ct, c2, Ck- )
satisfies

(i) . ir- k + 1, and
(ii) ci e {-k + 2, -k + 3, k } for every i, then c e Uk(E).
Since r cA(n, k, r), ir e {i, i+l,’", i+k-1}, and hence ir-k+l e

{i- k+ 1, i- k+ 2, -}. Thus we need only show that {cl, c2, Ck- } E. By
definition, r e P(d), and hence

{ka-,(k+ 1)r, ,(2k- 2)r} =/= {" <= <- n, [=j + k- 1,

j{-k+2,-k+3, ,k- 1}-E}.
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Thus, since n 2k- 2,

{kr+k- 1,(k+ 1)r+k- 1, ,(2k- 2)r+k- 1} {1,2,--" ,ri} -E.

Finally, since r e S,, {?1, 72, ?- 1} =/, and since n 2k- 2,

{c c2, Ck- } E.

Theorems 5.5 and 5.6 now enable us to prove the main result of this paper, namely
Theorem 4.4.

Proofof Theorem 4.4. First suppose 0 =< r _-< k and 2 =< k. Then, as before we
let

r k-l-

As in the definition ofH(k, r) preceding the statement ofTheorem 4.4, label the distinct
r-subsets of {-k + 2, -k + 3, 0} (R1, R2, Rt), and let

R’ {j+ l:j-Ri- {0}}
for every i. Then H(k, r) (hij) satisfies

I ifR’ is a subset ofRi,

h
0 otherwise.

We need to show that a(n, k, r) Trace (H(k, r)") for every n -> k.
For every e { 1, 2, t} define

C= {j+k- .je{-k+2,-k+3, ,0}-Rg}.

Then C/is a (k 1- r)-subset of { 1, 2, k } for every i, and (C, C2, Ct)
forms a labeling of all such subsets. Now let

Xij= {s s-Ri or s- Cj},

i.e., X is the union of Rg and C. Then it is clear that

E(k,r) {X" <=i<-_t, <-_j<=t}.

Next, for every n >= k, define the by matrix W(n) (w(n)i) by w(n)i v,,(Xij).
We first consider W(k). By Theorem 5.5 (i),

{ ifR and C are disjoint,
w(k) v,(X)=

0 otherwise,

where the bars denote residue classes modulo k.
We now claim that W(k) H(k, r). This is clear since

h iff R is contained in R,
iff R is contained in R (since R is a subset of {-k + 2, -k + 3, ..., 0}

for every s),
iff e/- {} implies s + / (by definition ofR),
iff /i-{} implies (by definition of C, and working modulo k),
iff R and C. are disjoint (since 0 C for any s),
iff w(k)

and hence W(k) H(k, r).
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Second, consider W(n), n >= k. By Theorem 5.5 (ii)

w(n + 1)ij l)n + l,k(Xij)
E Vn,(Xs) (where represents the sum over all s e ( 1, 2, t} such

that R? is a subset of Rs),

hisv(n)sj,
s=l

i.e., W(n + 1) H(k, r). W(n) H(k, r)n- k / for every n >-- k.
Now suppose n 2k 2. Then, by Theorem 5.6, and because ofthe chosen labeling,

uk(Xij) v2-2,(Xi) w(2k- 2)ji. Thus, by Theorem 5.4 we have

a(n, k, r) , u(E)v,,(E)
E E(k,r)

Z Z Uk(Xij)’Vn,k(Xij)
i=lj=l

w(2k-2)ji.w(n)ij
i=lj=l

Trace (W(n). W(2k -2))

Trace (H(k, )n k + l.n(k y)k- 1)
Trace (H(k, r)’).

Corollaries 4.5 and 4.6(i) are immediate from Theorem 4.4. We now prove the asymptote
for a(n, k, r) ven in Corolla 4.6(ii).

ProofofCorollary 4.6(ii).

a(n,k,r)/(qs)n= (n
i= kqs]

l.
i= kqd
i#s

Now

N (t-.d

i#s i#s

where d max# (Iqi/ql) < 1. Finally, note that (t 1).d" can be made arbitrarily small
ven sufficiently large n, and the result follows.

To establish 4.7 and 4.8 we need to examine the matrix H(k, 1). In fact we have
LEMMA 5.7. Suppose r and k 2. Then if the labeling (R, R2, Rt) is

chosen so that Ri { }, then H(k, 1) is the k by k matrix

0
0

Ik-2
0

where I_ 2 is the k 2 by k- 2 identity matrix.
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Proof First note that {0}* is empty, and hence hlj for every j. Second, note
that ifi < 0, then {i}* {i + 1}, and so ifi > then hi if and only if
j=i-1. [-]

Hence, for the case r 1, H(k, 1) is already in Frobenius normal form, and as in
[9, p. 297] the characteristic equation of H(k, 1) is

k-2

x- x= 0.
i=0

This gives Result 4.7 as an immediate corollary. We can also now prove the final result
from 4.

Proof of Theorem 4.8. As before let r and k >= 2. Then we claim that if
=<i=<k- 1, thenH(k,r)i=

di
di--

Ik- i-1 Ok- i- l,i

where Ik- i- is the (k 1) by (k 1) identity matrix, Ok-i-1,i is the (k 1)
by all-zero matrix and di (dil, di2, di(k-1)) satisfies di; 2i- 1, < j =< k i.

By Lemma 5.7 this is clearly true for 1, and by induction (and by examination
of H(k, 1)) we need only observe that

il {1 ifj<=k-i,
do.= d+

=1 0 ifj>k-i.

Hence, ifj =< k- i,

Thus,

i-1

di;= 2s-+l
s=l

(by the inductive hypothesis)

Trace (H(k, r)i) di + d(i- 1)2 }- q- dli (i <= k- 1)

2i- q_ 2i- 2 _}_ _}_ 20

=2i- 1. I-I

Note also that a(1, k, r) for every k and r since R* is contained in R iff
R {-r + 1, r + 2, ..., 0}, and thus H(k, r) always has a unique nonzero diag-
onal entry.

6. Tabulations of computed values. The papers of Metropolis, Stein and Stein [9],
and Minc [10], contain extensive tables of values for a(n, k) for k =< 9; [9] also contains
tables ofthe characteristic equations for H(k, r) and approximate values for the maximal
eigenvalue of H(k, r), again for k =< 9.

Using Theorem 4.4, together with a set of multiprecision routines written by Dave
Levin running on a VAX 11/750 minicomputer, we have been able to verify all the
existing tabulations of a(n, k) and a(n, k, r), and to also produce the following tables of
values for k 10, 11 and 12 and =< n =< 50. (See Tables 1-3.) Note that, as in the
remarks following Corollary 4.6 in 4, we define a(n, k, r) to be the trace of H(k, r)n for
every n >_- 1, and, in the natural way, we define a(n, k) to be the sum of the a(n, k, r) for
every n >_- 1.
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TABLE
a(n, 10)(1 _n_50)

n a (n, 10)

10
2 50
3 226
4 962
5 3840
6 16130
7 65698
8 258690
9 986410
10 3628800
11 14684570
12 59216642
13 238282730
14 957874226
15 3850864416
16 15498424578
17 62494094138
18 252579461906
19 1023207993178
20 4152609019392
21 16866126115498
22 68562634725426
23 278965798055154
24 1136049057102978
25 4630217243007040
26 18885572768497186
27 77080942110390418
28 314787782093356610
29 1286217554205276682
30 5257934625513024000
31 21503218756525334970
32 87975626996492343810
33 360060541514858306810
34 1474102716437359422226
35 6036778093871268296928
36 24728373540667369577474
37 101318258384798761261866
38 415213810742569786850322
39 1701918744817772671844282
40 6977191966118035882693120
41 28608161263286199980584138
42 117316730697716871569616818
43 481154617504945351421631490
44 1973597676853638993657364034
45 8096120287083522358723474560
46 33215073534422084882289815106
47 136279156753579083576867246210
48 559185646824298651823816588034
49 2294624949149162154512316665962
50 9416588798300969653474145747200

7. Develolments of the basic lroblem. The determination of a(n, k) is only one of
many problems associated with the design of a sliding window time element scrambler
of the type described in 3 above. There is also the fundamental problem ofchoosing n
and k, and designing the method to be used to select permutations from A(n, k).
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TABLE 2
a(n, ll)(l

_
n

_
50)

n a(n, 11)

11
2 61
3 299
4 1393
5 6331
6 27949
7 126095
8 554177
9 2368847
10 9864101
11 39916800
12 176214841
13 775596313
14 3407118041
15 14951584189
16 65598500129
17 287972983669
18 1265785879297
19 5573449326001
20 24588660672953
21 108681408827381
22 481065936784384
23 2130831306657527
24 9445455128274737
25 41902710214254531
26 186040589545320129
27 826626380784149855
28 3675606432528120601
29 16354817596119737239
30 72817892293114361249
31 324404970589895718419
32 1446036425685642910913
33 6449154750576695662848
34 28777322874980997201469
35 128473548843752900117725
36 573831697082734230011665
37 2564217910410345862799157
38 11463508074975657944297053
39 51270268001103972812908657
40 229399692125416838094166177
41 1026818034189449323389052049
42 4597927569350275420770702533
43 20596506835524484240745827169
44 92295992963140763623590913024
45 413737754483439976252567341907
46 1855307333069535348229092448661
47 8322436742793852726661366713051
48 37344337184202486272125701583553
49 167623315461313026160891570970211
50 752619449962479689980066343390501

As before we let

A(n,k)= {r.S,, ir- {i,i+ 1, ,i+ k-1} for every i}.
Another secondary problem, similar to the a(n, k) evaluation problem, concerns choosing
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TABLE 3
a (n, 12)(1

_
n _--< 50)

n a (n, 12)

12
2 72
3 384
4 1944
5 9812
6 46080
7 227680
8 1100680
9 5199648
10 24011832
11 108505112
12 479001600
13 2290792932
14 10927434464
15 52034548064
16 247524019720
17 1177003136892
18 5598118158336
19 26647751359904
20 127007092256024
21 606269105086336
22 2898753047375312
23 13880706183899752
24 66544727442343936
25 319198916117248012
26 1532071808279181592
27 7358305929283036608
28 35363678926464144632
29 170062683110076661012
30 818309438846696002560
31 3939711747851871915248
32 18977103341489089532424
33 91452381430150298900000
34 440902914787573840187976
35 2126473158349980849520200
36 10259701680625467679872000
37 49517433552724675102157540
38 239067514640241762853861328
39 1154549828245379314130268192
40 5577319090541480294809775880
41 26949490191171589347220311676
42 130250684430090783496906489856
43 629660737886339608173390416560
44 3044553776812595993002687353336
45 14723969563417452202403843439488
46 71220434757273136282267411587712
47 344554065382463547747151575797784
48 1667163251724747083829231695497216
49 8067930334499348958454566728595916
50 39048557417232324389011734475683432

permutations suitable for use from A(n, k). Clearly not every permutation in A(n, k) is
suitable for use as a scrambling pattern; consider the permutation r 6 Sn which satisfies
ir (2 =< _-< n) and r n. Then r A(n, k) for every k _>- 1, but the transmitted
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speech enciphered using r will, in effect, not be permuted at all, and a device using such
a permutation will offer no security at all.

The basic problem is what is commonly known as residual intelligibility. This term
refers to the amount of intelligible information remaining in the analogue signal after it
has been scrambled. Clearly, different permutations from A(n, k) will have different re-
sidual intelligibilities, and it is thus desirable to have some method of choosing permu-
tations from A(n, k) which leave the minimum residual intelligibility.

In order to assess the level of residual intelligibility associated with a permutation,
it is necessary to perform a large number of experiments to try to assess the amount of
decipherable information remaining in speech after encryption using the permutation.
Such experiments have been performed, and the results of these experiments have led
us to conclude that the most important extra criterion that a permutation r A(n, k)
should satisfy in order to minimise the residual intelligibility is that

iTr+ 14:(i+ 1)r, <-i<=n and mr+ 14: lr.

This ensures that no two originally consecutive segments remain consecutive after en-
cryption.

Thus, if we let

B(n,k)={rA(n,k):ir+14=(i+l)r,l<=i<=n-1 and nTr+lq:lTr}

and b(n, k) IB(n, k)l, then choosing permutations from B(n, k) considerably reduces
the probability ofr leaving a high level of residual intelligibility in the scrambled speech.
For a more detailed description of the experimental results and permutation evaluation
procedures (see [3] and [4]).

Once we have made this definition, it is clearly important that some estimate be
obtained for the size of b(n, k). However, few results appear to exist on this problem,
and the following summarises the results currently known to the authors.

THZOZM 7.1. (i) b(n, 1) b(n, 2) 0 for every n,
(ii) b(n, 3) b(n 2, 3) + b(n 3, 3), n >= 6, b(3, 3) 3, b(4, 3) 2, b(5, 3) 5,
(iii) b(n, 4) 2b(n, 3), n >_- 4,
(iv) b(n, n) n."- )i-i= (-1 .a(n-i,n-i- 1),n->-2.
Theorem 7.1 (i) is trivial. Parts (ii) and (iii) have been obtained independently by

Dr. Keith Lloyd and the authors. Part (iv) is based on a recurrence relation due to Stacey
[8], which says that b(n + 3, n + 3) n.b(n + 2, n + 2) + 2.(n + 1).b(n + 1, n + 1) +
(n + 1).b(n, n). The solution to this recurrence to give (iv) can be found in [7, Ex. 15.5.10].
For further references to (iv) see also 16, Exercise 21, p. 160] and [16, Exercise 8,
p. 172]. We now give a proof of (ii) and (iii).

In order to prove these two results, we first need some preliminary definitions. Let

B(n,k,r)= {rB(n,k) rA(n,k,r)}.
As for Lemmas 4.2 and 4.3 we immediately have

LEMMA 7.2.
k-1

b(n,k) Z b(n,k,r).
r=0

Proof Immediate from the definition.
LEMMA 7.3. (i) b(n, k, r) b(n, k, k r), 0 <= r <= k- <= n 1.
(ii) b(n,k,O)=b(n,k,k- 1)=0,0=<k- 1-<n- 1.
Proof (i) As for the proof of Lemma 4.3(i), we define the function k which maps

Sn into Sn by
qk(r) maps/to(n+ 1)-- sr where se{1,2, ,n} andg=-i-k+2.
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We claim that k is a one-to-one mapping from B(n, k, r) into B(n, k, k r). This
will establish the result. By the proof of Lemma 4.3(i) we have shown that 4k is one to
one and that if r e B(n, k, r) then bk(r) e A(n, k, k r); hence we need only show
that qk(r) e B(n, k) in order to establish the above claim, and thence the desired result.
Now if and j satisfy + j i, j e { l, 2, n}, then i4k(r) + n + 2 tTr, and
j4k(Tr) n + sTr, where, by definition, s+ t. But 7r e B(n, k, r), and because
s and satisfy s + t, we know sr + # t. Hence ib(r)+ # jbk(r), and thus
4k(r) B(n, k).

(ii) This part is trivial.
We can now give the following lemma.
LEMMA 7.4. B(n, k, k- 2) B(n, 3, 1), k >- 3.
Proof. We first show that if =< r < k < n, then A(n, k 1, r l) is a subset of

A(n, k, r). Suppose that r e A(n, k 1, r 1). Then, by definition, r A(n, k l) and
hence r e A(n, k). Thus, by Lemma 4.1, we need only show that IXk(r, i)l r for some
i {1, 2, ,n}.

Now r A(n, k 1, r 1), and hence [Xk-l(r, n k + 3)[ r 1. By definition,
Xk_ l(r, n k + 3) is a subset ofX(r, n k + 2), and

Xk(r,n--k+ 2)--Xg_ (Tr, n-k+ 3) {(n- k+ 2)r},
since r e A(n, k 1). Thus:

IX(r,n-k+ 2)l r + l{(n-k+ 2)r}l r,

and hence A(n, k- 1, r- 1) is a subset of A(n, k, r). This immediately implies that
B(n, 3, 1) is a subset of B(n, k, k 2), k >= 3.

We now show that B(n, k, k 2) is a subset of B(n, 3, 1), k >= 3, and the result
follows.

Clearly, if k 3, then the claim is automatically true, and so we suppose k >- 4.
Now choose r B(n, k, k 2), and suppose r B(n, 3), i.e., suppose there exists an
he{1,2,...,n}forwhichhr=h+s, where 3 _-< s=< k- 1.

Now, by definition, IXk(r, i)1 k- 2, for every {1, 2,..-, n}. Let
x, y e { 1, 2, ..., n} satisfy 2 h k+ 3 and )7 h k+ 4. Since

hr {h,h+ 1,h+ 2}

we have: hr g Xk(r, X) and hr Xk(r, y). But

IXk(r, X)I IXk(r, Y)I k- 2,

and hence if u, v {1,2,...,n} satisfyfi= h+l and h+2thenur uand
wr v. But since u+ this contradicts the definition of B(n, k) and hence
r B(n, 3). The result now follows by our observing that B(n, 3) B(n, 3, 1), since
B(n, 3, 0) and B(n, 3, 2) are empty by Lemma 7.3(ii).

Now since b(n, 4) b(n, 4, l) + b(n, 4, 2) (by Lemmas 7.2 and 7.3(ii)), and since
b(n, 4, l) b(n, 4, 2) (by Lemma 7.3(i)), we know that b(n, 4) 2b(n, 4, 2). But
b(n, 4, 2) b(n, 3, l) (by Lemma 7.4), and hence b(n, 4) 2b(n, 3, 1), establishing
Theorem 7.1 (iii). It remains for us to prove the recurrence of Theorem 7.1 (ii), noting
that the initial values of b(n, 3) for n _-< 5 can be verified by hand.

Proofof Theorem 7.1 (ii). We first introduce some notation.
Suppose n ->_ 3. Let

Q(n) {rB(n, 3)" lr= 1} and q(n)= IQ(n)l.
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Also define
Q(n) {,re Q(n) 3r 3} and q(n) IQ(n)l,

Q2(n) {r e Q(n)" 3r 4:3 } and q2(n) IQ2(n)l.

Then Q(n) is equal to the disjoint union of Ql(n) and Q2(n), and we have

(1) q(n) ql(n) + q2(n), n >= 3.

We also need the notion of a displacement vector. Choose ,r e S,, and let
d (d, d2, d) satisfy:

die {O, 1, .,n-1} and di= ir- foreveryie{1,2,-..,n}.

Then we call d the displacement vector of r. Note that permutations in Ql(n) and Q2(n)
have displacement vectors of the form (0, 2, ...) and (0, 1, 2, ...), respectively.

Now suppose n >= 5. We define the mapping q from Ql(n) into Q(n 2) as follows.
If r Q(n) has displacement vector

(0,2,d3,d4, ,d,)

then let (r) be the permutation having displacement vector

(d3,d4, ,d,).

It is straightforward to show that is well defined and both one to one and onto. We
have thus shown:

(2) q(n) q(n- 2), n >= 5.

Next suppose n >= 6. We define the mapping t2 from Q2(n) into Q(n 3) as follows. If
7r Qz(n) has displacement vector

(0, 1,2,d4,ds, ,dn)

then let $2(r) be the permutation having displacement vector

(d4,d5, ,dn).

It is straightforward to show that is well-defined and both one to one and onto. We
have thus shown:

(3) qz(n) q(n 3), n >- 6.

Next suppose n >= 4 and define a third mapping 2 from Q(n 1) into Q2(n) as follows.
If r 6 Q(n 1) has displacement vector

(0,2,d3,d4, ,d,_,)

then let 2(,r) be the permutation having displacement vector

(0, 1,2,d3,d4,-.. ,dn-).

Again it is straightforward to show that $2 is well defined and both one to one and onto.
We then have

(4) q(n 1) q2(n), n >= 4.

Finally suppose n

_
3. If d is the displacement vector of r B(n, 3), and if

r* - B(n, 3) has displacement vector d* (d+, ds/2, d,,, d, d2, d), then we



362 H. BEKER AND C. MITCHELL

call r* the s-fold cyclic shift of r. We now let

Q (n) { 7r*" r* the 1-fold cyclic shift of some r Q(n)},

Q2(n) {r*" r* the 1-fold cyclic shift of some r Q2(n)},

Q22(n) {r*" 7r* the 2-fold cyclic shift of some r Q2(n)}.
It is straightforward to show that all elements ofQ (n), Q2(n) and Q22(n) have displace-
ment vectors of the forms: (2, 0, 0), (1, 2, 0, ...) and (2, 0, 1), respectively.
Hence the five sets

a(n), a2(n), az(n), a(n), a(n)

are all disjoint; moreover, every element ofB(n, 3) is in one ofthese sets. This immediately
gives

(5) b(n, 3) 2q(n) + 3q2(n), n >= 3.

We can now combine the above results to obtain the desired recurrence. Suppose
n >= 6. Then:

b(n, 3) 2q(n) + 3q2(n) by (5)

2q(n- 2) + 3q(n- 3) by (2) and (3)

2q(n 2) + 2q2(n 2) + 3ql(n 3) + 3q2(n 3) by (1)

2q(n 2) + 3q2(n 2) + 2q(n 3) + 3q2(n 3) by (4)

b(n 2, 3) + b(n- 3, 3) by (5). if]
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MARKOV MAPS AND THE SPECTRAL RADIUS OF 0-1 MATRICES*

W. BYERS AND A. BOYARSKY

Abstract. Let a’ denote the set of n n 0-1 matrices, n 1, 2, -.., where the nonzero entries in each
row are contiguous. Let A, B e be irreducible and have the same shape. The main result states that under
certain conditions A and B must have the same spectral radius.

Key words, nonnegative matrices, Markov maps, spectral radius
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1. Introduction. The methods and results oflinear algebra have played an important
role in ergodic theory [9], 10]. In the theory of Markov chains, for example, the Fro-
benius-Perron Theorem is used to determine the longterm behavior ofrandom processes.
In [4] ideas from the ergodic theory of transformations from [0, into [0, were used
to derive conditions which guarantee the irreducibility and primitivity of large matrices
from the irreducibility and primitivity of smaller ones. The key tool is the application of
a class of piecewise linear Markov maps, whose dynamical behavior can be fully under-
stood by using the tools of linear algebra [1 ], [2], [4], [6], [7], [8]. These maps serve as
links between ergodic theory and linear algebra and allow results to pass both ways. The
purpose ofthis paper is to use the ergodic theory oftransformations to present conditions
under which two different sized 0-1 matrices have the same spectral radius. In particular,
we shall study a class of 0-1 matrices which are induced by piecewise linear Markov
maps. A simple example of such a matrix is the following:

A=

where we think ofA as being induced by the piecewise linear Markov map f: [0, --[0, 11, shown in Fig. 1. The intervals I [0, 1/2) and h [1/2, 1] form a partition of
[0, 11. If we define A (a0) by a0 iff(I) _/ and 0 otherwise, we obtain the matrix
A above. We shall say that the mapfinduces the matrix A with respect to the partition
Q {0, 1/2, 1}.

Now let f be as above, but consider a different partition of [0, ], namely, Q
{0, 1/8, 1/4, 1/2, 1). Let J [0, 1/8), J2 [1/8, 1/4), Ja [1/4, 1/2)and J4 [1/2, 1],
as shown in Fig. 2. Then, using the above definition of (ao), f induces the following
matrix:

0 0 /0 0 0
0 0 0

with respect to the partition QI. In a certain sense both A and A1 inherit the shape of
the map f and they both have spectral radius 2. The main result of this paper ( 2)
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characterizes the matrices induced by a general piecewise linear Markov map (not nec-
essarily continuous) which have the same spectral radius. This result is useful in finding
the spectral radius oflarge matrices. Given a large matrix, B, ofthe type we define below,
we present conditions under which there exist smaller matrices, A, in the same class
which have the same spectral radius. In 3 we show that if the characteristic polynomial
ofA, pA(x), is irreducible over the integers, then it is a factor ofps(x). In 4 we consider
two n n 0-1 matrices A and B which are induced by two piecewise linear Markov maps
z and 3’ on the same partition of [0, ]. We derive a relation between the spectral radius
of ,A + (1 ,)B, 0 < ) < 1, in terms of the spectral radius ofA and the spectral radius
of B.

2. Notation and preliminary results.
DEFINITION 1. Let I [a, b] be a closed interval and let

Q={a=ao<a<... <a,=b}

be a set of partition points of I. We say that fi I - I is a piecewise-continuous Markov
map with respect to the partition points Q if (1)f is strictly monotonic and contin-
uous on each subinterval Ii (ai-1, ai) 1,..., n and (2) both the right and left
limitsf(a) limx,a,f(x) andf(a-) limxa,f(x) are elements of Q. Let qf denote the
class of Markov maps which are piecewise linear with respect to their defining partition,
i.e., fis linear on Ii for 1, n.

f

FIG. 2
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Letfe and let {Ii}’= be the intervals of the partition with respect to which f is
Markov. Then f induces an n n matrix M M defined as follows:

wheref df/dxlzi and dij iff(Ii) I and 0 otherwise. Thus, all nonzero entries of
each row in M are contiguous (no zero entries between nonzero entries) and equal with
common value 1/]f[.

LEMMA [1 ]. Let fe cg. Then M My has as its spectral radius. IfM is also
irreducible, then the algebraic and geometric multiplicity ofthe eigenvalue are also 1.

Note that the row sums ofM are not necessarily 1. If they were the result would
follow immediately from the Perron-Frobenius Theorem.

DEFINITION 2. Let f e . Then f induces the 0-1 matrix A Af, where (a0) is
given by ao do. Let denote the class of 0-1 matrices induced by allfe .

Clearly, given fe , Afcan be obtained from Myby replacing every nonzero entry
in Myby 1. The following result is proved in [2]:

LEMMA 2. Let A 1 be irreducible and let it have spectral radius > 1. Then there
existsfe cg, i.e., a piecewise linear Markov mapf’. [0, 1] -- [0, ], having constant slope, such that My A/X.

Let o(A) denote the spectral radius of A. Then it follows from Lemma that
p(Mf) o(A/X) 1, i.e., p(A) X.

3. Matrices shaped like maps. We wish to characterize the set of matrices A
which can be generated from a single mapf by means of different partitions Q.

Take, for example, the mapfe cg defined by

(x+1/2, o_-<x<1/2,
f(x)=

t2x- 1, 1/2 -<x -<- 1,

as shown in Fig. 3. With respect to Q1 {0, 1/2, 1}, f induces the matrix A (0
whereas with respect to Q2 {0, 1/4, 1/2, 5/8, 3/4, } finduces the following matrix:

0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0

1

0

FIG. 3
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The crucial factor in defining the matrices Ai is the behavior offon the invariant sets
QI and Qa. If we let a0 0, al 1/2 and a2 we may define a finite map a by the
following table:

0 1- 14 2

a(i) 2 0 2

wheref(aT) a(i-)andf(a{) a(i+) which gives enough information to define the matrix
A. Similarly the action of r on Q2 is captured by the following table.

0 2- 24 3 4 5

a’(i) 2 4 5 0 2 5

Notice that a’ has an invariant set {0, 2-, 24, 5 } on which the action of a’ is isomorphic
to that of a. We shall show that this forces the spectral radius ofA2 to equal that ofA
(in this case (1 + f)/2).

In general let T Tn {0, 1, n} and let (a-, a+) be a pair of maps from T
into itself. If a-(i) a+(i), we denote their common value by a(i). We shall assume that
neither a- nor a+ is constant on any adjacent pair {i 1, }. Of course any such pair
(a-, a+) generates a piecewise linear Markov mapfe cg from the interval [0, n] into itself
by settingf(i-) a-(i) andf(i4) a+(i) and definingfon (i 1, i) to be the unique
linear map with f((i 1)4) a+(i 1) and f(i-) a-(i). The function fis continuous
at iff a+(i) a-(i) a(i). The pair (a-, a+) defines the matrix A A 3, which is
the matrix defined in Definition 2 for the mapfon the partition T. Conversely any map
f6 ctq with partition Q {x0 < x < < xn} defines the maps (a-, a+) from Tn into
itself by a-(i) f(xT) and a+(i) f(x-).

Suppose that S {0 So < s < < Sm n} is some subset of T. S is invariant
under (a-, a+) if a-(S) c S and a4(S) S. (a-, a/) is piecewise monotonic on S if

(i) S is invariant under (a-, a/),
(ii) a-(i) a+(i) (=a(i)) for T- S, and
(iii) a+(Si-1) < a(Si-. -]- 1) < < a(s 1) < a-(S/)or

a+(si-) > a(si-- + 1) > > a(si- 1) > a-(si) for 1, m.
If (a-, a+) is piecewise monotonic on S C T we can define the pair 0z-, +) on Tn

by setting/-(i) j if and only if a-(si) sj and #+(i) j iff a+(si) sj. We could then
generate the m m matrix A as above. Assume that A, is irreducible. It is not difficult
to see that the spectral radius p(A,) if and only if A is a permutation matrix. It
follows from the piecewise monotonicity of (a-, a+) on S that A, is also a permutation
matrix and so p(A,) 1. For this reason we shall assume that p(A,) > in the sequel.
Then we can use Lemma 2 to find a mapf6 with slope ___k where p(A,) k. In fact
in the proof of this lemma we construct a map of constant slope, f, which is Markov
with respect to a partition of [0, ],

Qs {0 Xso <Xs, < Xs }

where fis strictly monotonic on the intervals Ii [x_,, xJ 1, m andf(x)
x,-(), f(x) x+(). We shall refer to this fas being generated by (a-, a+). Our main
result is the following:

THEOREM 1. Suppose (a-, a4) is defined on thefinite set Tand is piecewise monotonic
on S T. If the induced matrices A and A, are irreducible, then their spectral radii
are equal.

The proof follows from the following lemmas.
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LEMMA 3. Let (a-, a+) be piecewise monotonic on S. Then for each t T- S,
the set ofpoints in T but not in S, there exists a unique point xt [0, with the same
itinerary as t, i.e., if ak(t) T- Sfor k O, 1, p 1, then fP(xt) interior (Ii) if
si-1 < P(t) < si andfP(xt) Xsi, if r(t) si, wherefe c is generated by (-, +).

Proof Suppose that si-1 < < &. Then a(t) must be between a+(si l) and a-(si)
because (r-, a+) is monotonic between s;_ and si. If sj_ < r(t) < sj, then s_ and sj
must be between a+(si_ 1) and a-(si). Since fis a homeomorphism on Ii, we must have
f(Ii) D Ij.. On the other hand if a(t) s for some j, we must have xsj ef(Ii) and so there
is a unique point x Ii withf(x) xsj.

Now, again, if e T- S, either (a) ak(t) T- S for all k 0, 1, 2, or else
(b) there is a smallest integer p for which a(t) s S. In case (a) there exists for each
k 0, 1, an integer nk such that Snk-1 < ak(t) < Snk and therefore by the above, a se-

I with f(Ink) Ink+ By a standard result (cf. [5]) there existsquence of intervals { nk}k 0 ,-

a closed interval J Ino such thatfk(j) Ink for k 1, 2, -...
The fact that there is a unique point with the itinerary follows from the expansiveness

off(i.e., Islopel > 1).
In case (b) we have sk_ < trk(t) < Snk for k 1, p and a(t) s. As above

we have the interval J I withfk(j) Ink k 0, 1, p 1. In fact we can choose
J so thatfP- l(j) In_,. As above there is a point Xo e I_, with f(xo) x. Since fis
a homeomorphism on J there is a unique point xt J with fP(xt) x.

LEMMA 4. Ifthe matrix A, is irreducible, then the correspondence - x, is injective.

Proof. Suppose xt, xt: for tl q: t2 e T- S. As in Lemma 2 we either have (a)

* Snk- < ak(ti) < Sk, 1,2,

holds for all k 0, 1, 2, or else (b) condition (,) holds for k 0, 1, p and
aP(ti) s S, 1, 2.

in case (b) the piecewise monotonicity of a implies that a- l(tl) a’- 1(t2),
a(tl) a(t2), tl t2. We complete the proofby showing that case (a) reduces to case (b)
when A, is irreducible.

kThe irreducibility ofA implies that at2,1 > 0 for some k. Thus, there is a chain

at2,nl =an,,, ank_,l. In terms of the function fthis means thatf(It2) It,

f(In) I2, f(Ink_) 11. The piecewise monotonicity of a between ak(tl) and
ak(t2) (and of f between fk(xt1) and fk(xt2)), given by (,), means that this sequence of
inclusions can be replaced by equalities. Thusfk(It2) 11 wherefkllt2 is a homeomorph-
ism. Thus either fk(xt2) 0 or else t t2 and fk(xt) 0. But fk(xt) 0 implies
that aJ(ti) - S for some j =< k by Lemma 2. Thus case (a) reduces to (b).

LEMMA 5. The correspondence t - xt is order preserving.
Proof Suppose tl < t2. The result is clear if one (or both) of tl, t2 lie in S or if xt,,

xt2 lie in the interiors of different intervals I. Lemma 4 implies that fk(xti), 1, 2,
cannot lie in the interior of the same interval I,k for all k 0, 1, .-.. Thus the points
rk(ti), 1, 2 must justify (,) ofLemma 3 for k 0, 1, p and of aP(tl) 4 a’(t2)
either at least one lies in S or else they lie in the interiors of distinct intervals Ii. Notice
.that the finite map a between snk_ and s,k and the mapfon I,k are either both increasing
or both decreasing. Thus a(t) and a(t2) have the same order (or the reversal order) as
tl and t2 if and only iffP(xt) and fP(xt2) have the same order (or the reversed order) as

xtt and xt2. But a’(tl) and a’(t2) are ordered like fP(xt) andfP(xt2). Thus xt, < xt2.
ProofofTheorem 1. Since xt has the same itinerary at (Lemma 2),f(xt) must have

the same itinerary as aft). Lemma 3 now implies that f(xt) x.<t) for t T- S. Thus
Xr {xtlt T} form a Markov portion forfwhich is finer than the previous partition
Xs. Now suppose f([xi-1, xi])

_
[xj_ l, xj] where we take the right-hand limit at X
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and the left-hand limit at x;. Then the interval with end points Xr(i-1) and x(i) covers
[x_ , x] underf, and {j- 1,j}

_
{t e Tit lies between a(i- 1) and a(i)}, i.e., ao 1.

All of this reasoning is reversible and so A, is the adjacency matrix offwith respect to
the Markov partition Xr. Now let M, A. By Lemma 1, p(M) o(XA) 1. Therefore
the spectral radius ofA is also given by

Remark 1. The condition that both A and A be irreducible in Theorem is, of
course, not necessary. Consider, for example, the following trivial situation:

Au= 1] and A= 0 0 0
] 0 0 0

0 0

Clearly both matrices are shaped like the triangle map - and the spectral radius of each
is equal to 2. A,, however, is reducible since the in the (3, 3) position implies the
existence of an invariant subset.

Remark 2. Let be a piecewise linear Markov map. Let Jl be a Markov partition
under such that 0-1 matrix A it induces is irreducible and not a permutation matrix.
Let J2 be any other finer Markov partition under Z and let A, be the induced 0-1 matrix.
Then it follows from Theorem 2.2 and Theorem 2.1 of [4] that A, is irreducible. Thus
the irreducibility ofA is a necessary condition for J_ to be a Markov partition under .
From this we conclude that if A is not irreducible, it cannot possibly be induced by a
Markov partition under z.

Example 1. Consider the 10 10 matrix

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

B= 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

It is easy to see that B induces the finite map, tr{0, 1, .’., 10} -- {0, 1, 10} given
by the following table:

a(i)

0 2 3 4 5 6 7- 7+ 8 9 10

0 4 5 6 8 10 8 5 0 2 6 10

with invariant set {0, 5, 7-, 7+, 10}. The induced permutation tt generates the piecewise-
linear Markov map shown in Fig. 4 whose adjacency matrix is

Au= 0

Since p(A)= 2.61803399 and A,, B are irreducible, it follows from Theorem that
o(B) 2.61803399.
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10

5

0 5 7 10

FIG. 4

Example 2. The existence ofan invariant subset S c S does not in itselfguarantee
that the matrices associated with S and S have the same spectral radii. Let

0 0 0
0 0 0 0 0
0 0 0
0
0 0 0

0 0 0

be generated by the finite map a on S {0, 1, 2, 3, 4, 5, 6 } defined by

n 0 2 3 4 5 6

o(n) 0 3 4 6 3 0

The spectral radius ofA, is 1.56804583. Consider now the finite map # on the invariant
S {0, 2, 4, 6} defined by

n 0 2 4 6

#(n) 0 4 6 0

where the associated matrix is

0)A,= 0 0

whose spectral radius is 2. Theorem does not hold here because a is not piecewise
monotonic on S.

Example 3. The theorem is not true when A, is reducible. Consider the following:

which induces

o-(n)
0 2 3 4

4 3 2 0

O /0 0 0
0 0 0

0 0
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whose spectral radius is 1.914 Ao is easily seen to be reducible. Now a has invariant
set S (0, 1, 4} on which a is monotonic, inducing the matrix

(0 l)Au=

which has a different spectral radius. The question ofwhat happens when a permutation
induces a reducible matrix is considered in detail in [11 ].

4. Characteristic polynomials. In general, since A and Ao have the same spectral
radius, they will obviously have a common factor, but there is no reason to suspect that
the entire characteristic polynomial of the smaller matrix will be a factor of the charac-
teristic polynomial of the larger matrix. The following result, however, shows that this
is the case ifthe characteristic polynomial ofthe smaller matrix is irreducible with respect
to the integers.

PROPOSITION 1. Letf[0, --* [0, be a piecewise linear Markov map ofconstant
slope. Let A A(m m) and B A,(n n) be irreducible matrices generated by f,
where n > m. If Ca(x), the characteristic polynomial ofP is irreducible with respect to
the integers, then Ca(x) is a factor ofthe characteristic polynomial ofB, C,(x).

Proof. By Theorem 1, we know that A and B have the common spectral radius p.
By the remainder theorem,

CB(x) q(X)CA(X) + r(x)

where the degree of r(x) is less than the degree of CA (x) m. Since o is a root of both
CA(x) and C(x),

CB(p) q(p)CA(p) + r(p)

implies that r(o) 0. But 0 is a root of the irreducible polynomial CA(X) of degree m,
and hence cannot be a root of a polynomial of smaller degree. Thus r(x) O.

Example 4. Letf: [0, 1] --* [0, 1] generate the matrices

(0 1)A= and

0 0 0
0 0 0 0

B 0 0 0 0
0 0 0

0 0 0

B is irreducible and since the invariant set {0, 2, 5 } induces A by means of

#: {0, 2, 5} --* {0, 2, 5},

defined by #(0) 2, #(2) 5, #(5) 0, Theorem applies. Therefore, A and B are
generated by the same map and therefore have the same spectral radius. Since Ca (x)
x2 x is an irreducible polynomial, Proposition shows that this is a factor of
Cn(x). Examination ofB reveals that the null space ofB has dimension 2. Thus,

C(x) (x- r)x2(x2 x- 1)

where r is unknown. Let rl, r2 be the roots of CA(X). Since rl + r2 trace ofA 1, and
r + r + r2 trace ofB 1, we obtain, r 0. Therefore, the dimension of the null space
of B is in fact 3, and

Cs(X) x3(x2 x- 1).
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Example 5. Letf be as in Example 4 and let

0 0 0 0

(0 0)
0 0 0 0

A= 0 0 B- 0 0 0 0
0 0 0 0 0
0 0 0

0 0

A and B are both irreducible. From B, we obtain

t: {0, 1,2,3,4,5,6} -- {0, 1,2, 3,4, 5,6}
defined by the following table:

0
0
0

0

0 2 3 4 5 6

2 3 4 5 6 3 0

The set {0, 2, 4, 6 } is invariant under tz and induces the matrix A. Hence Theorem
implies that A and B have the same spectral radius. Since CA(X) X X2 X is
an irreducible polynomial, Proposition shows that

CB(X) q(x)(x3 x2 X- 1).

By inspection the dimension of the null space ofB is at least 1. Therefore,

CB(x) xh(x)(x3 x2 x- 1).

Direct computation of Cn(x) yields: h(x) x2 + 1.
This example can be generalized. Consider an n n companion matrix A, consisting

of l’s on the superdiagonal and l’s in the ruth row. Then,

CA(X)’-xm--xm-l--xm-2 X-- 1.

It is easy to see that Ca (x) has a real root r > 1. With the aid of Rouche’s Theorem, it
can be shown that all the other roots of Ca(x) are inside the open unit circle. Hence r is
a P V number [3, Chap. VIII]. From this it follows that Ca(x) is irreducible over the
integers. Therefore, if an n n irreducible matrix B, n > m, can be reduced to A, they
both have the same spectral radius (Theorem 1). By Proposition 1, Ca(x) is a factor
of C(x).

5. Spectral radius of matrix combinations. Let w e induce the n n matrix M.
In it is shown thatM is diagonally similar to a stochastic matrix. The diagonal matrix
used for this depends only on the partition and not on the particular map z. Let
p c denote all the maps in which have as a partition. Thus the matrix DMD-is stochastic for all Me cp. Now let z, -), e induce Ml and M2, respectively. Then,
for0<a<

D(aM + (1 ct)M2)D-t aDMD- + ot)DM2D-shows that aM + (1 -c0M2 is diagonally similar to a stochastic matrix. (Note that
cM + (1 c0M2 is not necessarily a matrix induced by some r e c.) Hence,

(1) p(aM + c0M2) cp(Ml) + ( c0p(M2).

Let us assume that r and -), have the same constant slope + . Then Mi Adk,
where Ai is a 0-1 matrix, 1, 2, and (1) becomes

(2) O(OtAl + (1 a)A2) hoto(A) (1 ct)hp(A2) X.
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In the special case when a 1/2, we get

(3) p(Al +Az) 2X.

Example 6. Consider r and 3’ as shown in Fig. 5 where the common Markov partition
is 0 < 3/8 < 1/2 < 3/4 < 1. Under r and 3", induces the 0-1 matrices

0 0
0 0 0 0 0 0A= 0 0

and A2 0 0
0 0 0 0

respectively, where o(A) o(A2) X 2. By (2), it follows that for 0 < a < 1,

o(aA + (1 a)A2) 2.

In the special case when a 1/2, we get o(A + Az) 4, where

2 2 2 0

AI+A2=
0 0

2 2 0 0

The column or row estimates yields only: 2 -< D(A1 -t- A2) -< 6.
Example 7. Let X (1 + V)/2 be the positive root ofx2 x- 0, and consider

the partition 0 x0 < Xl < x2 < x3 < x4 < x5 1. Let 0/1 Xl XO, 0/2 X2
a3 x3 x2, a4 x4 x3, a5 x x4. Define 0/1 0/5, 0/2 0/5/k, 0/3 0/5,

a4 as/X, where al + a2 + a3 + a4 + a5 1. Consider the two maps of constant
slope X, shown in Fig. 6. Under the partition defined by al, a2, a3, a4, a5 above
r and 3" induce the 0-1 matrices

0 0 0 0 0 0
0 0 0 0 0 0 0 0

A= 0 0 0 and A2= 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0

respectively. Since

0/3-[" a4 0/5 0/5 - 0/4 0/3

0/2 0/3 0/4

0/1%’0/2

0/5

FIG. 5
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%

%

% c2 c3 o4 o50 0

FIG. 6

is a Markov partition for z. Since (a + a2)/a3 (a4 "1-" 0/5)/0/5 X, is also a Markov
partition for 3’.

Now, both matrices A and A2 are irreducible and can be reduced to the 2 2
matrix

whose spectral radius is o (1 + [)/2. Thus, for example, from (3) we get that

AI+A2

0 0 2 2 0
0 0 0 0 2

0
0 0 2 0 0

0

has spectral radius + f.
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AN APPLICATION OF GENERALIZED TREE PEBBLING
TO SPARSE MATRIX FACTORIZATION*

JOSEPH W. H. LIU,

Abstract. A generalized version of the pebble game for trees is described. It is motivated by the study of
out-of-core methods for the Cholesky factorization of sparse matrices. A solution to the generalized pebbling
problem will give an equivalent ordering ofthe sparse matrix, so that the reordered matrix requires the minimum
amount of in-core storage for its out-of-core factorization using the scheme in 12]. An efficient algorithm is
presented to determine such an optimal solution.

Key words, sparse matrix, factorization, out-of-core, elimination tree, tree pebbling
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1. Introduction. It is well known that many sparse matrix problems can be con-
veniently studied using graph-theoretic approaches. For example, the problem ofreducing
or minimizing bandwidth for a sparse symmetric matrix structure can be examined as a
linear layout problem for graphs [4]. The fill-reduction ordering problem is closely related
to the graph separator problem [10].

In this paper, we consider a problem encountered in the out-of-core solution of a
sparse symmetric matrix. We want to find an equivalent ordering ofa given sparse matrix,
which will minimize the amount of in-core storage requirement for the successful exe-
cution of an out-of-core factorization scheme. We show that this sparse matrix problem
can be transformed to a graph problem as a general form of the pebble game for rooted
trees. This pebble game is originally introduced to study register allocation in straight-
line programs [2]. It has received much attention on different variations of the basic
problem [6]-[9], 14]-[ 16].

The generalized form of the game studied in this paper is quite different from the
others in the literature. The number of pebbles required to satisfy a tree node can now
be more than one. We provide an efficient algorithm to solve this generalized pebble
game problem, and the underlying approach is similar to the one used by Yannakakis
[20] to solve the related min-cut linear arrangement for trees. It should be noted that the
algorithm can also be used to determine the best possible ordering for the out-of-core
multifrontal method [3], 17] in terms of primary storage reduction.

An outline of this paper is as follows. In 2, we describe briefly the necessary
background on the sparse out-of-core factorization scheme introduced by the author in
[12]. We formally introduce the class of equivalent orderings to be considered in the
paper. It is based on the important tree structure, called the elimination tree, obtained
from the sparse Cholesky factor matrix. The storage requirement on a fixed ordering for
the out-of-core scheme is also derived.

In 3, the problem of finding an optimal equivalent ordering that minimizes the
primary storage requirement is transformed into the generalized pebble game problem.
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A brief summary of existing pebbling algorithms to solve special forms of this pebble
game is also presented.

Sections 4 to 6 are devoted to the devdopment ofan algorithm to solve the generalized
pebble game. An overview of the method is given in 4. The overall scheme makes use
ofthe recursive structure of trees. It determines optimal orderings for subtrees, and then
combines them to yield an optimal ordering for the entire tree.

Section 5 introduces the notion of a cost sequence. It is adapted from the one used
by Yannakakis [20] on the min-cut layout problem for trees. This notion is essential in
developing the overall optimal algorithm. Optimality is now in terms ofthis cost sequence
together with a newly-defined partial order. In 6, the algorithm to combine optimal
subtree orderings is described. We prove that the overall ordering found is indeed optimal.
The computational complexity of this algorithm is also addressed.

Section 7 contains our concluding remarks. There are three theorems in 6, whose
proofs are quite involved and lengthy. In order not to obscure the essential ideas in the
paper, these proofs are postponed and presented in an appendix.

2. Statement of the problem.
2.1. Background on sparse out-of-core factorization. Let A be a given n by n sparse

symmetric positive definite matrix, ordered appropriately by some fill-reducing ordering
[5] (e.g., the minimum degree ordering). Let L be the (lower-triangular) Cholesky factor
ofA. The notations r/(Lj.) and r/(L.j) are used to denote the number of nonzeros in the
jth row and jth column of L, respectively.

In 12], the author proposes an out-of-core scheme for the sparse Cholesky factor-
ization of large sparse matrices. The scheme is demonstrated to be quite effective in
computing sparse Cholesky factors of extremely large matrices using auxiliary storage.
It is based on the idea of matrix storage reorganization. A working storage vector in
memory is provided to store nonzero entries of the Cholesky factor L. We shall refer to
it as the "primary storage vector" for L.

If this primary storage can accommodate all nonzeros in the factor L, factorization
will be carried out by the conventional in-core method [5]. Otherwise, this storage vector
will be reorganized when need arises during the course of factorization. In each organi-
zation, only those values that are required for subsequent steps of factorization are to be
retained in memory. In this way, it allows much larger problems to be solved in a given
amount of primary storage, without having to rely on excessive data I/O to and from
auxiliary storage. Indeed, auxiliary storage is used only to store the computed columns
of the Cholesky factor.

In this out-of-core algorithm, the minimum amount of primary storage required
during the computation of the jth column ofL is given by

j--I

Z {r/(L,k)-r/(Lk,)} +n(L,).
k=l

It is easy to see that this is actually the number of nonzero entries in the set

L[j] { liklk <=j <- i}.

This rectangular window is the shaded region as illustrated in Fig. 2.1. We shall use
rt(Ltjl) to denote the number of nonzeros in this region.

Therefore, the minimum primary storage requirement for the successful completion
of the entire factorization using the out-of-core scheme is

max ((Ltil)l =<j-< n}.
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J

FIG. 2.1. Region requiredfor the computation ofcolumn j ofL.

Note that this quantity is fixed once the structure ofthe matrix is specified and its ordering
is given.

2.2. The problem: Primary storage minimization. For a given fill-reducing ordering,
it is well known that there exists a class of orderings that are equivalent in terms of fills
and operations. It is based on the so-called elimination tree structure. This tree structure
defines a class of equivalent orderings, each having the same set of filled edges as the
original ordering 13], 18].

Consider the structure of the Cholesky factor L. We define the elimination tree of
A to be the tree with n nodes { 1, 2, n}, and node is the parent of node j if and
only if

min {kl lkj 0 },
that is, is the row subscript ofthe first off-diagonal nonzero in columnj ofL. We assume
that the matrix A is irreducible, so that the structure is indeed a tree, and n is the root
of this tree. (IfA is reducible, then the elimination tree defined above is actually a forest
which consists of several trees.) Figure 2.2 contains a 10-by-10 matrix example whose

A

1 x

x x 3

x x x

4 x x

5xx

xx6x

xxx7x

xSx

x9

x x x

FIG. 2.2. A matrix example.

X

X

X

X

X

X

10
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diagonal entries are labeled by the corresponding equation/variable numbers. Its elimi-
nation tree is displayed in Fig. 2.3.

Any reordering that numbers nodes before parent nodes in the elimination tree is
known to be equivalent to the original ordering. In other words, the number of fills and
the amount of arithmetic operations to perform the factorization remain unchanged.
Such orderings are referred to as topological orderings of the tree 19]. In this paper, we
consider the problem of determining a topological ordering for a given elimination tree
that will minimize the primary storage requirement for the out-of-core algorithm in 12].

We first re-specify the problem in graph-theoretic terms. Let T (X, E) be a given
rooted tree of n nodes. For each node x eXin the tree T, two integer values are associated
with it: row(x) and col(x). For any topological ordering r: x, x, x, the core cost
at x is defined to be

j-I

core(x.) {col(xg) row(xk) } + COI(x).
kl

The core cost of T with respect to the given ordering r is then

max {core(x)l =<j =< n}.
Our objective here is to determine an optimal ordering r that will minimize the core
cost of T over all topological orderings of T.

In this paper, only topological orderings with respect to an elimination tree will be
considered. Unless otherwise stated, we shall use ordering ofa tree to refer to a topological
ordering, that is, one that numbers nodes before parent nodes.

3. On generalized pebbling.
3.1. Problem transformation. In this section, we transform the problem in 2 to a

generalized form of a much-studied combinatorial problem: the pebble game for trees
[8], [14], [16]. The game can be used as a model for register allocation in straight-line
programs.

FIG. 2.3. The elimination tree ofmatrix in Fig. 2.2.
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Consider a given tree T and the values row(x) and col(x) associated with each node
x of T. For any (topological) ordering r: xl, x2, "’", xn, the core cost as defined in the
previous section can be expressed recursively as follows:

and for j > 1,
corer(Xl) col(x1),

corer(xj) (corer(xj_ 1)- row(x_ 1)} + col(x).
It should be clear that a portion of the value corer(x) comes from nodes in the

subtree rooted at x. This contribution from the subtree is independent of the ordering
r, since nodes in the subtree under xj are always ordered before x.

To aid the study of this problem, we let T[x] denote the subtree of T rooted at a
node x. It is also convenient to expand each original node x of T into two nodes x/ and
x- as shown in Fig. 3.1. The node x/ can be regarded as x during the processing of its
column, with x- as x after its processing.

Then, we can associate with each node x the two quantities:

z(x-) X {col(z)- row(z)},
TIx]

r(x+) z(x-) + row(x).

The value z(x+) represents the number of nonzeros in columns of L from the subtree
T[x], that are required during the processing of the column x in the factorization. On
the other hand, z(x-) is the number of nonzeros in columns of L associated with T[x]
that are still required after the processing of x. They are the storage requirements con-
tributed from the nodes in the subtree T[x]. Note that these two values depend only on
the structure of the tree T, and are independent of any topological ordering.

We can now express the core cost in terms of(x/) and z(x-). The formulation will
be clearer if we introduce corer(xj.+) and corer(x)-), which are the storage requirements
during and after the processing of column x, respectively. Let

core(x) 0.
For j >- 1, then we have

corer(x]) corer(xf_ 1) -- "/’(Xf Z {T(X)IXc is a child ofxj },

corer(x)-) corer(x) + -(xf -(xf ).

This formulation actually provides a more uniform framework to study the problem.
Consider the transformed tree with the 2n number of nodes

+ x;)

col(x)/row

FIG. 3.1. Tree transformation.



380 JOSEPH W. H. LIU

Rename these nodes to {Yl, Y2, Y2n}. If {xj } is a topological ordering on the original
tree, it is clear that {yj } is also a topological ordering on the transformed tree. For each
node, associate a r value as follows: for =< j -< n,

(y2_ )= .(x). ,(y2) .(x;).

The transformed elimination tree of the example in Fig. 2.3 is given in Fig. 3.2. The
labels in the original tree should be interpreted as "col(x)/row(x)," while that in the
transformed tree are the corresponding r-values. This tree structure will be used repeatedly
throughout the paper.

Since xf is the only child node ofxf, the core cost in terms of the transformed tree
can be collectively and conveniently expressed as:

core(y0) 0,

core(y) core(y_ ) + r(y) { r(Yc)lYc is a child ofy }

for =< j =< 2n. It should be clear that an optimal topological ordering on the transformed
tree in terms of the core cost will induce one on the original tree. Henceforth, we shall
discard the values row(x) and col(x). Instead, we assume that a nonnegative value r(y)
is associated with each node y and corer(y) is defined as above in terms of r(y).

3.2. The generalized pebble game. The transformed problem in 3.1 can be for-
mulated as a generalized version of the pebble game. Let T be a given rooted tree of m

col(x)/row(x)

3@ 3@

FIG. 3.2. The transformed tree ofthe example in Fig. 2.2.
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nodes. For each node y in T, there is a nonnegative value r(y) associated with it. The
number r(y) represents the number of pebbles required to satisfy the node y (a node y
is said to be satisfied if there are r(y) pebbles in this node). The generalized pebble game
is played according to the following rules:

(a) If all children of an unpebbled node y are satisfied, pebbles may be placed on
y (thus, a leaf node can be pebbled).

(b) If all children on an unpebbled node y are satisfied, pebbles may be moved from
its children nodes to y.

(c) A pebble may be removed from a node y if there are more than r(y) pebbles
in it.

The goal of the game is, starting with no pebbles in the tree, to pebble the root of
the given tree. The pebbling proceeds in moves, each move is an application of one of
the above rules. The problem here is to determine a sequence of moves that will achieve
the goal using the minimum number of pebbles. The sequence of moves will simply
correspond to a topological ordering on the given tree.

Note that the standard (black) pebble game [8], [14] is the special case with
r(y) for all nodes y in the tree. It should also be clear to the reader that the optimal
solution to this generalized pebble game will be an optimal one for the primary storage
minimization problem of the previous section.

3.3. Existing pebbling algorithms. The original pebble game is the special case with
all pebble values r(y) equal to 1. The solution for this standard problem can be found
in [8], 14]. It is helpful to compare this scheme with the general algorithm provided
later, we describe the method below. The description follows that in [8].

For a given rooted tree T with r(y) for every node y, let p(T) be the mini-
mum number of pebbles required to pebble the root. If T has only one node (the root),
obviously we have p(T) 1. Otherwise, assume that the root has children nodes, and
let T, ..., Tt be the subtrees under the root. Then

p(T) max {p(Tk) + k- },
l_k_t

where the subtrees are ordered such that

p(T,) >-... >= p(Tt).
This observation will give an algorithm that computes the value p(T) and at the same
time determines an (topological) ordering that achieves this minimum value. It is inter-
esting to point out that the ordering determined by this algorithm will always number
nodes within any subtree of T consecutively.

In 11 ], the author considers the primary storage minimization of the out-of-core
multifrontal method due to Duff and Reid [3], [17]. That problem can be formulated
again as a tree pebble game, where the values r(y) can now be greater than one. However,
due to the nature of the multifrontal method, postorderings are to be considered, that is,
subtree nodes should be ordered consecutively [1 ]. This, therefore, may be regarded as
the generalized pebble game as described in 3.2, except for the more restrictive nature
ofthe move sequence (postorderings). A solution to this problem is also provided in 11 ].
We include a brief description here for future comparison.

For a given rooted tree T with r(,) values, let/(T) be the minimum number of
pebbles required to pebble the root, subject to the restriction that subtree nodes are to
be pebbled consecutively. Assume that y is the root of T with t children: s, , st. Let
T, ..., Tt be the subtrees rooted at these children nodes.
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If T has only one node y (that is, 0),/(T) z(y). Otherwise, we have

/(T) max max (T) + r(s) r(y)
l_k_t

j=l

where the subtrees are ordered such that

/(T) r(sl) N"" (T,) r(s,).

An algorithm, based on this obseation, can be foulated to compute the value (T)
and to determine a postordefing that achieves this minimum value.

It is interesting to point out that if postordefings are not required in the out-of-core
multifrontal method, the problem becomes more involved. Indeed, the algorithm to be
developed in this paper will be applicable in such setting. It will Nve the best possible
topoloNcal ordering (not necessarily postordefing) so that the ordered matrix will require
the least amount of pfima storage in its out-of-core multifrontal factofization. For
clarity, the author will focus only on the use of the ordering algorithm for the out-of-
core factofization method described in 2. Its use in the context of multifrontal method
will be left to the reader.

4. Overview of strategy for optimal ordering. Given a rooted tree T of m nodes,
each node y having a pebble value r(y). Our objective is to deteine a topoloNcal
ordering of the tree so that the pebble game following this ordering requires the least
number of pebbles.

For any (topoloNcal) ordering r: Yl, Y2,’", Ym, define the sequence of values
peb( ):

peb,(y0) 0,

peb(y) peb,(y_ l) + r(y) {r(yc)lYc is a child ofy },

for N j N m. The value peb,(y) represents the total number of pebbles used during the
pebbling of the node y; it may be appropriately called the accumulated pebble value at
the node y using ordering r. The number of pebbles required to pebble the entire tree
T using this ordering is Nven by:

peb(T) max {peb.(y)l NjN m}.

In other words, our objective is to find one such topoloNcal ordering that will minimize
this pebble requirement peb,(T).

The recursive structure of trees can often be used to design ecient algorithms to
solve problems on rooted trees. The approach is to proceed bottom up in the rooted tree.
For evew node y with children nodes sl, "", st, solutions are deteined for all the
subtrees rooted at Sk (1 k t). These solutions are then combined to produce one for
the subtree rooted at y. A recursive use ofthis will solve the Nven problem on the overall
rooted tree. Solutions to our pebbling problem are topoloNcal ordefings that minimize
the number ofpebbles. We shall use this bottom up approach to combine optimal subtree
ordefings.

Let us first introduce some relevant teinology for tree ordefings. Consider any
rooted subtree of T, say T[y], rooted at the node y. Let r be an ordering on T. The
restriction ofthis ordering r on T[y] is itself an ordering for this subtree. We shall denote
this subtree ordering by r[y] and refer to it as the induced ordering of r on T[y]. On the
other hand, let ff be an ordering on the subtree T[y]. is said to be compatible with r
if ff is the same as the induced ordering r[y].
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For example, in Fig. 3.2, the induced ordering r[y ] on the subtree T[y 1] is given
by the node sequence:

YT Ys, Y9, Yo,y

However, the following ordering on T[yl]:

Y9 Y7 Yo, Ys Y

is not compatible with the original tree ordering.
Using this bottom up approach to our pebble minimization problem, we can describe

our strategy as follows. Here, y is the input node with children nodes s, ..., st; and r
is the returned optimal ordering for the tree T[y] rooted at y.

ALGORITHM 4.1. Pebble-Ordering (T[y], 7r).
begin

If t 0 then
return the sequence r: y

else
begin
Fork:= ltotdo

Pebble-Ordering (T[Sk],
Combine the optimal subtree orderings kk, k 1,

to give an optimal ordering r for T[y] such that
r is compatible with each ffk;

end;
end.

Therefore, a strategy for optimal ordering can be obtained if we can provide an
efficient solution to the one-level problem: combining optimal orderings of subtrees to
form one for the tree. Each subtree ordering kk is optimal, that is, it minimizes the value
ofpebk(T[Sk]). However, this condition is not sufficient to guarantee the existence of an
optimal ordering for T[y] compatible with each one of the subtree orderings ffk.

A simple example is provided in Fig. 4.1 to illustrate this point. The ordering Zl,

z2, z3, z4, zs, z6 minimizes the pebble cost of 10 on the subtree T[z6]. It is easy to verify
that for all orderings on the entire tree compatible with this subtree ordering on T[z6],
the pebble cost will be at least 14. Yet, the following ordering

ZI, Z2,24, Z5,27, Z8, Z3, Z6, Z9

will have a pebble cost of only 10.
In the next section, we introduce a new criterion for optimal orderings. We shall

show that with this more involved criterion, there always exists an optimal compatible
ordering for T[y].

5. Pebble cost sequence and partial order.
5.1. Definition of pebble cost sequence. Let T be a given rooted tree of m nodes.

Our objective is to find an optimal ordering that minimizes the overall pebble cost in
the generalized pebble game:

peb(T) min {peb(T)lr is a topological ordering}.

As noted in 4, it is not sufficient to combine subtree orderings that minimize only the
pebble costs ofthe subtrees. We need a more elaborate pebble cost function. This function
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10

10

6 4

1 8

FIG. 4.1. Example to show compatible subtree ordering.

is adapted from the one used by Yannakakis [20] in his polynomial algorithm for the
related problem of min-cut linear arrangement for trees.

Consider a topological ordering for the given tree T:

7r: y y2 ym.

This defines the following sequence of values:

peb(yl), peb(y2), peb(ym).

We now introduce the pebble cost sequence/function. Put Vo 0. Let h be the largest
subscript of the y’s such that

H peb(Yh,) max {peb,(yj)lVo <j <= m},
and V be the largest subscript such that

VI peb(yv) min {peb(yj)lhl <=j <- m}.
We then define recursively hi, vi, and Hi, Vi as follows: hi is the largest subscript where
the maximum pebble cost value Hi occurs from vi- to m, and vi the largest subscript
where the minimum pebble cost value V/occurs from hi to m. Thus, we have a cost
sequence, denoted by Pcost(T, r):

(H, V,H2, V2, ,Hr, Vr)

and these values occur at the following sequence of nodes:

Yh Y,, Yh:, Y,.’:, Yhr, Y,,r"

Since the tree is rooted at Ym, the last value V must occur at this node, that is, v m
ory y. Note also that the value of r depends on the tree structure, the pebble values
and the ordering.

To illustrate the notion of this cost sequence, we consider the example in Fig. 3.2.
It is clear that the pebble cost sequence for the tree is given by:

Pcost(T, r) (9, 0),

and they occur at the nodes:

(YI3, Y20)"
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However, ifwe only consider the subtree T[y8] in this example with the induced ordering
r[y8], the pebble cost sequence is then:

Pcost(T[y8], r[y8]) (6, 2, 5, 3),

and these values occur at the nodes:

(YI3, YI4, YI7 Y18).

Note that the pebble requirement in the subtree T[y6] does not affect the pebble sequence
for T[y8].

We shall sometimes refer to the locations Yh as the hills and Yv as the valleys of the
given tree and ordering. The quantities Hi and Vi are also referred to as the hill and valley
values, respectively. The motivation for the choice ofthese terminologies should be clear
from the plot of accumulated pebble cost values peb(yj) against yj. The plot for the
subtree T[y18] of Fig. 3.2 is illustrated in Fig. 5.1.

Let Pcost(T, r) (H, VI, Hr, Vr) be a cost sequence. It is clear from definition
that

HI peb(T).

The following property is also obvious.
LEMMA5.1. HI>H2>"" >Hr >-- Vr> > VI > Vo O.
5.2. A partial order for pebble cost sequences. We want to compare different to-

pological orderings on a rooted tree with respect to their pebble cost sequences. To prepare
for that, we introduce a partial order on these sequences. Let a and 3 be two pebble cost
sequences:

O/--(Arl, 1,""",/r, ), 3--(HI, VI,""", Ur, Vr).
Wc say that a -< 3 if and only if for every (1 -< _-< , there exists a j (1 _-< j =< r) such
that

/_-<Hj and l?i -< Vj.
THEOREM 5.2. ""<" is a partial order on cost sequences.
Proof It is obvious that "-<" is transitive and reflexive. It remains to show that it

is anti-symmetric. Let

(HI, VI, ,Hr, Vr).

Pebble
Cost
Value

h I

9 10 11 13 14 15

h 2

v2

Node Sequence in T[Y 8
FIG. 5.1. Plot ofpebble cost for subtree T[y8] in Fig. 3.2.
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Assume that a -( and < a. Consider any Hi and V. By the definition of"-(", there
exists a j such that/i --< Hj and I?i _-< Vj. Since/.-( a, for this j, there is a k such that
/-/j =< k and Vj _-< l?k. Combining we have Ii <- Hk and l?i --< I?k so that by Lemma 5. l,
we must have k. This implies that/i Hj and l?i Vj.

It remains to show that for every -<_ -<_ ?,

Ii Hi and I?/= Vi.
We prove this by induction on i. For l, by the property established above, there
exists aj such that 1 Hj. Assume for contradiction that j l, so that by Lemma 5.1
Hj < H1. Then since/ -( a, for H, there must be a k such that HI Hk. Combining,
we have

t1 --< Hj < HI </-k
This contradicts Lemma 5.1 on the cost sequence a. Therefore, / H1 (so that
Vl= Vl).

The same argument can be used for the inductive step. Therefore the sequence a
must be an initial subsequence of/3. By symmetry,/3 must also be an initial subsequence
of a. Hence, a and/ must be identical cost sequences. [2]

The next theorem follows directly from definition. It shows the relevance of the
pebble cost sequence and the partial order "-,(" in the context of pebble minimization.

THEOREM 5.3. For two orderings k and r ofthe tree T, if
Pcost(T, k) "( Pcost(T, r)

then peb(T) =< peb,(T).
The implication of this simple observation is that in order to determine an optimal

ordering that minimizes the overall pebble requirement, we can restrict our search for
an ordering (if it exists) such that

Pcost(T, ) -< Pcost(T, r)
for all orderings r.

6. Combining subtree orderings.
6.1. Combine algorithm based on subtree segments. In this section, we show how

to solve the one-level problem: combining optimal subtree orderings to give an optimal
ordering for the overall tree. Here, optimality is with reference to the pebble cost sequence
and the partial order "-" introduced in the last section.

Let T be a given tree rooted at the node y, and s, s2,’", st be the children
nodes of y. Assume that k, kt are given orderings on the respective subtrees
T[s,], T[st].

We want to construct an optimal ordering for T which is compatible with each
subtree ordering. Obviously, the last node in this ordering must be y, the root. The
problem is how to interleave nodes from the subtrees under y so that the resulting
pebble cost sequence is minimized. The idea is quite simple: for each hill value in a
subtree, we should try to use appropriately-chosen valley values for the remaining subtrees.
This will help to reduce the impact of the hill value on the pebble cost sequence.

To facilitate the discussion, we introduce the notion of valley segments for an ordered
tree. Consider a subtree T[y] with an ordering k. Let its pebble cost sequence be:

Pcost(T[y], k) (HI, V1, Mr, Vr),

and let these values occur at the nodes

Yh, Yo Yhr,
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There are r valley segments of T[y]; for =< k -< r, the kth valley segment consists ofthe
nodes

Yvk_+ ,Yvk_+2, ,Y.

In other words, it is the sequence of nodes in between two valley nodes (including yo
but not Yo_ ). We shall define its segment value to be Hk Vk.

For example, consider the subtree T[y8] in Fig. 3.2. There are two valley segments:

Y7,Ys,Y9,Yo,Y,Y2,YI3,Yl4, Y5,Y6,Y7,YI8

and their segment values are 4 and 2, respectively. But the subtree T[y6] has only one
segment:

Y YE, Y3, Y4, Ys, Y6

which is the entire subtree, and its segment value is 3.
Valley nodes are appropriate locations to switch from one subtree to another when

combining subtree orderings. Valley segments are relevant notions, and nodes within
each segment can be treated as an entity. Indeed, the following algorithm combines the
given subtree orderings based on an arrangement of the segments in all subtrees. As
before, kk is a subtree ordering of T[sg], where s, st are children nodes of the root
y in the tree T.

ALGORITHM 6.1. Combine (T[y], )

begin
Fork:- ltotdo

Determine the valley segments of the subtree T[sg]
using the cost sequence Pcost(T[sg], kk);

Arrange the segments from all the subtrees in descending order of their
segment values: (hill value-valley value};

Based on this segment arrangement, order the nodes in each segment
consecutively, followed by the root y;

Return this ordering as ff
end.

We shall use the notation (ffl, 2, t) to refer to the ordering k on T[y]
obtained by Algorithm 6.1. When 1, this ordering can be obtained simply by appending
the root y to the subtree ordering ff of its only subtree.

It is easy to see that the ordering obtained by Algorithm 6.1 is compatible with each
subtree ordering fig. Indeed, the segments within each subtree are already in descending
sequence with respect to their segment values (it follows from Lemma 5.1). This means
the relative order of nodes in each subtree is always preserved by the new ordering.

On applying Algorithm 6.1 to the subtree T[y9] ofthe example in Fig. 3. l, we note
that the root Y19 has two children nodes Y6 and YlS. The subtree T[y6] has one segment
of value 3; while the subtree T[y8] has two segments of value 4 and 2, respectively.
Therefore the ordering returned by Algorithm 6.1 will be the nodes in the segment (with
value 4):

YT, Ys, Y9, Yo, YI|, Y12, YI3, Y4,

followed by the segment (with value 3):
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then by (with value 2):
Yls, Yl6, Y17, Y8,

and finally by the node Y9. With this new ordering, the pebble cost sequence for T is
reduced from (9, 0) to (8, 0).

6.2. Properties of the combine algorithm. We shall state some important properties
of the ordering (kl, fit) obtained from Algorithm 6.1. The detailed proofs are
lengthy, and we shall provide them at the end ofthe paper in the Appendix. The following
sequence of theorems is to establish the optimality of the "Combine" algorithm when
used recursively in the "Pebble-Ordering" algorithm of 4.

THEOREM 6.1. Let k ,b(, bt). For any ordering 7r’ that orders nodes within
each subtree segment consecutively and is compatible with each b,

Pcost(T, k) "< Pcost(T, 7r’).

THEOREM 6.2. Let ,r be any topological ordering on the tree T[y], which is compatible
with each subtree ordering bk. There exists an ordering r’ on T[y], that orders nodes in
subtree segments consecutively, such that

Pcost(T, r’) "< Pcost(T, r).

THEOREM 6.3. Let k be another subtree orderingfor T[s], where

Pcost(T[Sk], Pk) "< Pcost(T[Sk], k).

Ifr O(k, "", , t), and k O(b, , kt), then

Pcost(T, -) -< Pcost( T, p).

The proofs of Theorems 6.1-6.3 are left to the Appendix. Theorem 6.1 says that
the cost sequence returned from Algorithm 6.1 is the smallest possible (in terms of"-<")
among all orderings that are based on the valley segments. Theorem 6.2 implies that if
it is the smallest among segment-based orderings, it will also be the smallest among all
orderings compatible with the individual subtree orderings. Finally, Theorem 6.3 points
out the effect ofan improved subtree ordering on the combined ordering . We can now
use these results to establish the optimality of our overall ordering algorithm.

THEOREM 6.4. Let r be the ordering on T[y] returnedfrom Algorithm 4.1 ("Pebble-
Ordering" ), where subtree orderings are combined by Algorithm 6.1 ("Combine"). Then
for any topological ordering r of T[y],

Pcost(T, ) "< Pcost(T, r).

Proof. We prove the result by induction on the number m ofnodes in the tree T[y].
The result is obviously true if m 1. Assume that the result is true for all trees with less
than m modes. Let the children nodes of y be s, ..., st; and ffk be the ordering ob-
tained from the execution of "Pebble-Ordering (T[sk], kk)." So can be expressed as
(I)(l, "’", ’/t).

Consider any ordering r of T[y], and their induced subtree orderings r[sk], for
-< k -< t. Let r’ be the ordering O(r[sl], r[s/]). By Theorems 6.1 and 6.2, ,r’ has

the best pebble cost sequence relative to all orderings compatible with each subtree ordering
r[sk]. In other words,

Pcost(T, r’) "< Pcost(T, r).

But, by the inductive assumption, in each subtree T[Sk],

Pcost(T[Sk], kk) "< Pcost(T[sk], r[sk]).
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A repeated application of Theorem 6.3 and the transitive property of the partial order
"-<" (Theorem 5.2) will give

Pcost( T, ) -< Pcost(T, r’).

Therefore, the result follows.
Theorem 6.4 shows that Algorithms 4.1 and 6.1 can be used to yield a topological

ordering that minimizes the pebble cost sequence Pcost(T, ) and hence the pebble
cost value peb(T). We now determine the time complexity of this algorithm. We show
that Algorithm 4.1 (Pebble-Ordering) and Algorithm 6.1 (Combine) can be implemented
in time O(m), where m is the number of nodes in the tree.

Assume that the given tree T[y] is rooted at y with rn nodes, and the root y has t
children nodes. Since the valley segments within each subtree are already in descending
sequence with respect to their segment values, we need only to merge the segments from
the subtrees. This can be implemented efficiently by the multiway merge ], and it will
take at most {m log t} time units to perform the t-way merge. Furthermore, the com-
putation of the new pebble cost sequence on the tree requires at most m time units.
Therefore, iff(m) is the amount of work to execute Algorithm 4.1 using Algorithm 6.1
for combining subtree orderings, then

f(m) m log2 + m + , f(mk),
l_k_t

where mk is the number of nodes in the kth subtree under the node y. This means that
,kmk=m 1.

A simple induction on m will show that f(m) <= m2. This upper bound, though
attainable, is often too pessimistic. In practice, the number of hill/valley values in the
pebble cost sequence Pcost is often much smaller than the number ofnodes in the subtree,
so that the amount ofwork required for the merging ofsegments is usually much smaller
than {m log2 t}. Indeed, in the application of this algorithm for storage minimization
for the out-of-core sparse matrix factorization, the execution time will usually be linear
with respect to the order of the matrix.

7. Concluding remarks. We have shown that the core storage minimization problem
for the out-of-core factorization scheme in 12] can be studied using a generalized form
ofthe combinatorial problem ofpebble game. An efficient algorithm is provided to solve
this generalized pebble game problem. It is based on the notion of cost sequences, adapted
from Yannakakis [20].

It is interesting to compare the algorithm provided in 6 with the two existing
algorithms in 3 for solving the standard pebble game and for solving the general game
by postorderings. In the case of the standard pebble game where each pebble value is 1,
the cost sequence of each subtree is of the form:

(H, (p(T), ),

where H p(T) is the hill value for the subtree, and is (necessarily) the valley value
at the root of the subtree. Ordering the subtrees in descending sequence of the subtree
hill values {p(T)} is obviously equivalent to ordering them in descending sequence of
the subtree segment values {P(Tk) }. Therefore, the algorithm in 3 for this standard
game is a special case of the general algorithm in 4.

On the other hand, the use of postorderings implies the use of a restricted form of
the cost sequence. The restricted cost sequence can be taken to be of the form:

(H, V) ((T), r(y)),
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where H fi(T) is the first hill value for the subtree T and V z(y) is the pebble value
for the root y of this subtree. Indeed, the algorithm described in 3 can be viewed
as one that orders the subtrees in descending sequence of their segment values
{ fi(Tk) r(sk)} (except that there is only one segment for each subtree).

The methodology provided in this paper to solve the generalized tree pebble game
should be of theoretical and algorithmic interest. Currently, in the out-of-core sparse
factorization scheme of 12], postorderings are used. In practice, it is simple to implement,
and is demonstrated to be very effective. Although one can construct matrix structures
to show that postorderings are not sufficient in general for primary storage minimization,
it should still be highly recommended. More practical justification seems to be warranted
for the use of the optimal algorithm presented in this paper in the context of out-of-core
factorization.

Appendix.
A.I. Best subtree segment arrangement (Theorem 6.1). In this appendix, w provid

detailed proofs for Theorems 6.1-6.3. We first establish the following lemma which is
useful to compare two cost sequences based on the partial order "-<."

LEMMA A.1. Let r: y, Y2, "’", Ym and

Pcost(T, r) (n V Hr, Vr).

For two values I and l?, I <= II and 17" <- Vfor somej ifand only ifthere exists some
node y in the sequence r such that

/-)-< peb(yq), I7"_-< min {peb(yp)lq<-p<=m}.

Proof Let (Yhl, Yv, , Yh,, Yv,) be the nodes at which the values ofthe pebble cost
sequence Pcost(T, r) occur.

"ifpart." Let the node yq in the lemma be in the segment between the valley nodes
yoj_l and yoj. From definition, we have

H=< peb(yq) =< peb(yh) =/-/.
Moreover, q =< vj, so that by the condition on V in this lemma,

I7"=< peb,(y,,) V.
"only ifpart." Let/ -< and 17" =< V. Then take q hj. The result is obvious. [3

Let us follow the same notations as in 6.1. That is, let the given tree T be rooted
at the node y, which has s, ..., st as its children nodes. To help the discussions and
formal proofs, we first introduce a definition.

Consider a node z in the tree. The pebble cost of z in T with ordering r is given by
peb(z). We shall use the notation peb,tsk(z) to denote the pebble contribution to the
value peb(z) from nodes in the subtree T[s]. Some properties ofthis value are expressed
in the next lemma, and the proofs are straightforward and are omitted.

LEMMA A.2. (a) peb,(z) Y,= peb,tskl(z).
(b) If the node z belongs to the subtree T[Sk], then peb,4(z) is simply the pebble

cost at the node z ofthe tree T[Sk] using the induced ordering r[Sk].
(C) Ifthe node z does not belong to the subtree T[Sk], then

peb,4s,l(z) peb,4,l(x,)

wherex is the last nodefrom the subtree T[s] appearing before z in the sequence r. []

COROLLARY A.3. Consider two orderings r and r on the tree T such that
[sk] r[s], that is, the same subtree ordering when restricted to T[s]. For two nodes
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Y. and z, let Y andx be the last nodefrom T[&] appearing before and including Y. and z
in the ordering 7r and r, respectively"

: Yk’’" ’’’, "It’: Xk’’" Z’’’,

(a) ifYk Xk, then pebtskl(ff peb,tskl(z),
(b) ifpebisl(Yk) <---- peb,[](Xk), then peb[l() -< peb,[sl(Z). V1

Note that in Corollary A.3, and r can be the same ordering. To illustrate the
results, consider the ordering in Fig. 3.2 and the two subtrees under the node Yl9 with
children s Y6 and s2 Y8, we have

peb(y4) pebtyd(y4) + pebtysj(y4) 4 + 0 4,

peb,(y9) peb,tvl(Y9) + peb,tv81(Y9) 3 + 5 8.
Note also that

peb,4y](yj) 3 for all 7 =<j-< 18,

peb,v,s)(yj) 0 for all _-<j -< 6.

We are now ready to examine properties of orderings that are based on subtree
segments, that is, nodes in each subtree segment are ordered consecutively. As in 6.1,
let ff, ff2, fit be given orderings on the respective subtrees T[s], T[s2], T[st].
These orderings on the subtrees define segments based on their individual valley values.
We shall use the term segment ordering to refer to any ordering on the entire tree that
numbers nodes in each subtree segment consecutively. In other words, each segment
ordering corresponds to an arrangement of the subtree segments followed by the
node y. The proof of the next lemma is straightforward and is omitted.

LEMMA A.4. Let r be a segment ordering on T that is compatible with each sub-
tree ordering Pk. Let (H, V) be a hill value pair in the pebble cost sequence
Pcost(T, r).

(a) The hill value H occurs either at a hill location in some subtree T[s] or at the
node y.

(b) The valley value V occurs either at a valley location in some subtree T[Sk] or at
the node y.

(c) IfH occurs at a hill node x in the subtree T[Sk], then V occurs at the valley node
in this subtree immediatelyfollowing x or at the root y. [3

THEOREM A.5. Let r be a segment ordering on T that is compatible with each
subtree ordering Pk. Interchanging any two neighboring (subtree) segments that are not
in.descending sequence oftheir segment values will not increase thepebble cost sequence.

Proof Consider two neighboring (subtree) segments that are not in sequence with
respect to their segment values. The two segments must come from two different subtrees,
since r maintains the relative order of segments for each subtree and segments from the
same subtree are already in descending sequence.

For concreteness, let the first segment belong to the subtree T[sa] with ha and va as
its hill and valley nodes, respectively. Also let T[Sb], hb, Vb correspond to the second
segment. We can view the given ordering as:

7r: "(’’’ ha’" 1)a)(’’" hb’’" 1)b)’’"

where parentheses are used here to identify the two segments. The given condition in
the theorem can be expressed as:

(,,) peb,4al(ha) peb.ts.l(Va) =< peb,4ol(hb) peb,4e](Vb)
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since by Lemma A.2(b), the left- and right-hand sides are the segment values of the two
subtree segments.

Now consider the new ordering - by interchanging only these two segments:

7r: "..(... hb"" vb)("" ha’" 1)a)’’’.

We are to show that Pcost(T, ) -< Pcost(T, r). By Lemma A. 1, for each hill/valley pair
of the new sequence if, it is sufficient to find a node yq in the sequence r satisfying the
conditions in that lemma. Consider any hill/valley value pair (H, V) in the sequence. Let the hill value occur at the node x.

Case 1. x is outside the two segments under consideration. Then by Lemma A.4(a),
x must be either the root y or a hill location in one subtree. Choose Yu to be the same
node x in the r sequence, and it is easy to verify that this node satisfy the conditions in
Lemma A. 1.

Case 2. x belongs to the segment (... hb 1)6). By Lemma A.4(a), x must be the
node hb. The node yq for Lemma A. will be chosen to be hb (=x) in the r sequence.
Indeed, applying Corollary A.3, we have

peb(x) pebtskl(hb) + pebtsa](hb
k/a

peb,4sk](hb) + pebtsal(hb)
k/a

-< pebts(hb) + peb,[Sa](1)a)
k4a

peb,4k](hb) + peb,4,,](hb) peb(hb).
k4a

By Lemma A.4, we have
V= min {peb(Vb), peb(y)}.

Applying Corollary A.3, we have

pebt(Vb)

_
peb,tal(Vb)

SO that
peb(Vb) -< peb,(Vb).

Therefore, the value Vmust be less than the accumulated pebble value ofany node after
hb in r.

Case 3. x belongs to the segment (... ha l)a). This means that x ha. We shall
choose yq for Lemma A. again to be the node hb in r. Again by Corollary A.3, we have

peb(x) pebtskl(ha + pebtsal(ha) + pebts,r,(ha)
k/a,b, peb,4skl(ha) + peb,4s,,l(ha) + pebtsbl(Vb)
k/ a,b

peb,,.ts,](ha) + peb,4sa](ha) + peb,4s,r,](Vb).
k/a,b

But, by the given condition (, ,) on the two segments in r, this value must be no greater
than

peb,4skl(ha) + peb,4s,l(hb) + peb,4s,,l(Va) peb,4skl(hb) + peb,4s,l(hb) + peb,ts,l(hb)
k q a,b k q a,b

peb,(hb).
The condition on the value V can be verified in the same way as in Case 2.
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Therefore, in all cases, for a given pair (H, V) in Pcost(T, ), we can bound them
by a corresponding pair from Pcost(T, r). It follows from definition that

Pcost(T, ) -< Pcost(T, 70. []

ProofofTheorem 6.1. Let b (, bt). Consider any given segment ordering
r’ compatible with each subtree ordering kk. A finite number of neighboring subtree
segment interchanges will transform r’ to . Repeated applications of Theorem A.5 for
such interchanges together with the transitivity of "-<" (Theorem 5.2) will show that

Pcost(T, ) -< Pcost(T, r’). U]

A.2. Segment orderings are sufficient (Theorem 6.2). Theorem 6.2 says that in
order to search for an ordering that will minimize the cost sequence, it is sufficient to
look for a segment ordering that is compatible with the subtree orderings. The following
is a constructive proof.

ProofofTheorem 6.2. Let r be any given ordering on the tree T rooted at y, which
is compatible with each subtree ordering ffk ofthe subtree T[s,]. We shall prove the result
by constructing a segment ordering r’ such that

Pcost(T, r’) -< Pcost(T, r).

Construct the new ordering r’ from r as follows:
(a) Remove all nodes from the sequence r except the root y and hill locations of

the subtrees;
(b) Replace each hill location by the subtree segment associated with it.

It should be clear that r’ is still compatible with each subtree ordering k, and orders
nodes in each subtree segment consecutively. Moreover, it maintains the relative order
of all the subtree hill nodes in the original ordering r. It remains to show that the pebble
cost sequence of r’ is no greater than that of r.

Consider any hill/valley value pair (H, V) in Pcost(T, r’). Let the hill value occur
at the node x. It is sufficient to find a node yq in the original sequence r satisfying the
conditions in Lemma A. 1. Ifx is the root y, pick this root as the node yq and the conditions
in Lemma A. are clearly satisfied. Otherwise, by Lemma A.4(a), x must be a hill node
in one of the subtrees. Let x ha belonging to the subtree T[sa], and Va be the valley
node immediately following ha in the pebble cost sequence of this subtree. That is

7r’: (’’’ ha’" l)a)’’’.

We now show that y for Lemma A. can be chosen to be the node x. We first claim
that for each k, peb,tsl(x _-< peb,4sl(x). By Corollary A.3, since x belongs to T[sa], we
have

peb,tsal(X) pebtsal(X).

For k a, let the last segment from the subtree T[s] before x in r’ be (..- h.-. vk).
(If no such segment exists, then peb,tkl(x 0, and the result holds.) By Corollary A.3,

peb,,ts,l(x) peb,,[Sal(lk) peb,tsal(V).

Let x be the last node from T[s] before x in r. Since r’ maintains the relative order of
all the subtree hill values, x must appear after the hill node hk of T[s]. By the definition
of the valley node v and Corollary A.3, we have

pebtskl(vk =< pebtsl(xk pebtsl(x).

Combining, we have proved the claim.
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Using the result of the claim, we then have

peb(x) peb,tskl(x)
k

_-< pebtskl(x)= peb(x).
k

Finally, by Lemma A.4(c),

V min {peb.,(Va), peb,,(y)}
and we need to show that V =< peb(z), for all nodes z after x in the r sequence.
If z y, it is obviously true. Otherwise, it can be verified that for all k,
peb,t](Va) =< pebt](z). This implies that peb,(Va) =< peb(z), and hence the result.

A.3. Monotonicity ofCombine algorithm (Theorem 6.3). Theorem 6.3 provides the
monotone property of the "Combine" algorithm with respect to subtree orderings. In
words, better subtree orderings will yield a better overall ordering by Algorithm 6.1.
Before the proof, we introduce a lemma.

LEMMA A.6. Given two cost sequences with

(Hi, Vl He, Ve) -< H VI Hr Vr).

For <- <- , define thefunctionf(,) by

f(i) min {klIi <- Hk, ’ri Vk}

If < j, thenf(i) <- f(j).
Proof By definition off(i) and Lemma 5.1, we have

IYlj <= Hf(), 17"i < <= Vf(i).

If Hi <-- Hf()2 then by definition off(i): we must have f(i) <-f(j). On the other hand,
if Hf() < Hi, which together with Hi <-- Hf(i), we have Hf() < Hf(o. By Lemma
5.1, we must have f(i) < f(j).

Proofof Theorem 6.3. Let k and ffk be two subtree orderings on T[s], with

Pcost(T[s], k) "< Pcost(T[s], kk).
As in the theorem, let

(, ,, ,).

We shall prove the result by first improving on the ordering k. We are going to replace
subtree segments from Pcost(T[sk], g) in the ordering ff by those from Pcost(T[Sk],
ffk). Since Pcost(T[Sk], kk) "< Pcost(T[Sk], bk), we can associate each segment from kk to
one in k using the mappingf(.) of Lemma A.6. From k, construct the new ordering
k’ as follows:

(a) For the ith subtree segment from Pcost(T[Sk], bk), insert it before the corre-
spondingf(i)th segment of Pcost(T[Sk], bk) in k;

(b) Remove all subtree segments of Pcost(T[sg], b) from the ordering.
It is clear that ’ is a segment ordering using the new kk. Furthermore, by Lemma

A.6, it is compatible with the new subtree ordering kk. We claim that

Pcost(T, k’) "< Pcost(T, if).

The proof uses the same technique (Lemma A. 1) as before and will be skipped.
Finally, let

(, ...,, ..., ).
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By Theorem 6.1, we have

and hence the result. []

Pcost(T, 9) -’( Pcost(T, k’),
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AN ALGORITHM TO IMPROVE NEARLY ORTHONORMAL SETS OF
VECTORS ON A VECTOR PROCESSOR*
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Abstract. The symmetric orthogonalization, which is obtained from the polar decomposition of a matrix,
is optimal. We propose an iterative algorithm to compute this orthogonalization on vector computers. It is
especially efficient when the original matrix is near an orthonormal matrix.

Key words, polar decomposition, iterative method, square root, vector computer
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Introduction. In the computation of the eigenvectors of a Hermitian matrix, it is
necessary to check the orthonormality ofthe computed vectors, since for close eigenvalues
there is an accompanying loss of orthogonality. Usually, especially when the vectors have
been computed by inverse iteration, the Gram-Schmidt orthonormalization is performed
on the groups ofeigenvectors corresponding to close eigenvalues. If the residual is checked
before and after this orthogonalization, a loss of accuracy appears. This should not be
surprising since Gram-Schmidt orthogonalization corresponds to a QR factorization
which depends on the ordering of the vectors. So, instead of a QR factorization, a polar
decomposition seems to be preferred because it leads to an orthonormalization which is
the best in some sense. This process has been called "Symmetric Orthogonalization" by
Lowdin in [LOT0].

In this paper, the optimal properties of symmetric orthogonalization are described
in 1. In this section it is also shown that, to orthonormalize a matrix A, it is sufficient
to compute A (A’A)-/2.

In 2, an iterative scheme, which computes S-l/z, where S is a Hermitian positive
definite matrix, is analyzed and shown to be efficient on vector processors.

In 3, the complete algorithm for the symmetric orthogonalization is given and
experiments are presented.

1. Polar decomposition. In this section, the polar decomposition of a matrix and
its application are described. This decomposition is a well-known factorization and a
satisfactory presentation is given by Higham in [HA84].

THEOREM 1.1. Let A C", n >- p. Then there exists a matrix U C"v and a
unique Hermitian positive semidefinite matrix H Cp such that

A- UH, U*U=Ip.

/frank (A) p then H is positive definite and U is uniquely determined.
Proof See [G59].
This factorization can be obtained directly from the singular value decomposition

of the initial matrix. The SVD insures the existence of unitary matrices P C"" and
Q 6 Cp P such that

(1.1)’ P*AQ=D_

Received by the editors March 18, 1985; accepted for publication October 16, 1986.
f Institut de Recherche en Informatique et Systrmes Alratoires, Campus Universitaire de Beaulieu, 35042

Rennes Cedex, France.
Notation: _M is the n p matrix, obtained by the suppression of the n p last columns of the matrix

M 6 Cnn.
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with D diag (al, ap, 0, 0) e Cnn where 0 -< al --< =< trp. Because
A PD_Q*, then

U _PQ* and H QD’Q* (A*A)I/2,

with D’ e Cpp and D’ diag (al, ap). When the matrix A is of full rank, the
factorization can be performed by using the following theorem.

THEOREM 1.2. Let A Cnp with rank (A) p <= n. Then the polar decomposition
A UH is given by

U=A(A*A)-1/2 and H (A’A) 1/2.

Proof From the SVD (1.1), we have

(A,A)-/2= QD,-IQ
and

A(A*A)-I/2 pD_ Q.(QD,-IQ,)

p_Q*. ff]

There is an algorithm [HB84] that computes (A’A)-1/2 and (A’A) 1/2 simultaneously.
Here, because we are only looking for the matrix U in the polar decomposition, we use
the formulation of Theorem 1.2. Transforming a matrix A into the matrix U is an or-
thonormalization procedure which we call symmetric orthogonalization. This transfor-
mation is different from the usual one which corresponds to the QR factorization. In the
following theorem the optimal properties of this symmetric orthogonalization are de-
scribed.

THEOREM 1.3. Let A Cn with p <= n and let A UH be a polar decomposition.
Then

IIA UII min IIA all
QU

where U is the subset ofall orthonormal matrices ofCnn. This result is truefor both the
Euclidean norm and the Frobenius norm.

Proof Forp n, this result was proved by Fan and Hoffman in [FH55]. Its extension
for p =< n is straightforward.

2. Computation of the inverse of a square-root.
2.1. Scalar schemes. When Newton’s method is used to find the positive root of

the polynomial f(x) sx 1, where s > 0, the iterative scheme obtained is

(I) given XO, Xm + (1/2)(Xm + 1/(SXm)),

whereas if Newton’s method is applied to the function f(x) 1/x s the scheme
becomes

(II) given Xo, Xm + Xm + Xm(1 SX2m)/2.

When they are convergent, these schemes are quadratically convergent; let em
Xm S-/2 be the error at step m. For (I) and (II) this quantity satisfies the following:

era+ Ki e2m, I, II

with K 1/(2Xm) and KII --S1]2(S1/2Xm -]- 2)/2. Hence, close to the solution, the ratio
of the convergence rates of the two schemes is equal to

KI/KI - 3.

The domains of convergence for the two schemes are exhibited in the next result.
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PROPOSITION 2.1. For any positive numbers Xo and s, the sequence {xm} defined by
scheme (I) converges quadratically to s-/2.

For any positive number s, the condition 0 < Xo < s-/2 insures that the sequence
{Xm) defined by scheme (II) converges quadratically to s-1/2.

Proof Let us consider the quantity Um Sl/2Xm; the convergence of the sequence
{Xm} to s-/2 is then equivalent to the convergence of the sequence { urn} to 1. So, the
schemes become

(I’)

and

(II’)

given u0 XOS1/2, Um +l (Urn "]-1

given Uo XoS /2, Um +1 =Um + Urn(1 U2m)/2.

The function u -,. g(u) (u + 1/u)/2 transforms the interval (0, +) into the interval
[1, +) and satisfies the following:

u > implies 0 < g(u) (u 1)2/(2u) < (u 1)/2.

The last inequality proves that scheme (I’) is always convergent.
The function u --; g(u) u + u(1 u2)/2 transforms the interval (0, V) into the

interval (0, ]. If we consider u such that 0 < u < then

0 < g(u) (u + 2)(1 u)2/2 < u.

So if 0 < u0 < V scheme (II’) converges.
In this situation it appears that scheme (I) must be preferred to scheme (II). The

generalization of scheme (II) to the matrix situation is much more interesting, since its
computation is expressed with matrix multiplications. Moreover, the differences in con-
vergence between (I) and (II) are not as great as in the scalar case.

2.2. Matrix schemes. Let S be a Hermitian positive definite matrix of order p and
let 0 < Sl <- -< s be its eigenvalues. First of all we remark that the only schemes to
be considered are those which correspond to the application of the scalar schemes in
every eigendirection when the initial guess commutes with S. Because we are only in-
terested in polynomial schemes, we consider the following schemes that are based on (II)
of the scalar case:

(a) given To, Tm + Tm + aTm(I- TmSTm) + (I- TmSTm)Tm

where a and/3 are two nonnegative parameters satisfying/3 1/2 a. The quantity
Zm I- TmSTm is called the residual at step m.

THEOREM 2.2. Let K(S) > be the condition number ofS (ratio of the extremal
eigenvalues). If K(S) < 17 + 6V then S-/2 is a point of attraction of the iteration
(2;/4); this condition becomes K(S) < 9 for the iterations (Y,o) or (Y,/2).

Proof. V S-/ is a fixed point of the polynomial

Fa" T’- T+ aT(l- TST) + (I- TST)T.

Let us compute its differential application at V. If T V + Wthen

I- TST VSW- WSV+ O(W)

V-1 W- WV-1 + O(W2).
Hence

T(I- TST)=-IV- VWV- + O(W2), (I- TST)T -V-WV- W+ O(W2).
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So, for every matrix W

Fa(V+ W)- Fa(V) (1/2)W- aVWV- V-WV+ O(W2).
Hence the differential application is given at V by

F’a(V)W= (1/2)W- aVWV-1 V-1WV.

To use Ostrowsky’s Theorem [OR70], it is necessary to prove that the spectral radius of
F(V) is smaller than 1. By using a similarity transformation, we may assume that the
matrix V is diagonal:

V- diag /s, ..., /Sp).
Then it can be proved that the spectrum ofF(V) is the set

a(F’a(V)) {#ij[/zij= 1/2-a si/s-[3%/si, i,j 1,n}.
Let , be any sfs//sj. We look for the largest interval I such that if X e I and 1/, e I then
I1/2 aX -/3/X] < 1. It is easy to see that this is equivalent to solving the system

(2.1) a2--3/2+fl<O, fl,2--3/2+a<O.
If a =/3 1/4 then (2.1) is equivalent to

X2-6X + <0

and then I =A1/X0, 0) with 0 3 + f. Hence tr(F’/4(V))cI is equivalent to
K(S) < (3 + V8)2 17 + 6f.

If a 1/2 and/3 0 then (2.1) is equivalent to

2- 3<0, -3<0

and then I (1/3, 3). Hence tr(F’/2(V)) c I is equivalent to K(S) < 9.
In the same way, the reader can prove that r(F’o(V)) I is equivalent to

K(S) < 9. V1

Remark 2.3. (i) If To is Hermitian, then scheme (ZI/4) can be expressed in a better
way by

given To,
T;. + Tm k- 1/2)Tm(I TmSTm),
Tm+, (1/2)(T+ + T,+).

This expression proves that (1/4) is actually equivalent to using (1/2) and adding a
symmetrization at every step. This formulation is cheaper in terms of operation count
than the original one.

(ii) Considering the scheme

given To, Tm + (1 + (STm)-)
which is based on the scalar scheme (I), the associated function G defined by

G: T-- (1/2)(T+ (ST)-’)
has the same differential application as the (F0)’. So, the local convergence ofthis scheme
is only insured if K(S) < 9. This scheme has been studied by Laasonen in [LA58].

THEOREM 2.4. Let o(S) be the spectral radius ofS. Ift < (3/(S))1/2 then the scheme

(Z) To #1, Tm + Tm + (1/2)Tm(I TmSTm)

is quadratically convergent.



400 BERNARD PHILIPPE

Moreover, if K(S) < 9 then this scheme is locally stable. This condition can be
weakened into K(S) < 17 + 6f ifa symmetrization is performed at every step on Tm.

Proof By induction, it is clear that every iterate Tm is Hermitian and commutes
with S. Because the subspace ofthe matrices commuting with S is included in the kernel
of the differential application which is defined in Theorem 2.2 then scheme (Z) has a
quadratic convergence as soon as it is convergent. In this situation, the scheme is equivalent
to using the scalar scheme (II) in every eigendirection. Using the initial guess to compute
s71/2, 1, p with the scalar scheme (II) the conditions

< fs1/2, 1,p

must be true to insure convergence. These are also sufficient conditions (see Proposition
2.1). So, the first result of the theorem is proved.

Ifwe assume now that this scheme is perturbed by rounding errors, we can no longer
insure that Tm commutes with S. The condition K(S) < 9 (or K(S) < 17 + 6 if a
symmetrization of Tm occurs at every step) is sufficient to insure that a perturbation due
to rounding errors will decrease in the succeeding steps at least in a neighborhood ofthe
solution, since S-1]2 is a point of attraction of the iteration (Theorem 2.2).

PROPOSITION 2.5. The residual of scheme (,), not considering rounding errors,
satisfies

(2.2)

Proof

Hence

Zm+ (3/4)ZZm + (1/4)Z3m.

T2m + Tm + (1/2)TmZm)2

T2m+(1/4) 2 2TmZm "t- T2mZm.

Zm +, I- ST2m (1/4)ST2mZ2m ST2mZm.
When we use -STEm Zm I the result of the proposition follows. [3

Remark 2.6. Formula 2.2 appears to be of interest because it can split the com-
putation of Tm + into two tasks since Zm + can be evaluated from Zm only. However,
this formula cannot be used repeatedly without updating the residual from its definition
Zm= I TmSTm.

3. Computation of the symmetric orthogonalization.
3.1. Application of scheme (2). Let us come back to the matrix .4 e C P, assuming

rank (.4) p _-< n. To orthogonalize this matrix with a symmetric orthogonalization, it
is necessary to compute S-I/2 where S A*A ( I). To insure the stability of (;) the
condition number of S is assumed to be smaller than (I 7 + 16f).

In order to define an initial guess, the spectral radius p(S) of the matrix S has to be
estimated. In fact, the o-norrn is used instead of this spectral radius. From Theorem
2.4 a number # is then computed:-- V3IIsII --< /3/o(s).
By choosing To M, we ensure the convergence of scheme (Z). The first iteration can
be skipped since it is easy to compute the following:

TI (3/2)#I-(1]2)#3S.
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However, if the matrix A S- I is small (i.e., O(A) < 1), the initial guess can be much
closer to the solution by choosing the Taylor approximation of order k of (I + A)-/2

To I+ =1 (-1) -1/2i A"

After m iterations the magnitude of the error is given by

rm- S-/- O(A( / 1).
The computation of Tm involves (k 1) + 3m matrix multiplications. Then, the best
order to choose is always smaller than 5. For a required precision e, an estimation ofthe
best order of the Taylor approximation is given by the author in [PH85] and depends
on the ratio (log e/log IIAII),

This algorithm is related to the algorithm which is described in [BB71 ]: here the
matrix T (A’A)-/2 is computed before performing the multiplication A T, hence
the iterative part of the algorithm is in O(p3) flops while it was in O(np2) in [BB71 ].
Moreover, the introduction of a symmetrization on the iterate at every stage improves
the stability when needed.

3.2. Algorithm. Summarizing the previous considerations, we have the following
algorithm.

begin
S:=A* A
A:=I-S;

if (i < ) then
nothing to do

elseif (di < 1) then
k Taylor approximation order
T Taylor approximation of order k
sym := false

else
#= 3"
T := (3/2)#1- (1/2)#3S
sym := true

endif
iter := 0

loop
0 := i
Z:=I-TST;
:- Ilzll 

if (i < e) then exit of the loop endif
if (di > di0) then divergence endif
iter iter +
T := (1/2)T (21 + Z);
if (sym) then T := (1/2)(T* + T) endif

endloop
A:=AT;

end.
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TABLE
Symmetric orthogonalization on CRAY 1.

before orthog.

0.24 E- 3
0.41 E- 3
0.54 E- 2
0.22 E-
0.81 E-
0.39
0.27 E +
0.34 E +

With
symmetriz.

No
No
No
No
No
No
Yes
Yes

Taylor
order

# of
iteration(s)

0

2
3
14
7

Elapsed time
(unity: 10-t s)

0.35
0.45
0.42
0.45
0.58
0.69
1.72
1.01

To measure the cost of the computation, it is assumed that A Rnxp. Follow-
ing [GVL83] a flop is defined as the amount of computation involved in a triad:
a := a + b c. Then the cost of."

S := A r A is p2n flops (or 1/2p:n flops if symmetry ofS is taken into account),
one iteration of (;) is 3p flops,
A := A T is p2n flops.

The cost of the Gram-Schmidt orthogonalization is p2n + np flops. So if n >) p the
symmetric orthogonalization is about twice as expensive as the Gram-Schmidt process,
but it is based only on matrix multiplications. If n p the symmetric orthogonalization
becomes more expensive for the computation of T-1/2.

An alternative way to compute the symmetric orthogonalization would be to perform
the SVD ofA or to diagonalize S. In both cases, the number offlops is larger (see [PH85]).
Moreover these algorithms are much more difficult to vectorize.

3.3. Experiments. In this section, the results of experiments on a CRAY 12 are
discussed. An orthogonal matrix Q e R21 x 61 was constructed from a unitary vector u
by Q I- 2uu r. This matrix Q was randomly perturbed into a matrix whose column
vectors were still normalized (to be in a situation similar to when finding eigenvectors).
Both orthogonalizations (symmetric and Gram-Schmidt) were performed on Q. For
symmetric orthogonalization, the results for different magnitudes of perturbation are
exhibited in Table 1. For each run, the algorithm is defined by the value of the quantity
di. If/i is smaller than then the initial guess is obtained by a Taylor expansion whose
order is given in Table 1. If di is larger than then the initial guess is/I, where # is
computed from / ( 3.2). In this last case, a symmetrization on the iterate occurs at
every stage.

After orthogonalization, the residual I[OrO-II]oo was always in the range
10-13, 10-12]. The elapsed time for the Gram-Schmidt process was 0.59 10-1 s.

For each run, the distance between the perturbed matrix and its orthogonalized
matrix was very close to the residual given in the first column of Table for Gram-
Schmidt. For the symmetric orthogonalization, the distance was only halfofthis residual.
Some cases of divergence were obtained with perturbation of larger magnitude. These
cases correspond to matrices r( with a small eigenvalue which implies a large condition
number. In these situations, the solution was almost reached before the rounding errors
became important because of increasing magnitude at every iteration.

This CRAY is managed by the Conseil Scientifique du Centre de Calcul Vectoriel pour la Recherche,
Palaiseau, France.



SYMMETRIC ORTHOGONALIZATION ON VECTOR COMPUTERS 403

Conclusion. Even when the result of a computation should be an orthonormal set
of vectors (e.g., for the eigenvectors of a Hermitian matrix), there is often a loss of or-
thogonality which occurs due to rounding errors. In this situation the orthogonalization
process should preserve the quality ofthe original set. As has been proved, the symmetric
orthogonalization is optimal. The iterative scheme which is proposed in this paper is
efficient on vector processors since it uses only matrix multiplications. This scheme
is numerically stable when the ratio of the extremal singular values is smaller than
3 + /-.

Acknowledgment. The author would like to thank the referees for their valuable
criticism of a first version of this paper. He is also grateful to B. Parlett and A. Sameh
for their helpful remarks.
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NETWORK RESILIENCE*

CHARLES J. COLBOURNf

Abstract. The resilience of a network is a measure of its reliability; it is the expected number ofnode pairs
which can communicate. The resilience of an n-vertex series-parallel network can be computed in O(n2) time.
The algorithm employs the recursive structure of maximal series-parallel networks. In contrast to this, computing
the resilience of a planar network is shown to be #P-complete.

Key words, network reliability, network resilience, #P-completeness, series-parallel network, planar network
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1. Preliminaries. The design ofcomputer communication networks has as a primary
goal the production of reliable networks. The demand for reliable systems has led naturally
to the development of many formal definitions of reliability; however, one definition is
prevalent [12], [1 ]. A network is modelled as a probabilistic graph (V, E); V is a set of
nodes representing communication sites, and E is a set of undirected edges representing
communication links between pairs ofnodes. Edges have an associated successprobability;
for our purposes, the probability is a fixed precision real number to avoid difficulties
with "infinite precision" arithmetic. With this model, the all-terminal reliability is the
probability that every pair of nodes can communicate, when edge failures are assumed
to be statistically independent. A large body of research has been undertaken on this
measure; for general networks, it is #P-complete to compute it [7]. This has led to the
development of efficiently computable bounds on the reliability [3], and to efficient so-
lutions in restricted cases, notably series-parallel networks 11 ], 14]. A related measure,
the two-terminal reliability is the probability that two specified modes can communicate.

Van Slyke and Frank 12] remark that usage of the all-terminal reliability, although
widespread, is not appropriate in certain applications. Often, one is not concerned that
the network be connected, but rather that "most" potential communicating vertex pairs
remain connected. They suggest that in many applications, a more appropriate measure
of reliability is the expected number ofnode pairs which can communicate; we term this
statistic the resilience of the network, since it captures (in part) the network’s capacity
to withstand failures. We denote by Res (G) the resilience of a network G.

One of the more difficult areas of investigation is the relation between all-terminal
reliability and resilience; this has been hampered by the lack of practical algorithms for
computing resilience in any nontrivial class of networks. Hence, although all-terminal
reliability in series-parallel networks admits a linear time solution 14], no corresponding
result is known for resilience. However, such a result would be useful, for example, in
studying the relation between reliability and resilience; some preliminary work in this
direction appears in [2]. Moreover, much research in network design and analysis has
been devoted to series-parallel networks (see, for example, [4], [9]).

In this paper, we develop an O(n) algorithm for the resilience ofan n-vertex series-
parallel network. In addition to the practical applications, the algorithm is of interest for
its use of a class of recursively defined graphs, the 2-trees. A graph is series-parallel when
it contains no subgraph homeomorphic to K4; an easy consequence is that all series-

Received by the editors April 14, 1986; accepted for publication October 15, 1986. This work was supported
by the Natural Sciences and Engineering Research Council of Canada under grant A0579.

f Computer Communications Networks Group, Department ofComputer Science, University of Waterloo,
Waterloo, Ontario, N2L 3G 1, Canada.
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parallel graphs are planar, and all outerplanar graphs are series-parallel. An equivalent
definition is the class of graphs each of whose biconnected components is reducible to
an edge via series and parallel reductions. Here, a series reduction involves removing a
degree two node and adding an edge between its neighbours. A parallel reduction involves
replacing parallel or multiple edges with a single edge. A 2-tree is an n-node graph which
is either a single edge (i.e., K2), or obtained from an n 1-node 2-tree by selecting an
adjacent pair {x, y} of nodes and adding a new node z along with the edges {x, z} and
{y, z}. 2-trees are easily seen to be series-parallel; in fact, Wald and Colbourn 13] showed
that every n-vertex series-parallel network is a subgraph of an n-vertex 2-tree. Moreover,
they described a linear time algorithm for determining a set of edges which complete a
series-parallel network to a 2-tree.

In reliability applications, these added edges each have assigned probability zero; in
this way, we need only compute resilience for 2-trees. This transformation of problems
on series-parallel networks to problems on 2-trees has been successful in a number of
problems, notably Steiner tree [13], reliability [14], optimum communication spanning
tree [5], and Steiner 2-edge-connected subnetworks [15]. We adopt this approach here,
in order to exploit the recursive structure of 2-trees. The existence of a polynomial time
algorithm here is contrasted with the situation for planar networks, where we establish
that computing resilience is #P-complete.

2. Remarks on resilience. In preface to the algorithm proper, we first examine the
structure ofRes (G) for a network G. Res (G) is the expected number ofnode pairs which
can communicate; to be precise, for a subgraph H

_
G, let Prob (H) be the probability

that all edges ofH succeed and all edges of G-H fail, and let Pairs (H) be the number of
communicating node pairs in H. Then

Res (G) Prob (H) Pairs (H).
H_G

Now define Pairs (H, x, y) to be if x can communicate with y in H, and 0 otherwise.
Then

Res (G)= Prob (H) Pairs (H, x, y).
H_G y>x

Simple algebraic manipulation gives

Res (G) Prob (H) Pairs (H, x, y).
y>x H_G

This can now be viewed as the summation of () measures of two-terminal reliability,
one for each unordered pair of nodes. Hence it is sufficient to solve a two-terminal
reliability problem for O(n2) pairs, summing the results. Wald and Colbourn’s algorithm
14] solves two-terminal reliability on series-parallel networks in linear time, which yields
an O(n3) algorithm for resilience.

The improvement of this to O(n2) time hinges on a closely related observation. If
we denote

E(x) ] Prob (H) Pairs (H, x, y)
yq=x H_G

then

Res (G)= E(x).
x

Hence, an 0(/72) algorithm overall results from a linear time algorithm for computing
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E(x), the expected number of nodes which can communicate with a specified node x.
This is the strategy which we employ.

3. Reducing 2-trees. The recursive structure of 2-trees leads to an efficient reduction
procedure, by repeated elimination ofdegree 2 nodes until the remaining graph is a single
edge. This reduction leads to quite a general class of algorithms, as follows. With each
edge {x, y}, we associate a number of statistics (these may be costs, weights, probabilities,
and the like). The statistics associated with an edge at a given point in the reduction
always refer to the subgraph which has thus far been "reduced onto" this edge. More
specifically, the initial graph associated with an edge is simply the edge itself. When a
degree 2 node z is eliminated in the reduction, we locate the neighbours x and y of z.
Prior to the reduction, three subgraphs are induced:

L, the subgraph reduced onto {x, z};
R, the subgraph reduced onto {y, z};
M, the subgraph reduced onto {x, y}.

When z is removed, the subgraph reduced onto {x, y} is updated to L LI M tA R; in the
process, the statistics associated with {x, y} must be updated using the statistics for L,
M, and R. The "trick" here is associating meaningful statistics with each edge as the
reduction proceeds, to enable us to recover the result from the statistics remaining when
only a single edge is left.

This recursive reduction has been used before (e.g., [13], [14], [15]). For the com-
putation of resilience, we need to make a small modification. It is easily verified that
every 2-tree has at least two nodes of degree 2. Hence at every reduction step in the
algorithm, we have a choice oftwo or more degree 2 nodes to remove. We can therefore
ensure that a specified node s is never deleted, and hence remains in the final edge (in
fact, one can reduce a 2-tree onto any one of its edges, but we do not need this powerful
a result here).

With this general framework in mind, we introduce the necessary statistics to compute
E(s), the expected number of node pairs involving node s. Each statistic (as above) is
defined with respect to a subgraph reduced onto an edge; such a subgraph H has two
identified vertices a and b where {a, b} is the edge onto which H has been reduced. Then
we define

(1) Prn[a b] is the probability that a can communicate with b in H.
(2) En(a) is the expected number of nodes which can communicate with a but not

with b in H. This expected number includes a when a and b cannot communicate.
(3) En(b) is the expected number of nodes which can communicate with b but not

with a in H. This expected number includes b when a and b cannot communicate.
(4) En(ab) is the expected number of nodes which can communicate with both a

and b. This expected number includes both a and b when they can communicate.
Given these measures, there are three issues which must be addressed: initialization,
reduction, and termination. Initially, we must define the measures simply for edges.

LEMMA 3.1 (initialization). Suppose H e {x, y}, with success probability Pe.
Then

(1) Prn[x y] Pe;
(2) E,(x) Pe;
(3) En(y)= 1-Pe;
(4) En(xy)= 2 Pe.
Proof Rule (1) is trivial. Rules (2) and (3) follow from the observation that exactly

one node can communicate with x(y) when edge e is down, namely x(y) itself. When e
is up, both nodes can communicate with both x and y. Similarly, (4) follows from the
observation that two nodes can communicate with x and y when e is up.
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The reduction step is naturally more complicated.
LEMMA 3.2 (reduction). Let G be a (partially reduced) 2-tree; let z be a degree 2

node in G with neighbours x and y. Let L, R andM be the subgraphs reduced sofar onto

{x, z}, {y, z}, and {x, y}, respectively. Let B L U R, with identified nodes x and y;
then let C B U M. Then

(1) Prn[x y] PrL[x Z] Pr[z y];
(2) Es(x) EL(X) + PrL[X z] El(Z) + Prg[z y] EL(XZ) PrL[X z]

PrR[z z y];
(3) EB(Y) is symmetric to EB(x);
(4) Es(xy) PrL[X Z] ER(zy) + Prg[z y] EL(xz) PrL[x z]

Pr[z-- y];
(1’) Prc[x y] Prs[x- y] + PrM[x y] Prs[x y] PrM[x y];
(2’) Ec(x) Pr[x 7z y] Es(x) + PrB[x z y] E(x) Prs[x y]

Pr[x z y];
(3’) Ec(y) is symmetric to (2’);
(4’) Ec(xy) Es(xy) + er[x y] (Es(x) + Es(y)) + EM(xy) + ers[x y]

(Et(x) + Em(y))- 2 [1 Prs[x z y] Prt[x z y]].
Proof Rules (1) and (1’) follow from the observation that L and R, and B and M

are edge-disjoint, and failures are statistically independent. The remainder are verified
by exhaustive analysis of cases. This verification is assisted by observing that

Eo(x) Z Vr [x- s and s y] and Eo(xy) Pr [x s and s y].
sG sG

Then to verify (2) (and thus also (3)), consider the contribution of each node in B. A
node in L contributes when one ofthe following holds: x can’t reach z in L (independent
of the state of R), or x can reach z in L but z cannot reach y in R. This contribution
summed over all nodes in L gives the first and third terms in (2). A node in R contributes
only ifx communicates with z in L and z cannot reach y in R. Summed over all nodes
in R, this gives the second term. The final (negative) term arises because z is in both L
and R, and hence is accounted for twice. Hence the probability for node z must be
subtracted out once.

Each rule is verified in this manner, by determining the contribution of each node
and summing appropriately. In each case, a negative term arises due to overcounting for
the nodes which appear in both L and R or both B and M. Only in rule (4’) does the
correction involve two nodes rather than one.

The rules in Lemma 3.2 can be applied to reduce any 2-tree to a single edge. At
this point, the desired result must be recovered.

LEMMA 3.3 (termination). Let G be a 2-tree consisting ofa single edge {x, y} with
associated measures computed using Lemmata 3.1 and 3.2. Then

E(x) Eo(x) + Eo(xy) 1.

Proof Eo(x) + Eo(xy) ,so Pr [x s]. Now Pr [x x] 1, and hence

E(x) Vr [x-- s] Eo(x) + Eo(xy)- 1.
x4s
xG

Employing the reductions developed in Lemmata 3.1-3.3 along with the general
reduction technique developed earlier establishes the following:

THEOREM 3.4. The expected number of nodes E(x) able to communicate with a
specified node x in a series-parallel network can be computed in linear time.
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Proof. Correctness follows from Lemmata 3.1-3.3. Timing can be verified as follows.
Completion ofthe series-parallel network to a 2-tree requires linear time 13]. Subsequent
identification of degree 2 nodes, and initialization of the measure on each edge requires
linear time (recall that a 2-tree has exactly 2n 3 edges 13]). A linear number ofreductions
are required, and each takes constant time. Selecting the degree 2 node to remove is
done by maintaining a stack of all degree 2 nodes. Having located its neighbours, all of
the reductions can easily be performed in constant time. A potential difficulty arises in
finding the neighbours ofthe degree 2 node, since its entry in the adjacency list may still
contain nodes which were previously deleted. Nevertheless, each edge is scanned at most
twice in this way, so the overall contribution is linear. Finally, termination requires only
constant time. rn

COROLLARY 3.5. The resilience Res (G)for a series-parallel network G on n nodes
can be computed in O(n2) time.

4. Resilience of planar networks is #P-eomllete. One might hope to generalize the
results for series-parallel networks to obtain polynomial time algorithms for larger classes.
Not surprisingly, using techniques outlined in [6], a polynomial time algorithm can be
derived for partial k-trees with any fixed k. While of interest, this does not suggest any
method for handling graphs arising in networks applications, such as planar graphs. We
establish here that the possibility of extending the ideas here to planar graphs are very
,remote, by establishing that computing resilience for planar networks is #P-complete.
We rely on a theorem due to Provan [8]:

THEOREM 4.1. Computing two-terminal reliabilityfor planar networks is #P-com-
plete, even when all edge operation probabilities have the same value, p.

Our strategy is to reduce two-terminal reliability for planar networks to resilience
for planar networks. Let G (V, E) be a planar graph, and let s and be the two nodes
required to communicate. We define a family ofgraphs G,j as follows. Gi, has vertex set
V U {x, xi} tO {y, y }, and edge set

EU{{Xk, S}ll <--k<=i}U((yk, t}ll <-k<=j}.

We assume that each edge has the same probability p. We denote by Rel2 (G; s, t) the
two-terminal reliability of s and in G.

LEMMA 4.2.

Res (G,0) Res (G) +p(1 + E(s)),

Res (G0,1)- Res (G)+p(1 + E(t)),

Res (Gl,l) Res (G) +p(1 + E(s)) + p(1 + E(t)) +p2Rel2 (G; s, t).

Proof Res (Gi,j) is the sum of the two-terminal reliabilities of each unordered pair
of nodes in Gi,j. The primary observation employed is that in the computation of the
two-terminal reliability from a to b, edges not appearing on an a, b-path are irrelevant,
and can be deleted without affecting the reliability (see, for example, [10]). A second
(trivial but necessary) observation is that if G has a node x which appears on every
a, b-path, Rel2 (G; a, b) Rel2 (G; a, x) Rel2 (G; x, b).

This simple lemma enables us to prove:
THEOREM 4.3. Resilience ofplanar networks is #P-complete.
Proof Membership in #P is straightforward. To show completeness, we reduce two-

terminal reliability of planar networks to resilience. For an instance G, p of the two-
terminal reliability problem, form G,o, Go,1 and G, as above. Using Lemma 4.2, observe
that

Res (G0,1)= Res (G)+p Rel2 (G; v, t),
vV
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Res (Gl,o)= Res (G)+p Rel2 (G; v, s),
v.V

Res (G,l) Res (G) +p Rel2 (G; v, t) +p Rel2 (G; v, s) +p2Rel_ (G; s, t).
v.V v.V

Compute Res (G) itself as well, and subtract it from each of the given expressions. The
equations for G,0 and G0, then determine the third term in the expression for
namely p2Rel2 (G; s, t). But then computing the resilience of four networks whose size
is polynomial in the size of G enables us to compute the two-terminal reliability of G,
and the proof is complete.

The result proved here is what one would expect, and suggests once again the im-
portance of relating resilience and all-terminal reliability, since all-terminal reliability for
planar networks remains open.

5. Conclusions. Series-parallel networks form an important, but small, practical
class of networks; we have shown here that an embedding into the recursive graph family
of 2-trees enables us to solve a difficult reliability problem, computing the resilience. The
algorithm is straightforward to implement, and employs a very useful general strategy
for solving problems on series-parallel networks. The extension to other classes ofpractical
networks seems unlikely to succeed, in view of the #P-completeness of resilience, even
for planar networks.

Of most interest here is the relation between all-terminal reliability and resilience.
One expects resilience to be a finer measure of the usefulness of a network. However,
much future research will be required to determine what relationships (if any) obtain
between the two measures.

Acknowledgments. Thanks to David Johnson and to one ofthe referees for helpful
comments.
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QUASI-MONOTONIC SEQUENCES: THEORY, ALGORITHMS
AND APPLICATIONS*

ANDRZEJ EHRENFEUCHT, JEFFREY HAEMER:i: AND DAVID HAUSSLER

Abstract. We present a simple algebraic theory which allows us to solve a variety ofcombinatorial problems,
including the problem of finding convex hulls in two dimensions, the "Trip Around the Moon" problem, a
version of the ballot problem, and the problem of enumerating and randomly generating ordered trees of a
given size. Individual problems are solved by applying general algorithms and theorems developed within this
algebraic theory.

Key words, amortized complexity, trees, convex hulls, ballot problems, cyclic conjugates, Lyndon words,
factorizations

AMS(MOS) subject classifications. 06F99, 68R05, 05C05

Introduction. Imagine yourself standing between a pair of adjacent elements in a
sequence of reals. If the sequence is monotonically increasing, then regardless of your
exact position within the sequence, every element to your left is less than every element
to your fight (or vice versa). In this paper we develop the theory of a different, but related
kind of sequence. These are quasi-increasing sequences, in which the "average" of all
the elements to your left is less than the "average" of the elements to your right (or vice
versa). Consider as an example an "ideal business year," in which the average of the
monthly profits for the remaining months of the year always exceeds the current average.

We develop the theory of quasi-increasing sequences (and the other forms of quasi-
monotonic sequences) using the general notion of an averagingfunction. An averaging
function is a mapping u from nonernpty sequences over an arbitrary set into some linearly
ordered range which satisfies one basic axiom: for any two sequences U and V, u(UV)
and #(VU) must lie between u(U) and u(V). (Note that we do not demand that
u(UV) u(VU).) Many ofthe commonly used measures ofcentral tendency satisfy this
basic condition, and are thus averaging functions in the sense that we use this term.

With respect to a given averaging function u, a sequence S is quasi-increasing if
u(U) < #(V) for every pair of nonempty sequences U and V such that S UV. Quasi-
nondecreasing, quasi-decreasing and quasi-nonincreasing sequences are defined analo-
gously. Section gives a brief introduction to the theory ofquasi-monotonic sequences.
This theory is related to the theory of Viennot factorizations (see [Lot83], [Vie78]), but
our basic approach is somewhat different. As in [Vie78], we obtain interesting general-
izations of earlier work in [Spi56], and of the work on Lyndon words (see [Lot83]).
However, our primary concentration is on the applications of the theory to the solution
of various combinatorial problems. These include the problem of finding convex hulls
in the plane (see e.g. [Pre79]), the "Trip Around the Moon" problem ([Gra83]), a gen-
eralized version of the ballot problem [Tak67], and the problem of enumerating and
randomly generating ordered trees ofa given size (see e.g. [Der80]). Detailed descriptions
of these problems can be found in 2.3, 3.2, 3.4 and 3.5, respectively. While these
problems are certainly not new or unsolved, until this point they have not been cast and
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solved within a general algebraic framework. Sections 2 and 3 are devoted to this task.
Each begins with a general result in the theory of quasi-monotonic sequences, followed
by a development of an algorithm based on this result with explicit applications.

In 2 we demonstrate that for any fixed averaging function t, every sequence can
be uniquely decomposed into a series ofmaximal quasi-increasing segments, called upward
trends (Theorem 2.1. !). We give a general algorithm for computing this decomposition,
prove that it is correct and demonstrate that it is optimal (linear time) for a certain class
of averaging functions which we call constant time merging. Using a suitable constant
time merging averaging function, the convex hull of a sorted sequence of points in the
plane can be viewed as a pair ofdecompositions ofthe sequence ofline segments between
adjacent points, where one decomposition gives the upward trends and the other gives
the downward trends. Since we have a linear time decomposition algorithm for this
averaging function, this gives a linear time algorithm for finding the convex hull of a set
of points sorted on one coordinate, and an O(n log n) algorithm if initial sorting is
required. Both algorithms are optimal [Yao79].

In 3 we demonstrate that every sequence has a cyclic conjugate that is quasi-
nondecreasing (Theorem 3.1.2). We give an algorithm for finding this cyclic conjugate
which is also optimal for constant time merging averaging functions. This algorithm can
be used to solve the "Trip Around the Moon" problem, variants of which are discussed
in [Tak67] and [Dvo80] in the context of queuing theory and data storage and retrieval
techniques for magnetic bubble memories.

Using a canonical mapping from ordered trees to sequences given in [Read72], an
extension of the above result (Theorem 3.3.4) can also be used to obtain formulas enu-
merating the number of various types of ordered trees by size [Der80], and the above
algorithm can be used to randomly generate ordered trees of various sizes and types.
These results are given in 3.4. In addition to these applications, we can also obtain
solutions to some generalized forms of the classic ballot problem (see 3.5).

1. Basics.
1.1. Notation. Throughout this paper, italicized upper-case letters denote finite se-

quences, and the corresponding lower-case letters denote their elements. Thus a typical
sequence is denoted S s sn. The length ofS is n, denoted ISI. Sets will be denoted
with upper case Greek letters. If ft is a finite set, then Iftl denotes the cardinality of ft.
For any set 2;, 2;+ denotes the set of all nonempty sequences formed from the elements
of 2;. If Uand Vare sequences, UVdenotes the sequence resulting from the concatenation
of U and V, and Uk denotes the sequence resulting from the concatenation of U with
itself k times. If S UWV, then W is a segment of S. If, in addition, U is the empty
sequence, then W is a prefix of S and if V is the empty sequence, then W is a suffix of
S. Any segment of S is proper if it is not empty and it is not all of S.

1.2. Averaging systems. The basic framework underlying the theory of quasi-
monotonic sequences can be described as follows.

DEFINITION. Let 2; and I’ be arbitrary sets, the latter being linearly ordered by a
relation _-<. Let # be an arbitrary function from 2;+ into I’ which satisfies the following,
where U and V are arbitrary sequences in 2;+.

Interpolation property.

If g(U) < g(V) then #(U) < u(UV), #( VU) < #(V), and

if t(U) #(V) then #(U) #(UV) #(VU) #(V).

Such a function # is called an averagingfunction and the system 2;, I’, _-<, # is called an
averaging system.
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This general notion ofan averaging function encompasses several measures ofcentral
tendency which are commonly used, and some not so commonly used. The following
are a few examples of averaging functions.

DEFINITION. Given a sequence of real numbers S s sn, the arithmetic mean
of S is

n

si
i=1

n

The geometric mean of S is (ss2 sn) TM. The harmonic mean of S is

n
n 1"Z-
1Si

We restrict the geometric and harmonic means to sequences of positive reals. For any
real number a > 0, the a-weighted mean of S is

(SI "- O/$2 q" Ot2S3 -[- + Otn ISn)/(1 + a + a2 + + an ).
For any sequence of pairs of real numbers

T= (x, y) (Xn, Yn) where xi > 0, -< i_-< n,

the gradient mean of T is E= Yi/Z,?= xi.
Note that the arithmetic mean is a special case of the a-weighted mean with a 1,

and (essentially) a special case of the gradient mean with xi for all i, _-< _-< n.
Another useful special case of the a-weighted mean is obtained by taking a to be infin-
itesimal. For u defined in this manner, given nonempty sequences of reals U and V we
have g(U) < (V) if and only if UV lexicographically precedes VU, i.e., if and only if
UV XaZ and VU XbZ’ where a and b are reals with a < b and X, Z, Z’ are (possibly
empty) sequences ofreals. We will call this the lexicographic mean. This is a good example
of a mean which depends on the order of the elements in the sequence, in contrast to
the other functions given above.

The fact that all of the above functions are averaging functions rests primarily on
one elementary arithmetic result.

LEMMA 1.2.1. For any real numbers a, b, c, d with b, d > 0,
(1) ifa/b < c/d then a/b < (a + c)/(b + d) < c/d, and
(2) ifa/b c/d then a/b (a + c)/(b + d) c/d.
Proof This follows easily from well-known arithmetic rules for manipulating

fractions. U]

LEMMA 1.2.2. The Interpolation Property holdsfor all ofthe above means.
Proof. That the arithmetic, harmonic and gradient means satisfy the Interpolation

Property (under the restrictions given in their definitions) follows directly from the above
lemma. In the case of the a-weighted mean, we notice that if X x’"Xn and
Y Y Ym, then #(XY) is

(Xl -JI- "[- Ol
n- lXn)’ otn(yl + + Ol.

m- ym)
(1 + + an-) + an(1 + + am-l)

Hence again we can use the above lemma.
That the geometric mean satisfies the Interpolation Property actually follows from

the fact that the adthmetic mean satisfies this property. This is because the logarithm of
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the geometric mean of a sequence of positive reals is the arithmetic mean of their loga-
rithms, and the logarithm is monotonic. [3

Since it is our intention to proceed as rapidly as possible to the theory of quasi-
monotonic sequences and its applications, we will not give an extensive axiomatic treat-
ment of the theory of averaging systems here. However, we will pause to note a few
general properties of averaging systems which will be useful in what follows. From this
point on, will denote an arbitrary averaging function, and all sequences will be assumed
to be sequences over the domain of # (i.e. nonempty sequences) unless otherwise noted.

One property of averaging systems that agrees well with our intuitive notion of an
"average" is the following.

LEMMA 1.2.3 (Balancing Lemma). Let U, U2,’", Uk, V, V2,’", Vt be se-
quences, where k, l > O. If#(Ui) <= #(V) for all and j, <= <= k and <= j <- l, then
t(U Uk) <= t(V Vl). Ifin addition (Ui) < #(V)for some andj, <= <= k and

<= j <= l, then t(U Uk) < t(V1 Vt).
Proof. Let a max

_ _
k #(Ui) and let/3 mini zj_ (V). By the Interpolation

Property (repeatedly), it follows that t(U Uk) <= a and t(V Vl) >= . Since
by our basic assumption above, a-</3, it follows that t(U’" Uk)<= t(V"" Vt).
If the additional assumption above is also valid, then a similar argument shows that
(U U) < (v v).

Another useful property of averaging systems can be derived from the fact that 1,
the range of/z, is linearly ordered. While we will occasionally make tacit use of this fact,
for most of our results we need only refer to the following.

LEMMA 1.2.4 (Strong Interpolation Property). For any sequences U and V, the
following are equivalent:

() u(u) < u(v),
(2) z(U) < #(UV),
(3) u(u) < u(vu),
(4) /(UV) < I(V),
(5) u(vu) < u(v),

and thefollowing are equivalent:
(a) u(U) u(V),
(b) u(U) u(UV),
(c) u(U) u(VU).
Proof That (1) implies (2)-(5) and (a) implies (b) and (c) is precisely the content

of our basic axiom, the Interpolation Property. For the reverse implications, e.g.
(2) --) (1), (3) --) (1), etc., we note that since the range of # is linearly ordered, we must
have either u(U) < (V), u(U) u(V) or u(U) > u(V). Yet these latter two relationships
violate conditions (2)-(5), by the Interpolation Property, and the first and third relations
violate conditions (b) and (c) by the same property. [3

1.3. Quasi-monotonic sequences. In this general framework we have outlined, the
notion of a quasi-monotonic sequence can be given as follows.

DEFINITION. A sequence S is quasi-increasing (quasi-nondecreasing) if #(U) < #(V)
(u(U) =< t(V)) for all nonempty sequences, U, V such that S UV. Quasi-decreasing
and quasi-nonincreasing sequences are defined analogously. S is quasi-monotonic if it is
a sequence of any of these four types.

Example. If t is the arithmetic mean, then
2 3 4 is quasi-increasing,
3 4 2 is quasi-decreasing,
4 2 3 is quasi-nondecreasing,
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3 2 4 is quasi-nonincreasing, and
4 3 2 is none of the above.

When is the lexicographic mean, the set of quasi-increasing sequences is the set
of Lyndon words over the reals (see e.g. [Lot83]).

Two useful variants of the definition of a quasi-monotonic sequence are given in
the following lemma. Here, and in several subsequent lemmas, we give only the quasi-
increasing and/or quasi-nondecreasing versions, since the other cases follow by a similar
argument, by simply reversing the sense of the inequalities.

LEMMA 1.3.1 (Prefix/Suffix Lemma). Let S be a sequence. The following are
equivalent:

(i) S is quasi-increasing (quasi-nondecreasing).
(ii) t(U) < I(S) (t(U) <= I(S)) for every proper prefix U ofS.
(iii) t(S) < u( V) (t(S) <= u( V))for every proper suffix V ofS.
Proof This follows directly from the definition of a quasi-increasing (quasi-non-

decreasing) sequence, using the Strong Interpolation Property.
It follows that for a quasi-increasing sequence S, u(U) < u(V) for any proper prefix

U and proper suffix V of S, even if they overlap or are separated by some nonempty
middle segment of S.

The four classes of quasi monotonic sequences have intersection properties similar
to those of normal monotonic sequences, as is demonstrated in the following lemma.

DEFINITION. A sequence S Sl sn is constant if/(si) #(sj) for all and j,
<=i,j<=n.
LEMMA 1.3.2 (Constant Sequence Lemma). (1) A sequence is both quasi-nonde-

creasing and quasi-nonincreasing ifand only if it is constant.
(2) A sequence is both quasi-increasing and quasi-decreasing if and only if it has

only one element.
Proof IfS is both quasi-nondecreasing and quasi-nonincreasing, then by the Prefix/

Suffix Lemma above, for any proper prefix U of S, (U) =< (S) and u(U) >= u(S), i.e.,
#(U) #(S). Hence by the Strong Interpolation Property (repeatedly), it follows that
(si) =/(S) for all i, -< =< n, and thus S is constant. For the second part, if S is both
quasi-decreasing and quasi-increasing then for any proper prefix U of S, (U) < #(S)
and/(U) > (S); hence S has no proper prefixes, i.e., S has only one element.

We close this introductory section by briefly examining the conditions under which
quasi-monotonic sequences can be combined to form larger quasi-monotonic sequences.
As above, we will restrict our attention to quasi-increasing and quasi-nondecreasing se-
quences. Our first lemma deals with sequences formed by concatenating quasi-nonde-
creasing sequences.

LEMMA 1.3.3 (Construction Lemma). Let S, Sk be quasi-nondecreasing se-
quences, where k > 1, and let S Sl Sk. S is quasi-increasing (quasi-nondecreasing)
ifand only if#(S Si) < (S) ((Sl Si) <= (S)) for all i, <= < k.

Proof We will prove only the "quasi-increasing part" of this result, since the other
part is analogous. Further, since the "only if" implication of this part follows directly
from the Prefix/Suffix Lemma, we need only verify the "if" implication.

Using the Prefix/Suffix Lemma, it suffices to show that (S SiU) < u(S) for
any i, 0 -< < k, and any proper prefix U of Si + . If 0, then t,(Si + ) #(S) < #(S)
since k> 1. Furthermore, since S is quasi-nondecreasing, z(U)=< u(Sl). Hence
t(St SiU) t(U) < tz(S), establishing the result. Thus we may assume that > 0.
Now if u(U) -< #(S) then since u(S1 Si) < u(S) as well, we have/(S1 SiU) < u(S)
by the Balancing Lemma. Hence we may also assume that u(S) < u(U). Let V be the
sequence such that Si + UV. Since Si + is quasi-nondecreasing, (U) _-< u(V). Hence
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/(S) < #(V). Now since either S/+ 2 Sk is empty or/(S) </(S/+ 2 Sk) (by the
Strong Interpolation Property), we have u(S) </(VSi + 2 Sk) by the Balancing Lemma.
Thus since S S1 SiUVSi+2 Sk, by the Strong Interpolation Property,
]d,(Sl SiU) < ]2(S). I]

A useful special case of the above result is the following.
COROLLARY 1.3.4 (Construction Corollary). IfS S are quasi-nondecreasing

sequences, where k > 1, and u(S) </($2) < < u(S) (I(S) <=/($2) -<- --</(Sk))
then Sl Sk is quasi-increasing (quasi-nondecreasing).

Proof This follows directly from the above lemma using the Balancing
Lemma.

We also consider sequences obtained by overlapping quasi-nondecreasing sequences.
LEMMA 1.3.5 (Overlap Lemma). Let T, U, and V be sequences with U nonempty.

If TU and UV are quasi-increasing (quasi-nondecreasing), then S TUV is quasi-
increasing (quasi-nondecreasing).

Proof Again we prove only the result for the quasi-increasing case, the other case
being entirely analogous.

Let S XY, where X and Y are nonempty sequences. We show that #(X) < #(Y).
Consider three cases.

(a) X TL and Y RV for some nonempty L and R, (thus U LR). Since TU
is quasi-increasing, by the Prefix/Suffix Lemma, #(TL) < #(TU) < (U). Similarly,
#(U) < #(UV) < #(RV). Thus, #(X) t(TL) < #(RV) #(Y).

(b) X L and Y RUV for some nonempty L, (thus T LR). Following the
reasoning used in (a), tz(L) < I(TU) < t(U), #(RU). Also t(U) < t(UV) < #(V). Thus,
since (L) < #(RU) and #(L) < #(V), by the Balancing Lemma

#(X) #(L) < #(RUV) #( Y).

(c) X TUL and Y R for some nonempty R, (thus V LR). This case is a mirror
image of case (b), and has a parallel proof.

2. Trends.
2.1. The Decomposition Theorem. In Lemma 1.3.3 (the Construction Lemma) we

have considered the conditions under which quasi-increasing sequences can be conca-
tenated to form larger quasi-increasing sequences. In this section, we consider the related
problem ofhow we can decompose an arbitrary sequence into quasi-increasing segments.
A related approach to decompositions of this type is given in [Vie78].

Since each sequence element is itself a quasi-increasing segment, we restrict our
attention to segments which are quasi-increasing and of maximal length.

DEFINITION. Given a sequence S= s sn, a segment U= si"" s,
_-< -_< j _-< n, is maximal quasi-increasing if U is quasi-increasing and no extension

sh s of U, where _-< h _-< _-< j =< k _-< n and h < or j < k, is quasi-increasing. A
maximal quasi-increasing segment is called an upward trend. Downward trends are de-
fined analogously. A sequence of sequences Sl, S is a decomposition of S into
upward (downward) trends if S S S and Si is an upward (downward) trend of S
for each i, =< =< k.

Example. If # is the arithmetic mean, then the sequence 2 5 4 3 2 0 can
be decomposed into upward trends as 2 5 4 3, 2, 0 and into downward trends as
1,2 1,543 120.

As in the previous section, we will state many of our results only in their quasi-
increasing and/or quasi-nondecreasing versions. Unless otherwise indicated, the word
trend indicates an upward trend and a decomposition ofS indicates a decomposition of
S into upward trends. Our main result is the following.
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THEOREM 2.1.1 (Decomposition Theorem). Any sequence S can be uniquely de-
composed into upward trends, and every upward trend ors is a member ofthis decom-
position.

Proof. Let S S sn. For each element si ofS, find the maximal quasi-increasing
segment of S which contains si. This segment is unique by the Overlap Lemma. Let
SI, Sk be the list of distinct segments found by successively considering elements
sl, "", Sn. Again by the Overlap Lemma, these must form a decomposition of S into
upward trends, and every trend of S must appear in this decomposition. []

When u is the lexicographic mean, the decomposition into upward trends is known
as the Lyndon factorization. When t is the arithmetic mean, this decomposition has
been called Spitzer’s factorization (see [Lot83], [Spi56]).

The general relationship among the segments in the decomposition ofS is outlined
in the next lemma.

LEMMA 2.1.2 (Trend Mean Lemma). (1) S1, Sk is the decomposition ofS into
upward trends ifand only ifS S1 Sk, Si is quasi-increasingfor all i, <= <= k, and
,(&) >= ,(&) >- >_ (&).

(2) Let S, Sk be the decomposition of S into upward trends. If S is quasi-
nondecreasing, then #(S) #($2) #(S) ,(S); otherwise (&) > ,(S) > #(Sk).

Proof. ad (1). If S1, Sk is the decomposition of S, then by definition we must
have S S... S and Si quasi-increasing, _-< _-< k. Further, we cannot have
,(Si) < (S/+ ) for any i, =< -< k, for by the Construction Corollary, this would im-
ply that &Si + is quasi-increasing, contradicting the maximality of the trends. Hence
/,(S) >= #($2) >-- ->- t(&). For the other direction, assume that these three conditions
hold. Suppose that S/is not maximal for some i, _-< =< k. Thus S ULSiRV where
U, L, R, Vare sequences (either L orR may be empty, but not both) and LSiR is maximal
quasi-increasing. From the Overlap Lemma, it follows that LSiR Sh S1 for some

-< h =< =< _-< k, where h < or < l. However, then by the Prefix/Suffix Lemma, we
must have/,(Sh) < t(S/), a contradiction to the third condition of (1). Hence each S/
must be maximal, and thus S/, S is the decomposition of S.

ad (2). If S is quasi-nondecreasing, then by the Prefix/Suffix Lemma,
/(S) -<_/a(S) =< tx(Sk). Hence from part (1), I,(S) t(S2) ,(S) u(S). On the
other hand, if S is not quasi-nondecreasing, then it cannot be the case that
#(S) #($2) #(S) (by the Construction Corollary); hence we must have
#(S) > #(Sk) by part (1). Again from part (1), using the Balancing Lemma, it fol-
lows further that (Sl) > (S) - (&). [-]

2.2. The Collect-and-Merge Algorithm. We now turn our attention to the problem
of computing the decomposition of a given sequence. We will present an algorithm that
produces the decomposition of a given sequence on-line in linear time, under certain
general assumptions concerning the computation oftz. We will use a model ofcomputation
in which all integers and real numbers to arbitrary precision occupy constant space, and
all normal arithmetic operations, on these numbers, including addition, subtraction,
multiplication and division, take constant time. This is known as the uniform cost RAM
model (see e.g. [Aho74]). The key element in our algorithm is the following, abstract
data type.

DEFINITION. A block is a data type which represents specific information about an
arbitrary segment of a sequence S Sl &. This data type supports the following
functions, where b, b, b2 are arbitrary blocks representing segments T, U, Vrespectively:

(1) Location (b) returns the index in S of the first letter in the segment T.
(2) Length (b) returns the length of T.
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(3) #(b) returns #(T).
(4) Merge (b, b2) returns a block b representing the segment UV if the segment V

occurs immediately following U in S; otherwise it returns some special error value.
(5) Makeblock (T) returns a block representing the segment T.
An averaging system and its associated averaging function are constant time merging

if for any sequence S, there is an implementation of the data type "block" for segments
of S in which each block occupies constant space, each of the functions (1)-(4) defined
above take constant time, and for any segment T of length 1, makeblock T takes con-
stant time.

LEMMA 2.2.1. Using the uniform cost RAM model, the arithmetic and gradient
means are constant time merging.

Proof If is the arithmetic mean, then a block representing a segment T can be
implemented as a record which consists of the index in S of the first element of T, the
length of T, and the real number which gives the sum of the elements of T. It is clear
that under the model ofcomputation we are using, this data structure occupies constant
space, and all of the functions associated with a block can be computed from it in the
required time. For the gradient mean, we can use a similar data structure which includes
both the numerator and the denominator of the fraction that defines (S). [3

Our algorithm to find the decomposition of a sequence S S sn will create a
stack of blocks b, bk representing the trends S, Sk of this decomposition.
This will be accomplished by successively computing the stacks representing the decom-
position of s Sg for to n. Thus we will need a procedure to update an existing
stack of trends when a new element is added on the right end of the sequence. We give
this procedure in the following general format.

TIlE PROCEDURE COALESCE (Q, b)
input: a sequence SB with B quasi-increasing, a stack of blocks Q b, bk

(with bk at the top) representing the decomposition S, Sk of S into
upward trends and a block b representing the segment B. (We allow the
possibility that Q is the empty stack and S is the empty sequence.)

output: a stack of blocks Q t, tt (with tt at the top) representing the de-
composition T, Tt of SB into upward trends.

begin
while Q is not empty and/(top (Q)) < z(b) do
begin
pop the top block btop from Q;
let b merge (btop, b);

end
push b onto Q;

end.

LEMMA 2.2.2. The procedure coalesce is correct.
Proof IfQ is empty then the while loop ofcoalesce is not executed, and it is obvious

that the procedure is correct. Otherwise, we claim the while loop has the following in-
variant:

(1) Q b, bj, for some j, 0 =< j =< k, where the segment represented by bh is
quasi-increasing, _-< h =< j, and #(b) >= #(b2) > >=/z(bj);

(2) the segment represented by b is quasi-increasing, and
(3) SB is represented by b bjb.
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It is easily verified that this invariant holds before the first execution of the loop. In
this case b represents B, which is quasi-increasing by assumption, and b, bj represents
the decomposition of S. Thus the segment represented by bh is quasi-increasing for all
h, <- h <- j, b bjb represents SB and by the Trend Mean Lemma,

u(b,) >- u(b2) >= >-- (/(bj).
That it is preserved by the execution ofthe loop body follows directly from the Construc-
tion Corollary, since bj and b are merged only when/z(b) < t(b), and in this case the
segment represented by bb must be quasi-increasing. Since each time the loop is executed,
the size of Q is reduced by one, the loop will terminate. Upon termination, in addition
to conditions (1)-(3) we will have either

(4) Q is empty (i.e. j 0), or
(5) j > 0 and #(bj) >_-
In either case, b, bj, b represents the correct decomposition for SB by the

Trend Mean Lemma, and hence Q is correct following the last statement of the
procedure.

The algorithm to compute the decomposition of a sequence can now be given.

THE COLLECT-AND-MERGE ALGORITHM.
input: a nonempty sequence S s s.
output: a decomposition SI, , Sk of S into upward trends.
data structures: a stack Q of blocks.

begin
let Q be empty;
fori= ltondo
begin

let b,w makeblock (s);
coalesce (Q, bnew);

end;
return a list of segments represented by the elements of Q
ordered from bottom to top;

end.

Given the correctness of coalesce, it is obvious that the Collect-and-Merge Algorithm
is correct. We briefly analyze the time and space requirements of this algorithm.

THEOREM 2.2.3. Using the uniform cost RAM model, for any averaging system
which is constant time merging, the space and time requirements ofthe Collect-and-Merge
Algorithm are O(n), where n is the length ofthe input sequence.

Proof It is clear that the space requirements are O(n). To analyze the time require-
ments, let us for the moment discount the while loop in coalesce. What remains are the
first and last statements of the algorithm (which take time O(n)), and a group of middle
statements which constitute a loop which is executed n times and takes constant time
for each execution. Hence the total time used is O(n). In the course of all executions of
the middle loop, n blocks are created by calling the function makeblock. Now consider
the while loop we omitted. One execution of the body of this loop also takes constant
time. Furthermore, every time it is executed, the number of blocks in use is reduced by
one. Since n blocks are introduced during the course of execution ofthe entire algorithm
and at least one remains when the algorithm terminates, this implies that the while loop
is executed at most n times. Thus the total running time ofthe algorithm is O(n).
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Before continuing to the applications ofthe Collect-and-Merge Algorithm, we pause
to consider another use of the procedure coalesce. Let us assume that we have already
computed the decompositions for two sequences S and $2. We can combine these de-
compositions into a single decomposition for the sequence S$2 by the following pro-
cedure.

THE PROCEDURE COMBINE (T, T2)
input: two stacks of blocks U and V representing the decompositions of S1 and

$2 into upward trends, where U is ordered from bottom to top and V is
ordered from top to bottom.

output: a sequence of blocks Q representing the decomposition of SIS2.
begin

while V is not empty and t(top (U)) </(top (V)) do
begin
pop the block b from the top of V;
coalesce (U, b);

end;
return U (ordered from bottom to top) concatenated with V

(ordered from top to bottom);
end.

By arguments similar to those given above, it is clear that this procedure is correct,
and that in the worst case it takes time and space proportional to the total number of
blocks in the decomposition of SI and $2 for an averaging system which is constant time
merging. The procedure combine might be used in a divide-and-conquer approach to
finding decompositions. However, it is clear that since the Collect-and-Merge Algorithm
is already optimal for averaging systems which are constant time merging, this approach
will not be useful in this case. It may be the case though, that this procedure can be used
to at least improve the expected time in certain cases when the averaging system is not
constant time merging. In other cases, it appears that a more direct approach, taking
advantage of special features of the averaging function , will yield the most efficient
decomposition algorithm. An example of this is Duval’s decomposition algorithm for
the lexicographic mean [Duv83].

2.3. Finding convex hulls. As an example of the application of the Collect-and-
Merge Algorithm, consider the problem of finding the convex hull of a set of points on
the x-y plane.

Assume that we are given a sequence of points T (x0, Y0), (xn, yn), where
n > l, with distinct x coordinates, sorted in increasing order on the x coordinate. The
convex hull of T is the smallest (minimal area) closed convex polygon that contains all
of the points of T. The vertices of this polygon form a subset of T known as the set of
extrema! points of T. It is clear that the set of extremal points of T must include the first
and last points of T, and these extremal points will form a degenerate polygon only in
the case that all of the points of T lie on the line between the first and last points of T.
The edges ofthe convex hull connecting the extremal points that lie on or above the line
from the first to the last point of T will be called the upper part of the convex hull, and
those connecting the extremal points that lie on or below this line will be called the lower
part. These sets of edges are disjoint, unless the convex hull is degenerate, in which case
they are identical (we generalize this observation later).
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The convex hull of T can be determined as follows. From the sequence T, derive a
sequence of line segments S (Sl, tl) (Sn, In) where si xi xi- and ti Yi Yi-
for _-< _-< n. Since T is sorted and all points have distinct x coordinates, si > 0 for all
i, _-< _-< n. Let # be the gradient mean, as defined above in 1. By Lemma 2.2. l, # is
an averaging function which is constant time merging.

Now consider an arbitrary segment U (xg, Yk)’’" (Xk + l, Yg / ) of T, where
> 1, and the corresponding sequence ofline segments V (sg / , tk / l) (S / t, tk / ).
By the Prefix/Suffix Lemma, V is quasi-increasing if and only if

#((Sk+l,tk+l) ’’’(Sk+i, tk+i)) tk+j Sk+j<#(V) foralli, <=i<l.
j=l

This is obviously equivalent to the condition that the slope of the line from (x, y) to
(x / i, Yg / i) is less than the slope from (xg, y) to (Xk / t, Yk / ) for all i, =< </, i.e.,
that all of the points between (Xk, yg) and (Xk / t, Yk / t) lie below the line between these
two points. Similarly, Vis quasi-decreasing ifand only if all intermediate points lie above
the line determined by the endpoints of U. It follows easily that the decomposition ofS
into upward trends defines the upper part of the convex hull of T, and that the decom-
position into downward trends defines the lower part. Thus using the Collect-and-Merge
Algorithm, the convex hull of T can be computed on-line in linear time.

This algorithm is clearly optimal in situations where the points are given in sorted
order with distinct coordinates in one dimension, e.g., in applications where the points
are evaluations of a function f(x) for successive values of x taken at discrete intervals.
Even if two points can have the same x coordinate, we can usually get around this by
perturbing the points slightly within their error range. Here, as in general, care must be
taken when applying this algorithm to avoid the accumulation of round-off errors.

If the points of T are not originally given sorted on their x coordinates, then to use
the Collect-and-Merge Algorithm, it requires O(n log n) time to sort them, giving a total
running time O(n log n). This is the best possible time bound that can be achieved in
this situation [Yao79], and there are several algorithms which achieve it, either by sorting
first and then applying a hull finding procedure (which in some cases appears to be a
special case of the Collect-and-Merge Algorithm, e.g., [And79]), or by using divide-and-
conquer techniques (e.g. [Ben78]). Many ofthese latter algorithms are appealing because
they run in O(n) expected time for a variety of point distributions. Here it should be
noted that the algorithm above, and some of the other techniques based on sorting will
also run in O(n) expected time if an O(n) expected time sort can be used (see [Mei80]
for an example ofa sort which achieves this expected time for a wide class ofdistributions).

2.4. The Trend Boundary Theorem. The relationship between the convex hull and
the corresponding decompositions given above suggests other properties ofdecompositions
which have not yet been explored. For example, as we mentioned above, it is intuitively
obvious that the set of extremal points of T (x0, Y0), (x, y) between (x0, Y0) and
(Xn, Yn) on which the upper part ofthe convex hull of T is defined is always disjoint from
the set on which the lower part is defined, unless the convex hull is degenerate. This is
a general phenomenon that occurs when decompositions into upward trends are compared
with decompositions into downward trends. Loosely stated, our result is that internal
boundaries are never shared between elements of these decompositions, unless the se-
quence is constant.

THEOREM 2.4.1 (Trend Boundary Theorem). Let S be a sequence decomposed
into upward trends by I,..., Ik and into downward trends by D,..., D. If
I L D Dfor any r, s, <- r < k and <= s < l, then S is constant.
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Proof Let U I1 "’"/r Ol Ds and V L +1 Ik Ds +1 Dr. By the
Trend Mean Lemma,

(1) z(I) >_- u(I2) >- >= t(Ik), and
(2) #(D1) -< #(D2) <= <= #(Dr).

Using the Balancing Lemma, from (1) we have (U)>= t(V) and from (2) we have
(U) =< #(V). Thus u(U) (V). However, now again using the Balancing Lemma, this
implies that none of the inequalities in (1) or (2) above can be strict. Hence

(3) U(In) t(Dm) z(S) for all =< n =< k and -< rn _-< l.
Now since 11 is quasi-increasing and u(D) -/(I1), DI cannot be a proper prefix of Ii.
Similarly, I cannot be a proper prefix ofD; hence I D. Continuing in this manner,
it follows that k and In Dn for all <- n =< k, i.e., the upward and down-
ward decompositions of S must be identical. Finally, since only a single element se-
quence can be both quasi-increasing and quasi-decreasing (Lemma 1.3.2), S must be
constant.

3. Cyclic conjugates.
3.1. The Rotate-and-Merge Algorithm. Many more applications of the theory of

quasi-monotonic sequences can be obtained by considering the families of sequences
obtained by taking all cyclic conjugates of a sequence.

DEFINITION. Given a sequence S s Sn, the set of cyclic conjugates of S is
{S} I,..J {si SnS s < <= n}.

We will show that every sequence has a cyclic conjugate which is quasi.-nondecreasing,
and a cyclic conjugate which is quasi-nonincreasing. The key idea is given in the following.

LEMMA 3.1.1 (Trend Rotation Lemma). Let S be decomposed into upward trends
by S, Sk. Ift(S) > t(Sk), then T S2 SkS hasfewer trends than S.

Proof Since S, S is a decomposition of S into upward trends, each Si,
_-< _-< k, is a quasi-increasing sequence. Since (S) < I(S), by the Construction

Corollary, SS is also quasi-increasing. Hence $2, S_ 1, SkS is a decomposition
of Tinto k quasi-increasing segments. Thus by the Overlap Lemma, the decomposition
of T into upward trends cannot have more than k members.

THEOREM 3.1.2 (Cyclic Conjugate Theorem). Every nonempty sequence S has a
quasi-nondecreasing cyclic conjugate and a quasi-nonincreasing cyclic conjugate.

Proof From the Trend Mean Lemma, if a sequence S is not quasi-nondecreasing,
the decomposition of S has more than one trend and # of the final trend is less than
of the first trend. Hence the Trend Rotation Lemma implies that whenever S is not
quasi-nondecreasing, a cyclic conjugate T of S with fewer trends in its decomposition
can be found by rotating the first trend in the decomposition of S to the back of S. By
iterating this procedure, we must eventually reach a cyclic conjugate ofS which has only
one trend, or one with two or more trends, such that t of the first trend is equal to t of
the last trend. In either case, this cyclic conjugate of S will be quasi-nondecreasing. A
similar argument holds for quasi-nonincreasing cyclic conjugates.

The proof of this theorem also provides us with a simple algorithm for finding a
quasi-nondecreasing cyclic conjugate of an arbitrary sequence S. This algorithm is pre-
sented below. We will use the abstract data type block introduced in the previous section
and the procedures and terminology associated with it, under the assumption that these
definitions have been extended to allow us to treat a sequence S as if it was circular, so
that we can merge the segment at the fight end of the sequence with the segment at the
left end. We also assume that the procedure coalesce has been extended from a stack of
blocks to a queue of blocks in a natural manner, taking the back of this queue as the top
of the stack.
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THE ROTATE-AND-MERGE ALGORITHM.
input: a nonempty sequence S Sl Sn.
output: an index j such that sjsj / SnSl sj_ is quasi-nondecreasing.
data structures: a queue Q of blocks.

begin
apply the Collect-and-Merge Algorithm to S to obtain a decomposition

S1, Sk of S into upward trends;
let Q bl, bk be a queue of blocks representing these trends with

front (Q) bl and back (Q) bk;
while/z(back (Q)) < z(front (Q)) do
begin

remove the block at the front of Q and call it b;
coalesce (Q, b);

end;
return location (front (Q));

end.

The correctness of this algorithm is easily established, as described above. Under
the assumption that t is constant time merging, and using a uniform cost RAM model
as described in the previous section, the timing analysis is also easy. It is simply an
extension of the analysis of the Collect-and-Merge Algorithm given in Theorem 2.2.3.
Again the critical factor is the total number of merges executed in during the course of
the computation. The same reasoning ofTheorem 2.2.3 applied to the Rotate-and-Merge
Algorithm shows that the total number of merges executed during the first step, where
the Collect-and-Merge Algorithm is called, combined with those in the remaining steps
is exactly n 1. Hence the Rotate-and-Merge Algorithm is O(n).

3.2. Trip Around the Moon. As an application ofthese results, consider the following
problem, known as "Trip Around the Moon" [Gra83].

You are to make one trip around the Moon in a circular path. At various points
along this path, there are n fueling stations tl, , tn with fuel amountsJ], , fn, such
that the total amount of fuel available is sufficient to make one circular trip. You are
not guaranteed, however, that the amount of fuel available in each station is sufficient
to cover the distance to the next station. You begin at the station of your choice with an
empty fuel tank. By choosing the right starting station, can you make the entire trip
without running out of fuel?

The answer to this question is always yes, independently of the given configuration
of fueling stations. We can demonstrate this as follows.

Let dl, "", dn be the distances between stations, where di is the distance between
and t + 1, <= < n and dn is the distance between t and tl. Assume that the units

chosen are such that we can travel distance d with fuel amount f if and only if f >= d.
Let S= (, dl)’" (f, d,) and let / be the gradient mean, defined in 1. Let
T (f, di) (fn, d,)(f, dl) (f- 1, di- 1) be a quasi-nonincreasing cyclic conjugate
of S, as guaranteed by the Cyclic Conjugate Theorem. By the basic assumption of the
problem, t(T) Y’= lJ/’= d >= 1. Let U be any proper prefix of T. Since T is quasi-
nonincreasing, #(U) >= u(T) >= 1. Hence the sum of the fuel available in the stations of
U is greater than or equal to the total distance spanned by U. Since this holds for every
proper prefix U of T, the trip can be made starting at station ti.

Furthermore, since the gradient mean is constant time merging (Lemma 2.2.1), we
can apply the Rotate-and-Merge Algorithm to find station ti in time proportional to the
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number of fuel stations. Thus we can solve the Trip Around the Moon problem in
optimal time.

Notice that in our argument, we have implicitly used the fact that the distances di
are positive, but not the fact that the fuel amountsf are (presumably) positive. In fact
the problem has a solution even when thef are allowed to be negative, since the gradient
mean is still an averaging function in this case (Lemma 1.2.2). Our results may be sum-
marized as follows.

THEOREM 3.2.1. For any nonempty sequence S (f, d) (fn, dn), wheref, di
are real numbers, di > O, <- <- n, and ,’]= f >- ,’]= di, there is a cyclic conjugate
T (f’, d]) (fin, d’) ofS such that ,= f’ >= = dfor allj, <= j <= n. Such a cyclic
conjugate T can befound in time proportional to n, using a uniform cost RAM model of
computation.

A related result appears in a recent article by Dvornicich [Dvo80] which presents
some results used to derive efficient algorithms for handling data in magnetic bubble
memories.

THEOREM 3.2.2 (Dvornicich). Let S s sn be a sequence of real numbers
such that Y- >- si O. Then there is a cyclic conjugate T t tn of S such that= ti >- O for all j, <--j <-- n.

Proof Let T be a quasi-nonincreasing cyclic conjugate of S using the arithmetic
mean. Thus #(t t) >- #(T) >= 0 for all j, =< j -< n, and the result follows. [3

The Dvornicich result can also be derived as a corollary to Theorem 3.2.1, or from
the more general results presented in [Gra63] and [Tak67, Thm. 2, p. ]. We have not
determined if these later results can also be derived within the framework we have pre-
sented.

3.3. Unbalanced sequences and the Counting Theorem. We can obtain stronger
results along the lines of the Cyclic Conjugate Theorem by undertaking a more detailed
analysis of the structure of the set of cyclic conjugates of an arbitrary sequence with
respect to #. We take up this task presently.

DEFINITION. Each ofthe cyclic conjugates ofS s s defines the same circular
sequence S’, derived by forming the letters of S into a clockwise circular arrangement
with s following sn. Segments of S’ will be denoted by ranges si s. When -< j, this
corresponds to the standard notation. When > j, si s si SnS s.

Given a circular sequence S, the set ofcyclic conjugates that form it can be obtained
from the set of possible cuts of S.

DEFINITION. Given a circular sequence S formed from S s, Cs
{c, , c} is the set of cuts of S, where ci is the cut between & and si + for =< < n
and Cn is the cut between s and s.

Two distinct cuts c and c in the circular sequence S formed from s Sn define
a pair of opposing segments s+ s and s + si. In our basic structural result
below, we express the relationship between opposing segments (with respect to #) as a
relationship between their corresponding cuts.

DEFINITION. Given a circular sequence S s s with cuts Cs {c, ..., Cn},
the relation =< on Cs is defined as follows, ci -<- c if and only if j, or q= j and
u(s + s) <- u(s + s).

We explore the properties of the relation -< on Cs.
DEFINITION. Given a set A and a binary relation _-< on A, -_< is a preorder if it is

reflexive and transitive. _-< is a linear preorder if in addition, a _-< b or b =< a for any a, b
in A.
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Our basic structural result is the following.
LEMMA 3.3.1 (Cut Order Lemma). For any circular sequence S, <-_ is a linearpreorder

ofCs.
Proof. Obviously _-< is reflexive and since the range of is linearly ordered, for any

i, j, =< i, j -< n, either ci --< cj or cj <- ci (or both). Now assume that ci <= c and c _-< ck.
If i, j and k are not pairwise distinct, then it is obvious that ci <- Ck. Otherwise, we may
assume without loss ofgenerality that < j < k or < k <j. We consider only the former
case. The latter case is similar. Let X s / s, Y s / sk and Z s / sg.
Since C Cj, #(X) - #(YZ). Since cj <= cg, #(Y) <= tt(ZX). Thus by the Interpolation
Property (twice) we have /(X) =<_ v(YZX) <= t(ZX). Hence /z(X) =< z(Z) by Strong
Interpolation. Thus #(ZX) <- #(Z), which implies that t(Y) =< ix(Z). Hence by the Bal-
ancing Lemma, u(XY) <= (Z), i.e., ci <= cg. It follows that =< is transitive, and thus <- is
a linear preorder.

A stronger Cyclic Conjugate Theorem will be obtained for sequences in which =< is
a linear ordering on the set of cuts. By the above lemma, these are sequences for which
-< is antisymmetric (i.e., c -< c and c <= ci implies that j). This class of sequences
can be easily characterized.

DEFINITION. A nonempty sequence S is unbalanced if t(U) 4: t(S) for any proper
prefix U of S. S is cyclically unbalanced if every cyclic conjugate of S is unbalanced.

LEMMA 3.3.2. For any nonempty sequence S, <- is a linear ordering on Cs ifand
only ifS is cyclically unbalanced.

Proof This follows easily from the Cut Order Theorem, using the Strong Interpo-
lation Property.

To state the stronger version ofthe Cyclic Conjugate Theorem that holds for cyclically
unbalanced sequences, we introduce the following notation.

DEFINITION. Given a nonempty sequence S s s,

k(S) the number of indices i, =< < n, such that z(s s3 >= z(S), and
ff*(S) the number of indices i, -< < n, such that Z(Sl si) > z(S).

This notation actually provides a slightly more general framework for the theory of
quasi-monotonic sequences.

LEMMA 3.3.3. For any nonempty sequence S,
S is quasi-increasing p(S) O,
S is quasi-nondecreasing k*(S) O,
S is quasi-decreasing p*(S) n 1, and
S is quasi-nonincreasing p(S) n 1.
Proof This is obvious.
THEOREM 3.3.4 (Strong Cyclic Conjugate Theorem). IfS s sn is cyclically

unbalanced then
(1) k(T) k*(T)for every cyclic conjugate T ofS and
(2) for every value of k, 0 <- k <= n 1, there is a unique cyclic conjugate T ofS

such that (T) k.
Proofi The first part is obvious. For the second part, since S is cyclically unbalanced,

_-< is a linear order on Cs by Lemma 3.3.2. Let cil, "’", cin be the cuts of S listed in
increasing order. For any j, <= j <= n, cij <= cg for exactly n j cuts Cim distinct from

cij. Thus if T is the cyclic conjugate of S formed by the cut ci, <= j <= n, then
ff(T) ff*(T) (n 1) (n -j)= j- 1, -<_ j -< n. The result follows.

The following corollary of this result will be useful.
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THEOREM 3.3.5 (Counting Theorem). Ifft is a set of unbalanced sequences of
length n which is closed under cyclic conjugation, then for each k, 0 <= k <= n 1,
there are exactly Il/n sequences S in ft such that p(S) k (equivalently, p*(S) k).

Proof. Obviously, by these assumptions the sequences of ft must be cyclically un-
balanced. Further, by the above result, every sequence in ft has n distinct cyclic conjugates,
all of which are in ft. It follows that ft can be partitioned into m Ifl/n classes of n
sequences each, where each class is the set of all cyclic conjugates of a given sequence S.
Additionally from the above result, for each possible value of k there is one element of
each class on which ff has this value. Thus for any particular value of k, b has this value
on exactly m sequences of ft. V1

When u is the lexicographic mean, it is clear the u(X)= g(Y) if and only if
XY YX, i.e., if and only if there exists a nonempty sequence Z and i, j > 0 such that
X Z and Y Zj (see e.g. [Lot83]). It follows that a sequence S is unbalanced with
respect to the lexicographic mean if and only if it is primitive, i.e., if and only if there
exists no nonempty sequence Z and > such that S Zi. In this case S will be cyclically
unbalanced as well, since every cyclic conjugate of a primitive sequence is primitive.
Thus when is the lexicographic mean, Theorem 3.3.4 holds for every primitive sequence
and Theorem 3.3.5 holds for every set of primitive sequences closed under cyclic con-
jugation. In fact this is true ofany t which has the property that tz(X) g(Y) if and only
ifXY YX.

3.4. Counting and randomly generating ordered trees. The Counting Theorem can
be applied to many types of enumeration problems, and in particular, to many of those
involving objects enumerated by the well-known Catalan numbers,

n+l n

(see e.g. [Gar76], [Sin79], [Der80]). As an example, consider the following list of objects
given in [Der80].

DEFINITION.
Tn is the set of rooted ordered trees with n edges (i.e. n + nodes).
Pn is the set of legal sequences ofn open and n closed parentheses. A parenthetical

expression is called "legal" if each open parenthesis has a matching closed
parenthesis.

In is the set dominating sequences S s s, / of n + nonnegative integers
which sum to n, such that Z= sj >- for all i, =< =< n. (Because ofa misprint
in [Der80], we follow the definition given in [Read72] here (see also [Zak79]).)

L, is the set of admissible paths from the point (0, 0) to (n, n) in an n n lattice.
All steps in a lattice path are either up or to the fight; a path is "admissible"
if it does not pass below the diagonal y x.

B, is the set offull binary trees with n internal nodes. A rooted ordered tree is
"full binary" if all nodes are either of degree 0 (leaves) or of degree 2 (have
exactly two successors).

Using one-to-one correspondences between these objects, by showing that the dom-
inating sequences are enumerated by the Catalan numbers, Dershowitz and Zaks show
that all of the above objects are enumerated by the Catalan numbers. We demonstrate
briefly how the Counting Theorem can be applied to achieve this result. We will use the
following general property of the arithmetic mean for sequences of integers.
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LEMMA 3.4.1. Let # be the arithmetic mean andS be a sequence ofintegers oflength
n which sums to t 4 O. Ifn and are relatively prime then S is unbalanced.

Proof. Let U be any proper prefix of S and let t’ be the sum of U. If #(U) #(S)
then tTI UI t/n, which is impossible because n and t are relatively prime and U] < n.
Thus S is unbalanced.

LEMMA 3.4.2. Let # be the arithmetic mean and let S Sl Sn / be a sequence
ofn + nonnegative integers which sums to n. Then S is a dominating sequence ifand
only ifS is quasi-decreasing.

Proof. If S is a dominating sequence then _- sj/i >= > n/(n + 1) t(S) for
every i, =< =< n. Hence S is quasi-decreasing. On the other hand, ifS is quasi-decreasing,
then = sj/i > n/(n + 1) > (i 1)/i for every i, =< =< n. Hence = s -> for any
i, =< -< n. Thus S is a dominating sequence.

THEOREM 3.4.3. In Cnfor all n >= 1.
Proof Let ft be the set of all sequences n + nonnegative integers which sum to n

and let t be the arithmetic mean. By the Lemma 3.4.1, ft is a set ofunbalanced sequences
oflength n + which is closed under cyclic conjugation. Hence by the Counting Lemma,
exactly 1/(n + 1)11 sequences from this set are quasi-decreasing. Thus we need only
show that [1 (2if) and the result will follow from Lemma 3.4.2. This latter fact is easily
established by showing that every sequence S s sn / in ft can be uniquely rep-
resented by a sequence S’ of n O’s and n l’s where S’ s’01 s20 01" 1, and vice versa
that every such sequence represents a member of ft. [2]

Since by the correspondence of [Der80], the dominating sequence associated with
a given tree is simply the sequence of outdegrees of its nodes visited in preorder, we can
also use these techniques to count trees whose nodes have any specific spectrum of out-
degrees. If is a tree with n + nodes and ni is the number of nodes with outdegree for

=< -< k, where k is the maximal outdegree of any node, then we must have
(1) n+ no + nl + + nk.

{The total number of nodes is n + 1. }
(2) n n + 2n2 + + kn.

{The total number of edges is n. }
THEOREM 3.4.4. The number ofrooted oriented trees with n + nodes and ni nodes

ofoutdegree for 0 <- <-_ k, where the ni satisfy (1) and (2) above, is

[ (n+l), ]n+ no!n! n!
Proof Consider the set ft of all sequences with no O’s, n l’s, nk k’s. By (1)

these sequences are of length n + and by (2) they sum to n. Thus as in the previous
theorem, exactly 1/(n + 1)Ill[ ofthese sequences are dominating sequences, i.e., represent
legitimate trees. The result follows.

One application of these results is in the generation of random trees. Using the
technique from the proof of Theorem 3.4.3, we can obtain a random tree with n +
nodes by generating a random binary sequence with n O’s and n l’s, viewing it as a
sequence of n + numbers in unary separated by O’s, obtaining the quasi-increasing
cyclic conjugate ofthis sequence ofnumbers (under the arithmetic mean) by the Rotate-
and-Merge Algorithm, and finally interpreting the resulting sequence as the preorder
traversal of a tree. To generate trees whose nodes have a specific spectrum of outdegrees,
the initial sequence of n + numbers can be chosen to reflect these constraints. This
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general method is well suited for efficient implementation, and thus should prove practical
in situations where rapid generation of random trees is needed.

The techniques for counting trees and other objects given above are not unrelated
to the specific techniques given in [Der80] and other techniques for Catalan enumerations,
for example those in [Si169], [San78] and [Sin78]. Since the literature on Catalan numbers
and their relatives is extensive (a bibliography of 470 references is given in [GouT6]), no
attempt has been made to cover the applications ofthe present theory in this area in any
detail. Hence this remains an interesting area for further research.

3.5. Ballot problems. Our final application of the Counting Theorem involves a
version of the classic ballot problem [Ber87].

A typical ballot problem may be described as follows. Suppose that an election is
held, and candidate A receives a votes, while candidate B receives b votes. Let S be the
sequence of votes as they are received, and suppose that all (aa+ b) possible arrangements
of S are equally likely. For a given % let A(S) denote the number of times during the
election that the ratio of votes for A to the total votes is greater than or equal to 3’. For
any given k, =< k -< a + b, what is the probability that Av(S) k?

To illustrate the application of the Counting Theorem to this type of problem, we
will derive the following result from [Sri79], originally due to Takacs [Tak62]. Our version
is a minor rewording of that given in [Sri79].

THEOREM 3.5.1. Ira and b are relatively prime and " a/(a + b) (i.e., when 3’ is
the final ratio of votes for A), then the probability that A(S) k is 1/(a + b)for all k,
l<=k<=a+b.

Proof Let S be given as a sequence of integers where each vote for A is represented
by and each vote for B is represented by 0. Let # be the arithmetic mean. Thus
t(S) a/(a + b) -y. Let U be a proper prefix of S of length r and let a be the number
of l’s in U. The ratio of votes for A in U is greater than or equal to 3’ if and only if #(U)

a/r >= 3’ #(S). Thus A(S) (S) + 1, since the ratio of votes for A is always greater
than or equal to 7 at the end of the election. Furthermore, since a and b are relatively
prime, a and a + b are relatively prime, and thus by Lemma 3.4.1, S is unbalanced.
Since the set of all possible voting records is obviously closed under cyclic conjugation,
by the Counting Theorem, all values of A between and a + b are equally likely on
this set, and the result follows.

We can also obtain another related, but more general theorem of Takacs’ [Tak67,
Thm. 1, p. 162], using this method.

THEOREM 3.5.2 (Takacs). Let S s s, be a sequence of integers which sums
to 1. For each j, <-_ j <= n, there is exactly one cyclic conjugate ofSfor which exactly j
ofits partial sums are positive.

Proof Let u be the arithmetic mean. Then by Lemma 3.4.1, S is cyclically unbal-
anced. Let U s...s be any proper prefix of S. If the partial sum k=l Sk
is positive, then t(U) t/I UI must be greater than t(S) 1/n. On the other hand, if
(U) > 1/n, then clearly must be positive. It follows that exactlyj partial sums ofS are
positive ifand only ifk*(S) j. Thus the result follows from the Strong Cyclic Conjugate
Theorem.

Theorem 2.1 of [Spi56] can be derived from the Strong Cyclic Conjugate theorem
in a similar manner.

4. Further research. We have already alluded to a few possible directions for further
research; among them are a detailed axiomatic investigation of averaging systems and
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the theory ofquasi-monotonic sequences, and a more extensive investigation ofthe time
bounds for the major algorithms used in this theory, using more general assumptions
concerning #. Under the latter topic, we note that the question of parallel algorithms for
finding decompositions and quasi-nondecreasing cyclic conjugates of sequences remains
to be explored as well. This is an area in which we have done almost no work at this
time. If good parallel algorithms are found, further applications in the area of loop or
ring-structured networks (see e.g. [Do182]) might be explored.

We also hope to use this theory to investigate certain aspects of the structure of
random sequences. Using a technique similar to the one used in the proof of Theorem
2.1 in [Spi56], in certain cases we can find correspondences between the trends in the
decomposition of a sequence and the cycles in a permutation of that sequence. This
allows us to show, for example, that the expected number oftrends (using the arithmetic
mean) in a sequence of n reals randomly chosen in the interval between 0 and is the
same as the expected number of cycles in an arbitrary permutation of that sequence,
which is In (n).

Acknowledgments. We would like to thank Ron Graham for telling us ofthe "Trip
Around the Moon" problem, and pointing out the applications of this theory to this
problem and to the results of Takacs. We are also indebted to Joel Cohen for showing
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A HILL-CLIMBING ALGORITHM FOR THE CONSTRUCTION OF
ONE-FACTORIZATIONS AND ROOM SQUARES*
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Abstract. In this paper we describe and discuss hill-climbing algorithms for the construction of one-
factorizations of complete graphs, and orthogonal one-factorizations of complete graphs (i.e., Room squares).

Key words, hill-climbing, algorithm, Room squares, one-factorizations
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1. Introduction. In this paper, we study hill-climbing algorithms for certain types
ofcombinatorial designs. In the past, combinatorial designs have usually been constructed
using backtracking algorithms (see [2] and [6], for example). Recently, however, hill-
climbing algorithms have enjoyed some success in certain cases.

First, we briefly describe hill-climbing algorithms in a general setting. Suppose that
we have some particular combinatorial optimization problem for which we want to
design an algorithm. For any problem instance I, there is a set offeasible solutions F(I);
each feasible solution X has a cost c(X). The optimal solution is the feasible solution X
having the minimum cost. (Alternatively, we could associate a profit with each feasible
solution, and ask for the feasible solution with maximum profit.)

We define a hill-climbing algorithm for a combinatorial optimization problem in
terms of one or more heuristics H. Each heuristic is based on a neighbourhood system,
as follows. A neighbourhood ofX is any collection of feasible solutions N(X) such that
X N(X). If, for every feasible solution X, we define a neighbourhood N(X) of X, then
we obtain a neighbourhood system. Given a neighbourhood system and a feasible solution
X, the heuristic H nondeterministically chooses any feasible solution Y N(X) such that.
c(Y) <- c(X). If there is no such Y, then the heuristic fails, and we say that X is a local
minimum (with respect to the heuristic H). We can define several different types of
neighbourhoods and associate a different heuristic with each.

Suppose we have defined a heuristic H. Suppose also that we have some method of
generating an "initial" feasible solution X. Then, the hill-climbing algorithm proceeds
as follows:

generate initial feasible solution X;
while X is not a local minimum do

begin
choose any Y N(X) such that c(Y) _-< c(X);
X:= Y

end;

Our hope is that the final value ofX is optimal, or close to optimal.
Depending on how we define neighbourhoods, it may take a lot of time to search

the entire neighbourhood for a feasible solution Y such that c(Y) <= c(X). It is often
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easier to first choose Y N(X) nondeterministically and then check if c(Y) <= c(X). At
any given stage of the algorithm, it may be necessary to choose many such Y’s before
finding one with c(Y) <= c(X).

If we take this approach, we would have to specify how many attempts we allow at
each stage before we abandon the search. We would define some integer "threshold
function"f(c, I), which is a function ofthe instance I and the cost c ofa feasible solution,
to accomplish this. Then, we obtain the following algorithm:

generate initial solution X;
count:= 0;
repeat

count:= count / 1;
choose any Y e N(X);
if c(Y) <= c(X) then

begin
if c(Y) < c(X) then

count: 0;
X:= Y

end
until count > f((X), 1).

If this approach is used, it is important to choose a suitable threshold function.
Our interest is in constructing combinatorial designs using hill-climbing algorithms.

In the past, hill-climbing algorithms have been employed to successfully construct Steiner
triple systems, Latin squares and strong starters. We refer the interested reader to [3],
[4], [13] and [14]. Hill-climbing has been less successful in investigating other problems
(see, for example, ], 11 and 16]).

In this paper, we present new hill-climbing algorithms for some other classes of
designs, namely, one-factorizations ofcomplete graphs and Room squares. Room squares
are the most "complicated" type of design for which a practical hill-climbing algorithm
has been found.

2. A hill-climbing algorithm for finding one-factorizations of complete graphs. The
complete graph Kn is the graph on n vertices in which every pair of points is joined by
an edge. A one-factor ofKn is a set of n/2 edges that partitions the vertex set (this requires
than n be even). A one-factorization ofK is a set of n one-factors that partitions the
edge set. It is well known that K has a one-factorization if and only if n is even. Many
constructions for one-factorizations are known; a good survey is presented in [8].

In order to use a hill-climbing approach, we formulate the problem as an optimization
problem. A problem instance consists only of the (even) integer n for which we want to
construct the one-factorization of Kn and the set of vertices V on which K is defined.
We will represent a one-factorization of K as a set F of pairs, each having the form
(f, {x, y}), where =< =< n 1, and x and y are distinct vertices of Kn. There will be
n(n 1)/2 such pairs and the following properties must be satisfied:

1) Every edge {x, y} of Kn occurs in a unique pair (f, {x, y});
2) For every one-factor j, and for every vertex x, there is a unique pair ofthe form

{x, y}).
Property 1) says that every edge occurs in a unique one-factor, and property 2) says

that every one-factor consists of a perfect matching.
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Now, we can describe feasible solutions as being partial one-factorizations: in the
representation above, we have a set F of pairs, each of which has the form (f, {x, y}),
which satisfies the properties:

1) Every edge {x, y} of Kn occurs in at most one pair (f, {x, y});
2) For every one-factor, and for every vertex x, there is at most one pair of the

form (f, {x, y}).
We define the cost c(F) of a feasible solution F to be n(n 1)/2 IF I, where

denotes the number of pairs in F. Then, it is easy to see that F is a one-factorization if
and only if c(F) 0.

We must now define a heuristic. First, we construct a graph which tells us what is
missing from a partial one-factorization. Given a feasible solution F, we define d(F), the
defect graph of F, to be the graph having vertex set V U {f, =< =< n }, where V is
the vertex set of K,, and having the following edges:

1) For every edge {x, y} ofKn which does not occur in a pair of F, {x, y} is an edge
of d(F);

2) For every f, =< =< n 1, {f/, x} is an edge old(F) if and only if there is no
pair of the form (f, {x, y}).

In fact, we define two heuristics, H and H, based on the defect graph. We say that
a vertex or one-factor is live if it has positive degree in the defect graph. Note that, since
n is odd, ifa vertex or one-factor is live, then its degree must be at least two. The heuristic
H is defined as follows:

Given a partial one-factorization F with defect graph d(F), perform the following
operations:

1) choose any live point x (nondeterministically)
2) choose any one-factorf such that {x,f} is an edge ofd(F) (nondeterministically)
3) choose any point y such that {x, y} is an edge of d(F) (nondeterministically)
4) if {y, f } is an edge of the defect graph, then

replace F by F to (f, {x, y})
else

there is a pair in F of the form (f, { z, y}) (z 4: x)
replace F by F tO (f, {x, y})\(f, { z, y}).

If we apply the heuristic HI, then we obtain a new feasible solution in which the
cost either remains the same, or is reduced by one. Also, observe that the heuristic never
"fails," since steps 1), 2) and 3) can always be performed. The heuristic H2 is a slight
variation:

Given a partial one-factorization F with defect graph d(F), perform the following
operations:

1) choose any one-factorf (nondeterministically)
2) choose any two live points x and y such that {x,f} and {y,f} are both edges of

d(F) (nondeterministically);
3) if {x, y} is an edge of the defect graph, then

replace F by F tO (f, {x, y})
else

there is a pair of F of the form (, {x, y}) (J) 4: f)
replace F by F tO (f, {x, y})\(j, {x, y}).

As was the case with H, the heuristic H2 can always be applied, and it yields a new
feasible solution with either the same cost or a cost of one unit lower.
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There is no guarantee that these two heuristics are sufficient to always enable us to
construct a one-factorization. It seems possible that one could reach a local minimum
where no application of H1 or I-I2 produces a feasible solution of lower cost. However,
this does not seem to happen in practice (though we cannot prove that it will never
happen). In over 1000000 trials, the desired one-factorizations were always constructed.
Thus, as a threshold function we can define

f(c, I) o if c > 0, f(0, I) 0.

We can compare this hill-climbing algorithm to the algorithm to construct Steiner
triple systems described in 14]. The algorithm in 14] also appears very unlikely to "fail"
in practice, though it can conceivably do so [10].

We also want to note that it can be implemented so that each iteration requires
only constant time. The method is similar to the hill-climbing algorithm described in
[14]; so we do not describe the details here.

3. A hill-climbing algorithm for constructing Room squares. Suppose we have two
one-factorizations of Kn, say F (J, ,fn } and G (g, gn }. We say that
F and G are orthogonal if any j and any gj (1 _-< -< n l, =< j _-< n l) contain at
most one edge in common. A Room square of side n is defined to be a square array
R of side n l, in which every cell either is empty or contains an edge of Kn, such that
the filled cells in every row and every column ofR form a one-factor, and such that every
edge of Kn occurs in exactly one cell of R. Clearly, the rows of R will induce a one-
factorization ofKn, as will the columns. Also, these two one-factorizations are orthogonal
(this is equivalent to saying that no cell of R contains more than one edge of Kn). Con-
versely, a pair of orthogonal one-factorizations F and G give rise to a Room square in a
very natural way: index the rows of a square array R by the one-factors of F, and index
the columns by the one-factors ofG, and place every edge {x, y} in the cell (j, g), where
(x, y)

Room squares were introduced by T. G. Room in 1957, though examples can be
found in the literature as early as 1851 [7]. Room squares were studied extensively, but
the existence question was not solved until 1975, when it was shown that there is a Room
square of side n if and only if n is odd and n q: 3, 5. A condensed proof is presented in
Mullin and Wallis [9]. However, some ofthe constructions for constructing Room squares
are quite complicated, and it seems worthwhile to have an algorithm for producing
(many) different Room squares.

We have already noted that a Room square of side n is equivalent to a pair of
orthogonal one-factorizations of order n + 1, and that we have a practical method for
constructing one-factorizations. Our strategy now is to construct a one-factorization or-
thogonal to a given one-factorization, thereby producing a Room square. So, suppose
we have a one-factorization F, and we wish to construct G orthogonal to F. (As we
construct G, F remains fixed.) In terms of the Room square, we have determined the
rows (say), and we are attempting to "sort out" the columns.

Let us first consider how we should modify the hill-climbing algorithm to construct
a G orthogonal to a given F. We will maintain the array R, in which the rows are indexed
by the one-factors of F and the columns are indexed by the one-factors of G, as
we proceed. At any stage of the algorithm, R(J, gj) {x, y} if {x, y} j f3 g, and
R(J, g)) , otherwise.

We use the same two heuristics H1 and H2, as before, except now they may possibly
fail, if the added constraint of orthogonality is violated. Our modified heuristic H is as
follows:
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1) choose any live point x (nondeterministically)
2) choose any one-factor gi such that {x, gi} is an edge ofd(G) (nondeterministically)
3) choose any point y such that {x, y} is an edge of d(G) (nondeterministically)
4) letj be the one-factor off which contains the edge {x, y}
5) if R(f, gi) is not empty then

H fails
else if {y, gi} is an edge of the defect graph, then

replace G by G kJ (gi, {x, y})
define R(f, gi):= {x, y}

else
there is a pair in G of the form (gi, { z, y})
replace G by G t.J (gi, {x, y})\(gi, {z, y})
define R(, g):= {x, y}.

The heuristic Hz becomes:

1)
2)

3)
4)

choose any one-factor gi (nondeterministically)
choose any two live points x and y such that {x, gi} and {y, gi} are both edges
of d(G) (nondeterministically);
letJ be the one-factor off which contains the edge {x, y}
if R(f, gi) is not empty then
H2 fails

else if {x, y} is an edge of d(G), then
replace G by G tA (gi, {x, y})
define R(f, gi):= {x, y}

else
there is a pair in G of the form (gk, {X, y})
replace G by G (gi, {x, y})\(gk, {x, y})
define R(f, gi):= {x, y}
define R(, g) := .

When we try to construct a one-factorization G orthogonal to a given one-factori-
zation F, it often does happen that we reach dead ends. For example, consider the situation
when we have a feasible solution G with c(G) 1. The defect graph d(G) consists of a
triangle, of the form gi x y. No matter which heuristic we apply, we will attempt to add
this triangle to G. However, this may violate the orthogonality constraint, as there may
already be an edge { u, v } gi I"l fj, where {x, y} . Such a situation is a local minimum

(with respect to H and H2). Many other types of local minima can also arise, so we must

define a threshold function to allow for these eventualities.
After doing some experimenting, we chose the following threshold function:

f(c, I) 100. n if c > 0 (where the instance I consists of the graph Kn),

f(0, I) 0.

Given this choice ofthreshold function, we were interested in determining the prob-
ability p(n) of success of the algorithm, as a function of n (the size of the instance). This
probability seems impossible to estimate theoretically, so we performed a large number
of experimental runs, in order to obtain an empirical result. As n varied over several
values between 12 and 102, the probability p(n) varied between .083 and .143, in a
random fashion. The average value ofp appears to be between. 10 and. 11, and there is
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no trend for p(n) to increase or decrease as a function of n. We also calculated the average
cost of the local minima generated. Our results are presented in Table 1.

4. Constructing Room squares with subsquares. In this section, we mention an
application of our hill-climbing algorithm to an as yet unsolved problem, where we
expect to be able to prove some new results. This problem concerns the existence of
subsquares in Room squares. If R is a Room square of side n- 1, and we can find
m rows and columns ofR whose intersection, S, is a Room square in its own right
(of side m 1) then we say that S is a subsquare (of R) of side rn 1. Observe that we
can "unplug" S and replace it by any other Room square of side m on the same set
of vertices as S and obtain another Room square. Ifwe unplug S from R, we refer to the
resulting array as an (n 1, m 1) incomplete Room square.

Observe that there can exist no Room square which contains a subsquare of side 3
or 5, but it is possible for (s, 3) or (s, 5) incomplete Room squares to exist. Of course,
these cannot be completed.

We are interested in the following question: for what ordered pairs (s, t) does there
exist an (s, t) incomplete Room square? The following necessary conditions are not
difficult to prove; we refer the reader to 12] for details.

THEOREM 4.1. Ifthere exists an (s, t) incomplete Room square, where t >-_ O, then
s and are odd positive integers, s >= 3t + 2, and (s, t) (5, 1).

We suspect that these conditions are also sufficient, but this has not yet been proved.
The best known results concerning this problem can be found in [12].

We want to modify our hill-climbing algorithm to construct (s, t) incomplete sub-
squares. To do this, we need to reformulate the definitions in terms of one-factorizations
and modify our heuristics accordingly. This is quite straightforward.

Let F {j], f_ 1} be a one-factorization of Kn. Given any m vertices, Y, of
the Kn, there is an induced subgraph of Km of Kn. If there are m one-factors in F

TABLE
Construction ofRoom squares.

n # trials # successes Probability of success Average time per trial* Average cost

12 1000 126 .126 0.09 1.289
16 1000 118 .118 0.16 1.316
22 1000 97 .097 0.32 1.433
26 1000 101 .101 0.57 1.512
32 1000 99 .099 0.67 1.561
36 1000 83 .083 1.2 1.563
42 1000 103 .103 1.2 1.598
46 1000 108 .108 1.6 1.526
52 1000 98 .098 1.8 1.670
56 1000 120 .120 2.1 1.573
62 1000 89 .089 2.1 1.630
66 1000 90 .090 2.1 1.684
72 500 45 .090 3.7 1.670
76 500 50 .100 4.9 1.680
82 500 56 .112 6.2 1.680
86 500 55 .110 5.2 1.582
92 300 43 .143 5.8 1.550
96 300 35 .117 8.0 1.623
102 300 25 .083 7.3 1.707

We implemented our algorithm in Pascal/VS and ran it on the University of Manitoba Amdahl 5850
computer.
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whose intersection with produces a one-factorization of order m, then we say we have
a sub-one-factorization of order m. If we remove the sub-one-factorization of order m,
we obtain an incomplete one-factorization. We can formally define this concept as follows.
We start with the graph Kn Km, where m and n are both even. A short one-factor is
defined to be a set of (n m)/2 edges that partitions the vertices not in the Km. Then,
we can define an incomplete (n, m) one-factorization to be a set of n m one-factors
and m short one-factors of Kn Km, whose union contains every edge of Kn Km
exactly once.

Now, we can relate incomplete one-factorizations to incomplete Room squares.
Suppose we have two incomplete (n, m) one-factorizations, say F {f, fn- } and
G {gl, gn- }, where the short one-factors areJ, fm- and g, gm- 1.

We say that F and G are orthogonal if anyj and any gj (1 =< =< n 1, =< j =< n 1)
contain at most one edge in common, and further, anyJ and any gj (1 =< =< m 1,

=< j =< m 1) contain no edges in common. It is not difficult to see that a pair of
orthogonal incomplete (n, m) one-factorizations are equivalent to an incomplete
(n 1, m 1) Room square.

Hence, it is necessary only to modify the hill-climbing algorithm for one-factori-
zations and Room squares to handle incomplete one-factorizations. This is very simple.
When we nondeterministically generate a triple (J, (x, y}), say, we must first check that
this triple is permissible as part of an incomplete one-factorization. That is, x and y
cannot both be points in the Km, and if3 is a short one-factor, then neither x nor y can
be in the Km. If either of these two situations arises, then the relevant heuristic fails, and
we must try again.

When constructing these incomplete designs, there is a much greater probability
that a heuristic will fail, so we should adjust the threshold function accordingly, allowing
more tries at each level before we give up. We have run some experiments to test how
the probability of success changes with different threshold functions. For each (n, m)-
incomplete Room square considered, we tried several different threshold functions, of
the formf(c, I) K.(n + 1), if c > 0,f(0, I) 0. We tried K 100, 500, 1000 and
2000, as indicated.

We obtained the following data, which we present in Table 2. Note that, for fixed
n and m, the probability of success tends to decrease as the threshold is increased.

5. Applications. The main application ofa hill-climbing algorithm, such as the one
we describe, is to produce many different designs very quickly. In [13], a hill-climbing
algorithm was used to construct 21 7600 Steiner triple systems of order 19. These were
then tested for isomorphism using invariants, and 2111276 of the designs were noniso-
morphic.

We expect that a similar approach could successfully be used to construct large
numbers of nonisomorphic one-factorizations and Room squares. Modifications of the
invariants used in [! 3] can be used to test isomorphism in these cases, as well.

We should also mention that the time and memory requirements for these algorithms
are modest enough so that they can be implemented very successfully on most micro-
computers. The algorithms can very easily be animated, so an observer can watch the
designs being constructed. This also makes it possible to detect when the algorithm is
caught in a "vicious circle." In an interactive environment, the observer could determine
when a particular run has reached a "dead end," thus obviating the need for an objective
function.

The other main application of hill-climbing is to construct previously unknown
designs. Since the subsquare problem for Room squares is unsolved, the hill-climbing
algorithm will enable us to produce new examples of Room squares with subsquares. It
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TABLE 2
Construction of(n, m) incomplete Room squares.

(500 trials ofeach example.)

n m Threshold # successes Probability of success Average cost

19 0 K 100 43 0.086 1.64
19 0 K= 500 46 0.092 1.57
19 0 K= 1000 52 0.104 1.49
19 0 K 2000 58 0.116 1.46

19 K 100 41 0.082 1.75
19 K= 500 50 0.100 1.37
19 K 1000 51 0.102 1.39
19 K 2000 49 0.098 1.40

19 3 K= 100 2 0.004 3.89
19 3 K 500 14 0.028 2.49
19 3 K= 1000 14 0.028 2.57
19 3 K 2000 11 0.022 2.43

19 5 K= 100 0 0.000 4.57
19 5 K 500 0 0.000 4.82
19 5 K 1000 0 0.000 4.68
19 5 K 2000 0.002 4.30

29 0 K 100 35 0.070 1.55
29 0 K 500 60 0.120 1.33
29 0 K= 1000 58 0.126 1.35
29 0 K 2000 53 0.106 1.35

29 K= 100 26 0.052 1.93
29 K= 500 46 0.092 1.47
29 K= 1000 38 0.076 1.50
29 K 2000 56 0.112 1.41

29 3 K= 100 0.002 4.15
29 3 K 500 10 0.020 2.69
29 3 K 1000 15 0.030 2.32
29 3 K 2000 31 0.062 1.85

29 5 K= 100 0 0.000 5.85
29 5 K 500 0 0.000 5.13
29 5 K 1000 0.002 4.39
29 5 K 2000 3 0.006 4.93

39 0 K 100 33 0.066 1.67
39 0 K= 500 61 0.122 1.44
39 0 K 1000 54 0.108 1.46
39 0 K 2000 46 0.092 1.39

39 3 K= 100 3 0.006 3.95
39 3 K= 500 29 0.058 2.10
39 3 K= 1000 39 0.078 1.74
39 3 K 2000 42 0.084 1.70

should not be difficult to find an example of any particular order. Hopefully, recursive
techniques will then lead to a complete solution of this problem.

For other applications of hill-climbing algorithms in obtaining new results in design
theory, we refer the reader to [3], [4], [14] and [15].
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ON GOSSIPING WITH FAULTY TELEPHONE LINES*

RAMSEY W. HADDADf:I:, SHAIBAL ROYal AND ALEJANDRO A. SCH.FFERf

Abstract. In the well-known gossip problem, each of n gossips initially has a unique piece of information.
The gossips can make a sequence of two-party telephone calls in which the two participants exchange every
piece of information they have at the time ofthe call. The problem is to determine a minimum length sequence
oftelephone calls such that, by the end, everyone knows everyone else’s information. We consider Berman and
Hawrylycz’s variation on this problem [this Journal, 7 (1986), pp. 13-17]. They introduce the additional feature
that as many as k of the calls may fail in the sense that no information is exchanged, where k is a second
parameter ofthe problem. We improve upon their upper bound on the minimum number of calls needed. This
disproves a conjecture in the same paper. We also briefly consider the parallel complexity of this problem.

Key words, gossip problem, telephone problem, fault-tolerant communication

AMS(MOS) subject classifications. 05C38, 94C15

1. Introduction. In the well-known problem ofgossips and telephones, first proposed
by Boyd, n gossips each have a unique piece of information, and they seek to find out
everyone’s information after a sequence of telephone calls. During each telephone call,
the two participants exchange every piece of information they have at the time of the
call. The goal is to minimize the total number of telephone calls. Baker and Shostak ],
Bumby [3] and Hajnal, Milner and Szemerrdi [4] and Tijdeman [8] have shown that
2n 4 calls are necessary and sufficient for n >_- 4. Many restrictions and variations
of the problem have also been considered (cf. the bibliography of [9], and more recent
papers [6], [7]).

In this paper we consider a variation on Boyd’s problem proposed by Berman and
Hawrylycz [2]. Berman and Hawrylycz introduce the additional feature that as many as
k ofthe calls may fail in the sense that no information is exchanged, where k is a second
parameter of the problem. The sequence of calls attempted is static, i.e., the gossips
cannot attempt different calls depending on which ones have failed previously. Berman
and Hawrylycz seek bounds on r(n, k), the number of telephone calls needed to ensure
that all n gossips possess all n pieces of information even if some arbitrary subset of k
calls all fail. They show that

I()k+4 ]_2[fn]+l<r(n,k) < l(3)(n-l) k+ (n-l) for k< n-2,

2
n -2[fn]<-_r(n,k)<-_ k+- (n- 1) fork>-n-2

and conjecture that the upper bound is almost tight--more precisely that

(3)r(n,k)= k+- n-c
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where c is bounded as n grows without bound and k stays fixed. We disprove their
conjecture for all but small fixed values of k by exhibiting a family of calling sequences,
indexed on m -< log2 n that prove the following theorem.

THEOREM 1.

z(n,k)<= +2m (n-l)+2nm-1
If k )) log n, then by choosing m [(log2 n)/2] the ratio of the number of calls in

our construction to the lower bound proved in [2] tends to in the limit, since

r(n, k) <- - + 2

_-< +2+logn (n+3n)

nk + O(kn + n log n).
2

n 2[(1og2 n)/2])2f(log2 n)/21_ +

This is an improvement on the upper bound in [2] when

(k/2 + 2 + log2 n) < (k + 3/2);

i.e., when k > + 2 log2 n. We can improve on their bounds for smaller k by choosing
rn [log2 ((k + 5)/4)] to get

nk 10 10 ) 2).[ log)_ (k + 5)- (n 1) + O(kr(n’k)<--- + \ k+ k+

For fixed, small values of k the lower order terms of the above are not insignificant
when compared to the nk/2 term. These bounds can be improved further by making m
appropriately small. This increases the factor in front of the nk term, but the savings in
the low order terms make up for it. By using m 2 we get

2
r(n,k)<=-z(k+ 8)(n- 1)+ 2k+ 16,

whereas m 4 gives

r(n,k)<=(k+ 16)(n- 1)+ 8k+ 128.

The former is an improvement on the bound of [2] when (2/3)(k + 8) < (k + 3/2), that
is when k -> 12, and the latter when (8/15)(k + 16) < (k + 3/2), or k >- 16.

The rest ofthe paper is organized as follows. Section 2 defines the relevant concepts
and proves a lemma used in the following sections. Section 3 essentially proves Theorem

for the special case when the number of vertices is a power of 2. Section 4 generalizes
this result to an arbitrary number of vertices. Section 5 discusses the parallel complexity
of this problem.

2. Preliminaries. We model the sequence of calls by a simple graph on n vertices
with multiple numeric labels on each edge. The vertices represent the different gossips.
Each label on an edge represents an attempted telephone call; the numbers denote the
temporal order in which the calls are made. We call two paths edge disjoint if they share
no edges and label disjoint ifthey share no edge-label pairs. Two label disjoint paths may
share an edge if the labels associated with that edge on the two paths are different (i.e.,
the calls along that edge are made at different times). In order for vertex v to receive the
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information possessed by u, there must be a path ofsuccessful calls with strictly ascending
labels from u to v. Since one cannot know a priori which k calls will fail, any calling
sequence will be successful if and only if for every pair of distinct vertices (u, v) there are
k + label disjoint ascending paths from u to v.

As in the construction of Berman and Hawrylycz there will be sets of calls that can
(among themselves) be made in any order. Within each such set, all calls will have the
same label. Since we do not specify the order within such a set, only one member of the
set can appear in any ascending path.

Our constructions repeat a fixed sequence of calls over and over. Let a phase be an
ordered sequence (E, E2, Em) of subsets of E which denotes a sequence of calls
with the meaning that one call is made along each edge in Ei after all calls in Ei-.
Implicitly, each edge of Ei in phase r is labeled with the ordered pair (r, i), where the
phase number r is considered more significant than the subphase number i. (Alternately,
this could be viewed as each edge being labeled + m(r- 1).) We specify no order for
the calls within any particular Ei.

Our first lemma suggests that regardless of the structure of the graph of calls, it is a
good strategy to find many short edge disjoint paths connecting each pair of vertices in
the graph and to make calls repeatedly along those paths. Because the paths are edge
disjoint, no sequence of calls along one of the paths ever interferes with a sequence of
calls along another path. Ifwe repeatedly try the calls along each of the paths the cost of
a failed call is not too great because we will try to make another call along the same edge
in the next phase. Moreover, calls in the current phase that succeed may still be used in
conjunction with calls from other phases to establish label disjoint ascending paths between
other vertices.

LEMMA 1. If r phases establish p edge disjoint ascending paths from u to v, then
r + s phases establish (s + 1)p label disjoint ascending pathsfrom u to v.

Proof. Let P, P:, Pp be the p edge disjoint ascending paths from u to v. Any
Pi consists of a sequence of edges labeled with a phase number and a subphase number.
Let Pi(j) be the path obtained by using the same sequence of edges as in Pi, but with
the phase numbers of the edges incremented by j.

Since Pi is edge disjoint from the other Pg’s (with g 4: i), none of the Pi(j )’s share
any edge with Pg(h) for any h. Because of the different phase numbers, no Pi(j shares
an edge-label pair with Pi(h), provided h 4: j. All the Pi( j ), for 0 -< j =< s, are completed
by the end of phase r + s. Hence, we have (s + 1)p label disjoint ascending paths from
uto v. []

COROLLARY 1. If r phases give us p edge disjoint ascending paths between every
pair ofvertices, then we can guarantee at least k + label disjoint ascendingpaths between
every pair ofvertices in f(k + 1)/p] + r phases.

3. A construction for n 2’. We begin with a construction that establishes
-(n, k) <= nk/2 + O(n log n) assuming n 2 for some integer m. Even with this severe
restriction on n, this bound does not improve on the previous bound unless k grows
much faster than log n. However, in the next section we generalize the construction
to improve the bound of Berman and Hawrylycz for arbitrary n and all but small fixed
values of k.

A hypercube of order 2m (or an m-cube) is the undirected graph G (V, E) where
V {0, }m and E {(x0y, xly) xOy 6 V}. Let E ) := {(xOy, xly) E Yl j }
for =<j-< rn denote the set of edges in dimension j of the m-cube (note that
E t3; Et-)). Each vertex is incident to exactly one edge in E) for each j. Associated
with any path (Uo, u, Ur) V + in an m-cube is a unique dimension sequence
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(d,, d2, dr) { 1, 2, m} such that (ui- ,, ui) E(a). Given a particular ver-
tex, any dimension sequence identifies a unique walk starting from that vertex in the
m-cube; the walk may or may not be a path. One trivial sufficient condition for such a
walk to be a path, which we use implicitly in the proof of Lemma 2, is that all dimen-
sions appear at most once in the dimension sequence. From now on, we shall denote
paths in an m-cube by the starting vertex and the dimension sequence. We call a path in
an m-cube and its dimension sequence, dl, d2, "", dr, p-fold if there are at most p
indices _-< r < such that di >- di + 1.

In this construction two gossips participate in the same phone call only if they
correspond to adjacent vertices in the hypercube, with the possible exception of some
final special rounds of 2n 4 calls.

LEMMA 2. There are rn (internally) vertex disjoint 1-fold paths between any pair
(u, v) ofdistinct vertices in an m-cube.

Proof Let u[ j denote the jth bit of u. Let P := { j u[ j v[ j }, and

Q:= {1,2, ,m}\P.
In any dimension sequence specifying a path from u to v, any element ofP must appear
an even number of times, while any element of Q must appear an odd number of times.
Let R := (ql, q2, "’", qlal) denote the sequence listing the elements of Q in ascending
order. Let R(i) be the cyclic rotation (qi, qi + 1, qlal,ql, qi- 1) for =< --<_ QI.

The first [QI paths from u to v are given by the dimension sequences

{R(i): <-i<-[QI}.

To see that these paths are internally vertex disjoint observe that if 4: j, then any proper
nonempty prefixes of R(i) and of R(j do not contain exactly the same elements.

For each p e P, identify the unique ip such that the sequence pR(ip)p is 1-fold. If
P < ql or p > qlQI then ip is 1, otherwise iu is the unique integer such that qip- < P < qip.
The remaining IPI paths are given by the dimension sequences {pR(ip)p p P}. The
respective first dimensions of these PI paths do not occur in any ofthe other dimension
sequences, so all the paths are internally vertex disjoint.

Finally, note that the QI + ]PI m paths are each of length at most m + 1. if]

COROLLARY 2. After 2 phases of(E1), E2), E(m)), there are m edge-disjoint
ascending pathsfrom any vertex u to any other vertex v.

LEMMA 3. Ifn 2 then

+ + + (k + mod m)(2n- 4)
rn ---’ --Proof From Corollaries and 2, we can see that repeating [(k + 1)/mq + phases

of (E(1), E(2), E(m)) will suffice for k-failure-safe total communication. The number
of calls in this case is ([(k + 1)/m] + 1)(mn/2).

We note that because ofthe ceiling function, it might be preferable for certain values
of n and k to replace the last phase with j iterations of a calling sequence requiting
2n 4 calls such as that given in [1 that create j (final) ascending paths between any
pair of vertices. In this scheme, the total number of calls is--- +j(2n 4).

For any interesting value of n, a choice ofj > (k + mod m) will never be optimal.
COROLLARY 3. Ifrl 2m, then (n, k) <= nk/2 + O(n log n).
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4. A generalized construction. The previous construction, using a single hypercube,
works well for n 2m and k log n. We can generalize this construction to achieve
improved bounds for arbitrary n and small k.

Define an (h, m)-hypercube system as follows: Take h hypercubes, each having 2m

vertices (we will choose m later), select one vertex from each hypercube (say 0m), and
coalesce these h vertices into a single vertex. The resulting graph has h(2m 1) + vertices.
All telephone calls take place along hypercube edges.

LEMMA 4. We can achieve k-failure-safe total communicationfor an (h, m)-hypercube
system with ff(k + 1)/m] + 3)h2mm/2 calls.

Proof. Let Ei be the union of edges in the E(i) of all the hypercubes. A single phase
of (El, E2, Em) will use h2mm/2 calls.

It follows from Lemma 2 that after 4 phases there will be m edge disjoint ascending
paths between every pair ofvertices in this graph. It takes 2 phases to get all the information
to the central vertex belonging to all the hypercubes, and 2 more phases to disseminate
the information to all the other vertices. By Corollary 2, there will be k + label disjoint
ascending paths between every pair ofdistinct vertices after [(k + 1)/mq / 3 phases. Thus,
the total number of calls needed to achieve k-failure-safe total communication for this
system is at most ff(k + 1)/m] + 3)h2mm/2.

Choosing h F(n 1)/(2m 1)q yields a graph with

ti [(n )/(2m 1)](2m 1) + >_- n

vertices. If the above inequality is strict, then there are fewer than 2 vertices left for
the last hypercube. In this case some real vertices assigned to that hypercube may simu-
late the actions of several other positions in the hypercube that are not occupied by a real
vertex. In fact, in any construction one can make any single real vertex simulate many
unfilled positions in order to supply necessary symmetry; therefore, r(n, k) <= r(, k).
Note that such simulation may require the creation of multiple copies of an edge in the
graph to ensure the existence ofenough edge disjoint paths because some ofthe requisite
paths in the full hypercube (or other construction) may pass through positions that are
not occupied by real vertices. Thus, the number of calls is

"r(n,k)<=’r(,k)<=([k+ l]+3)[ n-1 ]2mmm 2m-1 2

()(n-1)2mm--k+4
2m

+1
m -1 2

+2m (n- 1)2m 1+2

(k)( n-1 2m),+2m (n-1)+2 -1 +
as claimed in Theorem 1. U]

5. Parallel complexity. With slight modifications, our schemes can also yield calling
sequences that are efficient in the amount of time they take to complete which can be
viewed as the parallel complexity of the problem. Assuming that each call takes unit
time and that each gossip participates in at most one call at a time, Kn6del [5] showed
that log2 n time is required even in the absence of failures (k 0). Since each gossip must
make at least k telephone calls and can attempt only one call per unit time,
max (k, log2 n) is a lower bound on the parallel complexity.
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As noted in 2, our scheme specifies no order on calls with the same label, and
hence, these can be made simultaneously. The only thing that might prevent this is if
two edges with the same label share a vertex. In our 3 construction, when n is a power
of 2 (and when we do not use any final sequences of 2n 4 calls), no two edges with the
same label share a vertex. Thus, since the calling sequence outlined in the proof of
Lemma 3 uses at most ff(k + 1)/mq + 1)m =< k + 2 log2 n distinct labels, it requires exactly
that much time.

However, in the scheme of 4, when n is not a power of 2, the central vertex that
belongs to all the hypercubes has many incident edges with the same label. Thus the
scheme is not efficient in this parallel sense. If k is small this seems unavoidable because
one cannot afford to reduce the degree at the cost ofincreasing the diameter ofthe graph.
For k )) log n, however, we can modify our construction to improve its parallel perform-
ance without too much degradation to its total number of calls.

For our new construction let rn I-(log2 n)/2], h [n/2m] (and hence, h _-< 2m). We
have a central hypercube with 2m vertices. Also we try to have h =< 2" outer hypercubes
with 2m vertices each. Each outer hypercube shares one vertex with the central hypercube
a different vertex for each outer hypercube. If there are not enough vertices to fill the
outer hypercubes, then we leave two of them incomplete, so that each one has at least
2m- vertices. The total number of vertices in this graph if all the outer hypercubes are
complete is

r (h + 1)2m h >- [n/2m]2m >= n.

A phase consists of calls along all of the edges in the outer hypercube, followed by
calls along all of the edges in the central hypercube; the calls are made in increasing
order of dimension in both cases. Thus each phase involves 2m labels, and at most
(h + 1)2ram edges. Four phases and the outer part of the fifth phase establish rn edge
disjoint ascending paths between any pair of verticies. Thus, we need [(k + 1)/m] + 4
phases, and

ff(k + 1)/m] + 4)2m =< 2k + 5 log2 n + 10

distinct labels and units oftime are needed to establish k-failure-safe total communication
if the outer hypercubes are complete. If two of the outer hypercubes have to simulate
vertices, we may have to slow down the outer phases of the calling sequence by as much
as a factor of two.

6. Conclusion. We have exhibited constructions that improve the bounds for the
number of calls needed to achieve k-failure-safe total communication for various ranges
of k. The bound

r(n, k) <= -- nk+ O n + k)

is an improvement for almost all k. If k is sufficiently large, then the bound

nk
r(n, k) <=- + O(kfn + n log2 n)

is even closer to the lower bound. For the special case of n 2m, we can get a further
small improvement to

nk
-(n, k) <=-+ O(n log2 n).

We have also considered the parallel complexity of this problem and shown that the
parallel time used by our scheme is within a small multiplicative factor of the optimal.
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COMPUTING A SPARSE BASIS FOR THE NULL SPACE*
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Abstract. We present algorithms for computing a sparse basis for the null space ofa sparse underdetermined
matrix. We describe several possible computational strategies, both combinatorial and noncombinatorial in
nature, and we compare their effectiveness for several test problems.
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1. Introduction. Let A be an m n matrix of rank r. (Without loss of generality,
we will assume throughout that r =< m _-< n.) If B is an n (n r) matrix of rank n r
such that

AB O,

then the columns of B form a basis for the (n r)-dimensional null space of A. For
brevity, we will refer to such a matrix B as a null basis. We will refer to the individual
columns of B as null vectors, each of which corresponds to a set of columns ofA whose
linear combination is equal to zero. Obviously such a matrix B is not unique, not only
in the relatively trivial sense of different possible scalings and column permutations, but
also in the sense that there may be structurally distinct null bases for the same A (i.e.,
involving different combinations of columns ofA).

The matrix B may be represented either explicitly, by computing its elements, or
implicitly, as a product of transformations. An implicit representation suffices for some
purposes; for others an explicit representation is necessary. In this paper we consider the
problem of computing B explicitly.

More specifically, if the matrix A is sparse, we wish to compute a suitably sparse
null basis B. It is difficult to define precisely what we mean by a "suitably" sparse null
basis. For one thing, there may be no such sparse B. For example, the matrix

[I, el,

where I is the identity matrix and e is the column vector all of whose components are
equal to 1, is quite sparse but has no explicit sparse representation for its one-dimensional
null space. Moreover, even if a sparse null basis exists, the problem of computing a
sparsest representation for it has been shown to be NP-hard [3]. As in many sparse matrix
computations, we will therefore content ourselves with developing heuristic computational
strategies that find a "good" sparse null basis, though not necessarily the sparsest possible.

The sparse null basis problem has at least one important feature that distinguishes
it from most other sparse matrix problems. The analysis of most sparse matrix problems
is simplified by ignoring any zeros that might be created through exact cancellations as
a result of some arithmetic operation on nonzeros (see, e.g., [6, p. 27]). In computing a
sparse null basis, however, we are specifically seeking nontrivial linear combinations of
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nonzeros that give a zero result (i.e., arithmetic cancellation). For this reason we will
necessarily employ numerical techniques along with some standard combinatorial meth-
ods, such as bipartite matching.

Before proceeding with a discussion of the algorithms we have developed, we will
first give some applications that justify our interest in the sparse null basis problem and
review other work on it. We then state our basic strategy for computing a sparse null
basis and explore in detail several possible variations. The results of extensive empirical
testing and some final observations conclude the paper.

2. Applications. There are numerous applications in which a null basis is important.
The fundamental fact on which most of these applications is based is that the general
solution of an underdetermined system of linear equations

(2.1) Ax= b

can be expressed as

(2.2) x .+ By
for some vector y, where is any particular solution to the system and B is a null basis.
In constrained optimization problems, for example, ifa set oflinear (or linearized) equality
constraints is expressed in the form (2.1), then every feasible point can be expressed in
the form (2.2), thereby allowing the constrained problem to be solved by means of an
unconstrained problem in the variable y. See [2, pp. 99-104] or [7, pp. 155-163] for
further discussion of such null space methods in optimization.

The specific application that motivated our own interest in the null basis problem
is the force method of structural analysis. Here A is the equilibrium matrix of a structure
and b is a vector of applied loads, so that (2.1) expresses a constraint on the system force
vector x, which is to be determined. (See [10] and references therein for further details
of the discussion to follow.) The locality of connections within the structure causes the
matrix A to be quite sparse.

Minimizing the potential energy requires that x minimize the quadratic form

1/2xrDx
subject to the constraint (2.1), where the n n, symmetric, block-diagonal matrix D is
the element flexibility matrix of the structure. Using (2.2), we see that y must satisfy the
symmetric linear system

(2.3) BTDBy -BrD.
In this context the null basis B is called the self-stress matrix. Thus, having computed a
particular solution A and the redundant force vector y, the desired system force vector x
is given by (2.2). Even if B is sparse, BDB may be dense; in this case, BrDB would be
used in factored form to solve (2.3) by an iterative technique such as conjugate gradients.

One ofthe principal virtues ofthe force method is that it separates the computation
into two somewhat independent phases:

(1) Compute a null basis B and a particular solution .
(2) Solve the linear system (2.3).

The importance ofthis separation becomes apparent when solving a sequence ofproblems
having a fixed layout but differing material properties, such as multiple redesign problems
or nonlinear elastic analysis. In such cases the matrix A is fixed, but the matrix D changes
from problem to problem. Thus the first phase need be done only once for the entire
sequence ofproblems, and only the second phase is repeated for each problem. A further
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implication is that it may be worth considerable effort to produce a sparse B, since this
one-time cost will be amortized over the whole sequence of problems.

Another important conclusion we can draw from the various uses of the null basis
is that it should be as well conditioned as possible (i.e., the columns of B should not be
nearly linearly dependent numerically). For example, a poorly conditioned B would
make the conditioning of the linear system (2.3) extremely poor and might therefore
yield a highly inaccurate solution. For numerical purposes, an orthogonal null basis
would be highly desirable, but in many cases this goal would conflict too greatly with
sparsity considerations.

3. Methods for computing a null basis. Many mathematical programming algo-
rithms use a variable-reduction technique to compute a null basis B (see, e.g., [7, p.
163]). Assume for the moment that A has full row rank m, and let A be partitioned so
that

AP=[A1,A2]

whereA is m m and nonsingular, and P is a permutation matrix that may be required
in order to ensure that A is nonsingular. We may then take

-AA2](3.1) B=P
I

A permutation P that yields a structurally nonsingular A can be chosen purely symbol-
ically (see, e.g., [5]), but this says nothing about the possible numerical conditioning of
At and the resulting B.

In order to control numerical conditioning, numerical pivoting must be employed.
Several such methods have been proposed based on various matrix factorizations, in-
cluding LU, QR, LQ, SVD, and Gauss-Jordan elimination (see [10] for a survey). For
example, QR factorization with column pivoting (see, e.g., [8, p. 165]) yields

AP=Q[R,R2]

where P is again a permutation matrix, and R is an upper triangular matrix of order m.
We may now take

(3.2) B=P
I

We note that ifthe permutation matrix P were the same in both cases, then the null
bases given by (3.1) and (3.2) would be the same. Thus, the QR approach can be viewed
simply as a means of choosing a permutation P on numerical grounds. Of course, nu-
merical considerations may be at odds with sparsity considerations, and a compromise
may have to be made between the two. In any case, with either (3.1) or (3.2) there may
be a great deal ofintermediate fill during the computation. Moreover, forcing B to contain
an embedded identity matrix may restrict us to a considerably less sparse null basis than
might otherwise be possible.

WhenA is banded, a method for computing a banded null basis B has been developed
by Topcu [15] and Kaneko, Lawo and Thierauf [11]. Their method is based on LU
factorization and is called, for reasons that will become obvious, the "turnback" method.
Heath, Plemmons and Ward [10] extended and adapted this method for use with QR
factorization; see also Berry et al. [1]. Our algorithms, described in 4 and 5, were
motivated by turnback; thus we describe this method in some detail below.

Write A (a, a2, an) by columns. A start column is a column as such that
the ranks of (at, a2, as- t) and (a, a2, as) are equal. Equivalently, as is a start
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column if it is linearly dependent on lower-numbered columns. The coefficients of this
linear dependency give a null vector whose highest-numbered nonzero is in position s.
It is easy to see that the number of start columns is n r, the dimension of the null
space ofA.

The start columns can be found by doing a QR factorization ofA, using orthogonal
transformations to annihilate the subdiagonal nonzeros. Suppose that in carrying out
the QR factorization we do not perform column interchanges but simply skip over any
columns that are already zero (or numerically negligible) on and below the diagonal.
The result will be a factorization of the following form:

R

The start columns are the columns where the upper triangular structure jogs to the fight;
that is, as is a start column if the highest nonzero position in column s ofR is no larger
than the highest nonzero position in earlier columns of R.

Turnback finds one null vector for each start column as by "turning back" from
column s to find the smallest k for which columns as, as-1, "’", as-k are linearly
dependent. The null vector has nonzeros only in positions s k through s. Thus if k is
small for most of the start columns, then the null basis will have a small profile. Note
that turnback operates on A, not R. The initial QR factorization of A is used only to
determine the start columns, and is then discarded.

As described above, the null vector that turnback finds from start column as may
not actually be nonzero in position s. Therefore, turnback needs to have some way to
guarantee that its null vectors are linearly independent. Heath, Plemmons and Ward
accomplish this by forbidding the leftmost column ofthe dependency for each null vector
from participating in any later dependencies. Thus, if the null vector for start column as
has its first nonzero in position s k, every null vector for a start column to the fight of
as will be zero in position s k.

4. Overview of the algorithms. The four algorithms we compare in this paper fit
the following framework, which is based on turnback.

Preorder the columns ofA;
Perform QR factorization ofA to get start column numbers Sl, $2, S r;
for j:= lton-rdo

Find a null vector whose highest nonzero position is sj

The initial QR factorization is done by the George-Heath algorithm [9], which uses
sparse data structures and Givens rotations to avoid intermediate fill. As in turnback,
the factorization is used only to find the start columns, and is then discarded. (In the
context of solving an underdetermined system (2.1), (2.2), the initial QR factorization
can be used to obtain the particular solution .) Preordering the columns ofA may be
necessary to make the initial QR factorization sparse. We experimented with several
preordering strategies, as described in 6.

Each start column is the rightmost member of some dependent set of columns.
Thus, each start column corresponds to a null vector whose highest-numbered nonzero
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is in that column. Each such null vector is found independently. The null basis therefore
contains an embedded triangular matrix, which is the rows of B corresponding to start
columns ofA.

The algorithm maintains a set of active columns, initially containing only the current
start column as. It adds lower-numbered columns to the active set, one at a time. If a
lower-numbered column is dependent on some active columns not including the start
column, that column is not added to the set. When the active set becomes linearly de-
pendent, its columns correspond to the nonzero positions of the desired null vector.

The active rows are the rows of A in which some active column is nonzero. The
active submatrix is the matrix of active rows and columns. Thus, the algorithm keeps
adding columns to the active submatrix until it becomes deficient in column rank. In
order to produce a sparse null vector, we want the active submatrix to grow as little as
possible before a dependency is found.

The algorithm for finding one null vector is summarized in the following pseudocode.

Active Columns := {as };
repeat

Choose an inactive column , < s;
if ac is independent ofActive Columns {as }

then Active Columns := Active Columns + {ac }
until Active Columns is linearly dependent

The algorithm determines linear dependence or independence by maintaining a QR
factorization of the active submatrix. The factorization is stored as a single matrix, each
column of which contains a column ofR above the diagonal and a Householder trans-
formation below the diagonal. It is updated as follows. Suppose there are k active columns,
and a new column is being considered as a potential active column. The first k Householder
transformations are applied to the new column. If the result has any nonzeros below
position k, a new Householder transformation is computed to zero the new column
below position k + (thus updating the QR factorization) and the new column becomes
active.

If, on the other hand, the result is zero below position k, then the new column is
dependent on the other active columns. Either the dependency includes the start column,
in which case the desired null vector has been found; or the dependency excludes the
start column, in which case the new column does not become active and the QR factor-
ization is not updated. Once a dependency has been found, the numerical values of the
nonzero entries in the corresponding null vector are computed by back substitution with
the triangular matrix R.

This procedure guarantees that the active columns are always linearly independent,
so when we find the null vector it will be nonzero in position s as desired. Notice that
this part of the algorithm is purely numerical; we use no information about the nonzero
structure except in the definition of an active row as one in which an active column is
nonzero.

The size of the active submatrix is crucial to the efficiency of the algorithm in three
ways. First, its QR factorization dominates the space required by the algorithm. Second,
updating this QR factorization dominates the total time required. Third, the number of
columns in the active submatrix is at least as large as the number of nonzeros in the
current null vector, so small active submatrices will lead to a sparse null basis. We want
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somehow to select columns for the active submatrix in a way that will keep the active
submatrix small. The next section considers several strategies for selecting columns.

The QR factorization of the active submatrix tends to have a banded structure,
regardless of the strategy used to select active columns. The lower band structure arises
because the Householder transformation in a given column affects only rows that were
active when that column was added to the submatrix, so that column ofthe factorization
is zero in all subsequent active rows. The upper band structure arises because a newly
active column may not have any nonzero rows in common with a particular previous
active column, in which case that previous column’s Householder transformation does
not affect the new column. The factorization of the active submatrix, therefore, can be
stored in a profile data structure: For each column, record the row numbers of the first
and last nonzeros in the column, and store only the values in that range of rows. Our
experience is that this usually reduces the storage requirement for the active submatrix
to between 10-25% of the storage required for a dense matrix.

5. Details of column selection strategy. The heart of the algorithm is the strategy
for choosing columns to add to the active submatrix. Since finding the sparsest null vector
of a matrix is NP-hard [3], we do not hope to find the best possible choice of columns.
Rather, we consider several heuristics.

5.1. Closest column next (Turnback). The simplest strategy is to choose columns
in fight-to-left order from the start column a. This is the "turnback" strategy described
in 3, with a minor difference in the way it avoids finding linearly dependent null vectors.
The turnback algorithm in [10] never adds to the active submatrix the column corre-
sponding to the lowest-numbered nonzero component of any earlier null vector; our
implementation may add such a column, but it never adds a column that would create
a dependency that does not include a.

Turnback performs well when the columns in a dependent set are close together in
A, which happens when A is banded. Turnback tries to minimize the bandwidth of the
current null vector, so it tries to produce a banded null basis.

Our experience is that turnback usually produces a basis with a sparse band, even
when the band is fairly narrow. Therefore, a general sparse data structure may be more
compact than a band or profile data structure. Our implementation stores both A and
the null basis B by columns in the general sparse data structure used in Sparspak [6].

5.2. Cheapest column next. Turnback tries to find null vectors with small bandwidth
by choosing columns close to the start column. In a general sparse setting we want to
choose columns on grounds of sparsity rather than bandwidth. The next algorithm assigns
each column a cost that measures the growth it would cause in the active submatrix;
then the algorithm chooses the cheapest column.

Let n be the number of columns in A. The cost of column a is defined to be as
follows:

cost(a) (number of nonzeros in inactive rows ofa)

-(number of nonzeros in active rows of aj)/n

This definition makes a column cheaper if it adds fewer rows to the active submatrix.
The null vector is sparse if the final active submatrix has few columns. The submatrix
has few columns if it has few rows, since the null vector is complete when the submatrix
becomes deficient in column rank.
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In case of a tie in the number of nonzeros in inactive rows, we make a column
cheaper if it has more nonzeros in active rows. The heuristic reason for this is that we
hope to encounter numerical cancellation that will make the active submatrix deficient
in column rank while it still has more rows than columns. Our experience is that such
cancellation is more likely if the active submatrix is denser.

If ties in cost still remain, we make a column cheaper if it is farther to the right,
that is, closer to the start column. All else being equal, this tries to minimize bandwidth.
Our experience is that this tiebreaking rule usually makes little difference in the sparsity
of the basis, but on some banded problems it helps significantly. Cheapest-column-next
with cost defined only by this tiebreaking rule is the same as turnback.

5.3. Choosing a column by matching. A disadvantage of cheapest-column-next is
that it can add a "useless" column that contains nonzeros in some inactive rows, but is
linearly dependent on the active columns if we consider only the active rows. We can
avoid most of the useless columns by using the combinatorial structure of the matrix.
In this section we describe two versions of a heuristic that uses matchings in bipartite
graphs to guide the search for a good column. The Appendix contains the necessary
definitions and lemmas from bipartite matching theory.

In combinatorial terms, the matrix A is a bipartite graph whose two disjoint sets of
vertices are its rows and its columns, and whose edges are its nonzeros. The start column
as is a vertex ofA. The active submatrix is the subgraph containing the active columns,
the active rows (which are the vertices adjacent to active columns), and the edges between
them. The active columns less a are always independent, so by Lemma 3 there is a
matching that covers all the active columns except as. The new column to be added will
increase the size of the matching by one. The algorithm searches for a column to add by
following alternating paths. We give details below, followed by a proofthat the algorithm
will find the desired null vector.

Though we use matchings and alternating paths to guide the algorithm, we still use
the numerical QR factorization of the active submatrix to decide when sets of columns
are dependent. This lets us avoid any no-cancellation assumptions, and it lets us find
null vectors that could not be predicted from the structure alone ofA. It means that we
must be careful to distinguish numerical and structural notions both in the algorithm
and in its correctness proof: "dependent" and "independent" are numerical; "matching,"
"path," and "cover" are structural.

The algorithm. Given a start column as, this algorithm finds a null vector whose
highest nonzero position is s, if there is such a null vector. In the algorithm, C is the set
of active columns. The active rows are all those rows in which some active column is
nonzero.

C:=(as};
Start with the empty matching;
repeat

Find an alternating path from some uncovered active row, number r, to some
inactive column a to the left of a that is independent of C (a);

Alternate along the path, increasing the size of the matching by one
and coveting row r and column c;

C:= C+ {ac};
until either as is dependent on C- {a }

or no such alternating path exists;
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if a is dependent on C- {a }
then null vector coefficients of the dependency
else report "no such null vector"

An invariant that is true at the beginning and end of the main loop is: The columns in
C- {as } are independent, and the matching covers all columns in C- {as } and only
active rows. See Fig. for a sketch. (The active columns and rows may not actually be
contiguous in the matrix.)

If there is no numerical cancellation, so that the rank of every matrix involved is
equal to its maximum matching size, then the algorithm will find a null vector when the
active columns first become more numerous than the active rows. Then there will be
exactly one more active column than active row, and the matching will cover all the
active rows. If there is cancellation, the algorithm may find a null vector when there are
more active rows than columns. This will be a null vector whose nonzero structure could
not have been predicted from the nonzero structure ofA.

The nonzero positions in the null vector correspond to columns ofA that are reach-
able by alternating paths from the start column. Alex Pothen’s thesis [3] shows that
(ignoring numerical cancellation) a null vector can always be found by finding a maximum
matching, choosing an uncovered column as a starting column, and following all alter-
nating paths from that column.

Correctness of the algorithm.
THEOREM. Ifthere is a null vector whose highest nonzero position is s, this algorithm

stops with as dependent on C- {as }; otherwise it stops with as independent ofC- {as }.
Proof Each iteration of the loop makes C larger, so the algorithm must stop even-

tually. If there is no null vector, as is independent of all the earlier columns, so it is
independent of C {as }. Thus we need only prove that if the null vector exists, then
the algorithm will not stop early; that is, if the null vector exists and as is independent
of C {as }, then there is an alternating path from some uncovered active row to some
inactive column to the left of

Assume that the desired null vector exists. Then as is a linear combination of the
columns to the left of as. It is not a linear combination of C {as }, so there is some

ACTIVE
ROWS

0

C
(BCTIVF COLUMNS)

FIG. 1. Computing one null vector. Columns in C- {as are independent and matched to active rows.
Active rows and columns may not be contiguous.
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c < s such that ac is independent of C (a }, even considering only the active rows.
Then C- (a } + (ac } is independent, even considering only the active rows. Then
Lemma 3 says that C- {as } + {a } has a matching that covers all its columns and
covers only active rows.

The current matching is thus not a maximum matching on columns C- {a } +
{a } and the active rows. Therefore, by Lemma 2, there is an alternating path from
some uncovered active row to some uncovered column. The only uncovered column in
C- {a } + {ac } is the inactive column ac.

Finding an alternating path. The algorithm maintains a queue of uncovered active
rows. At each iteration, it takes a row from the head of the queue and searches for an
alternating path to an inactive column. If no such path exists, it proceeds to the next
row on the queue. When it chooses a new column, it adds any newly active rows to the
tail of the queue.

There are two versions of the search for an alternating path from a particular un-
covered active row. The "DFS matching" version performs a depth-first search through
alternating paths from the row, visiting every inactive column that can be reached by
such a path. It chooses the cheapest of those columns according to the cost criterion of

5.2. The "greedy matching" first looks for an inactive column that can cover the un-
covered active row, and chooses the cheapest such column if there is one. If there is no
such column, it performs a depth-first search. Thus it first tries to find an alternating
path of length one, and spends the time to search all alternating paths only if that fails.

The greedy algorithm is based on Duff’s code MC21A for finding a nonzero diagonal
of a matrix [5]. MC21A finds a matching by repeatedly finding alternating paths, and
the greedy heuristic speeds up MC21A very significantly in practice. We expected the
DFS version to find sparser null bases than the greedy version, but to take longer. However,
in our experiments, the DFS version was usually better than the greedy version in running
time and storage as well as in sparsity of the null basis. Presumably this is because it was
more successful in keeping the active submatrix small; the time spent doing depth-first
searches was saved in updating the QR factorization.

6. Experimental results. We experimented with the four algorithms described in
5: turnback, cheapest column next, greedy matching, and DFS matching. Table

describes nine sample problems, from various sources, that we used for testing.
Our code gives the option of preordering the columns of A before beginning the

null basis computation. Preordering may be necessary to keep the initial QR factorization,

TABLE
Description oftest problems. ADLITTLE, SHARE B, andMIXED

are linear programming problems. The remaining problems are from
structural analysis ], 11 ].

Problem Rows Columns Nonzeros

FRAME2D 27 45 93
PLANE 40 80 168
ADLITTLE 57 97 465
PLATE 59 144 364
FRAME3D 72 144 304
WHEEL 96 120 420
WRENCH 112 216 490
SHARE1B 118 225 1182
MIXED 171 320 906



COMPUTING A SPARSE BASIS FOR THE NULL SPACE 455

which is used to find start columns, sparse; for details see [9]. We found little overall
correlation between preordering methods and null basis density, though some problems
did show a marked preference for one ordering or another. For the results in Tables 2
through 4 we used, for each algorithm and each problem, the preordering that gave the
sparsest null basis found for that algorithm on that problem.

For all but one ofthe problems we tried three orderings: the original order in which
the matrix was presented, reverse Cuthill-McKee, and nested dissection. (The last two
were applied to the structure ofArA.) One matrix, WHEEL, was presented in four different
orders; we tried all four, for a total of six in all. It should be noted that for most of the
problems the original ordering had already been carefully chosen to reflect certain struc-
tural characteristics. In general, one of the automated orderings would be necessary in
order to make the initial sparse QR factorization feasible.

Our experimental code is written in Fortran 77 and was run on a Vax 780 (with
floating point accelerator), under Berkeley 4.2 Unix. The current version of the code
does not take advantage of the profile structure of the active submatrix; it stores and
manipulates the submatrix as a dense array, but measures the storage actually required
by the profile. Storing only the profile would almost always save 75-95% of the storage
needed for the active submatrix. This suggests that in most cases the size of the profile
is only O(m), instead of the worst-possible O(m2). The profile itself usually contains less
than 10% zero elements.

Table 2 reports the raw results. For each problem and algorithm, the "best preorder"
is the one that gave the sparsest null basis. The running times should be taken with a
large grain of salt, because much of the time is spent manipulating zeros outside the
profile ofthe active submatrix. An improved implementation that took advantage ofthis
profile structure would presumably give much smaller times for all four algorithms. The
"dense size ofthe active submatrix" is the product ofthe largest number ofcolumns and
the largest number of rows in an active submatrix during the computation. Except for
O(m + n) overhead, it is the intermediate storage required if the algorithm uses a dense
array for the active submatrix. The "profile of the active submatrix" is the size of the
largest profile of an active submatrix during the computation. Except for O(m + n)
overhead, it is the intermediate storage required ifthe algorithm uses a profile data structure
for the active submatrix.

Table 3 normalizes the results in Table 2: The first column gives the ratio of the
density ofthe particular null basis to that ofthe sparsest null basis found for that problem.
Thus, for example, the tumback null basis for FRAME3D had 1.43 times as many
nonzeros as the DFS matching null basis, which was the sparsest one found. The other
columns give time, submatrix size, and submatrix profile, similarly normalized.

Table 4 reports, for each algorithm, the average over all nine problems of the nor-
malized basis density, running time, submatrix size, and submatrix profile.

7. Conclusions. Finding a sparse null basis is a problem that is partly combinatorial,
partly numerical. We have experimented with algorithms that use the combinatorial
structure of the matrix to guide a search for sparse null vectors, but use numerical com-
putation to decide linear dependence. They range in combinatorial sophistication from
turnback (which uses none of the structure of the matrix), through cheapest-column-
next (which uses the nonzero counts ofthe rows and columns), to the depth-first search
matching algorithm (which uses matchings and alternating paths in the bipartite graph
of the matrix).

The results in 6 are somewhat mixed, but we can draw some rough conclusions.
The DFS matching algorithm looks promising. It has a small but consistent advantage
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TABLE 2
Performance measures. The "best" preorder is the one that produces the sparsest null basis.

Problem

Dense size Profile
Best Nonzeros in Running of active of active

Algorithm preorder null basis time submatrix submatrix

FRAME2D Turnback none 76 2.30 288 27
Cheapest Column none 76 1.12 182 25
Greedy Matching none 87 0.72 I0 38
DFS Matching none 76 0.63 72 25

PLANE Turnback none 166 7.05 506 82
Cheapest Column none 166 5.25 506 74
Greedy Matching RCM 183 3.45 600 204
DFS Matching none 177 4.88 650 119

ADLITTLE Turnback RCM 391 28.02 2550 597
Cheapest Column ND 385 17.47 1680 408
Greedy Matching RCM 387 8.78 1089 507
DFS Matching ND 367 10.50 1680 371

PLATE Turnback RCM 326 13.02 812 104
Cheapest Column RCM 310 6.65 182 68
Greedy Matching RCM 313 3.97 210 79
DFS Matching RCM 311 4.12 182 66

FRAME3D Turnback none 452 66.12 2064 104
Cheapest Column none 338 16.10 1089 48
Greedy Matching none 369 2.95 288 83
DFS Matching none 317 2.95 168 41

WHEEL Turnback order 3 503 17.32 1560 236
Cheapest Column order 2 516 83.35 9312 190
Greedy Matching RCM 625 16.83 2256 720
DFS Matching order 3 488 10.45 756 273

WRENCH Turnback none 544 58.38 5112 451
Cheapest Column none 549 57.18 3782 270
Greedy Matching none 590 30.52 3192 580
DFS Matching none 518 26.98 3782 266

SHARE1B Turnback none 1531 773.15 13570 8717
Cheapest Column ND 1567 365.90 9310 3189
Greedy Matching RCM 1604 98.45 8742 2770
DFS Matching RCM 1363 103.68 8160 1784

MIXED Turnback none 1518 288.87 10506 849
Cheapest Column RCM 1323 584.68 15500 734
Greedy Matching none 1161 70.73 4356 661
DFS Matching none 1101 60.80 3540 697

in sparsity; indeed, for only one problem (PLANE) did it fail to come within 1% of the
sparsest basis we could find. On the other hand, all the algorithms found pretty good
null bases; the worst basis of the four was rarely more than 25% denser than the best.
(This is counting only actual nonzeros; a band-oriented approach like the original turnback
algorithms might also require storage ofmany zero entries in the null basis.) The differences
in running time and storage were greater: DFS matching usually required substantially
less space than the nonmatching methods, measuring space either by dense size or pro-
file size of the active submatrix. Running times seem to correlate well with active sub-
matrix size.
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TABLE 3
Normalized performance measures.

Problem

Dense size
Best Nonzeros in Running of active

Algorithm preorder null basis time submatrix

Profile
of active
submatrix

FRAME2D

PLANE

ADLITTLE

PLATE

FRAME3D

WHEEL

WRENCH

SHAREIB

MIXEDI

Turnback none 1.00 3.65 4.00 1.08
Cheapest Column none 1.00 1.78 2.53 1.00
Greedy Matching none 1.14 1.14 1.53 1.52
DFS Matching none 1.00 1.00 1.00 1.00

Turnback none 1.00 2.04 1.00 1.11
Cheapest Column none 1.00 1.52 1.00 1.00
Greedy Matching RCM 1.10 1.00 1.19 2.76
DFS Matching none 1.07 1.41 1.28 1.61

Turnback RCM 1.07 3.19 2.34 1.61
Cheapest Column ND 1.05 1.99 1.54 1.10
Greedy Matching RCM 1.05 1.00 1.00 1.37
DFS Matching ND 1.00 1.20 1.54 1.00

Turnback RCM 1.05 3.28 4.46 1.58
Cheapest Column RCM 1.00 1.68 1.00 1.03
Greedy Matching RCM 1.01 1.00 1.15 1.20
DFS Matching RCM 1.00 1.04 1.00 1.00

Turnback none 1.43 22.41 12.29 2.54
Cheapest Column none 1.07 5.46 6.48 1.17
Greedy Matching none 1.16 1.00 1.71 2.02
DFS Matching none 1.00 1.00 1.00 1.00

Turnback order 3 1.03 1.66 2.06 1.24
Cheapest Column order 2 1.06 7.98 12.32 1.00
Greedy Matching RCM 1.28 1.61 2.98 3.79
DFS Matching order 3 1.00 1.00 1.00 1.44

Turnback none 1.05 2.16 1.60 1.70
Cheapest Column none 1.06 2.12 1.18 1.02
Greedy Matching none 1.14 1.13 1.00 2.18
DFS Matching none 1.00 1.00 1.18 1.00

Turnback none 1.12 7.85 1.66 4.89
Cheapest Column ND 1.15 3.72 1.14 1.79
Greedy Matching RCM 1.18 1.00 1.07 1.55
DFS Matching RCM 1.00 1.05 1.00 1.00

Turnback none 1.38 4.75 2.97 1.28
Cheapest Column RCM 1.20 9.62 4.37 1.11
Greedy Matching none 1.05 1.16 1.23 1.00
DFS Matching none 1.00 1.00 1.00 1.05

TABLE 4
Normalized performance measures, averaged over all nine problems.

Algorithm
Nonzeros in Running Dense size of
null basis time active submatrix

Profile of
active submatrix

Turnback I. 13 5.67 3.60 1.89
Cheapest Column 1.07 3.99 3.51 1.14
Greedy Matching I. 12 1.12 1.43 1.93
DFS Matching 1.01 1.08 1.11 1.12
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Cheapest-column-next generally did better than turnback but worse than DFS
matching. On the whole, we conclude that more combinatorial sophistication seems to
help, both in sparsity of the null basis and in effort to find it.

All these algorithms are limited by the storage needed for the active submatrix. The
QR factorization of the active submatrix has a profile structure, but it is dense within
the profile, and we know ofno way to reduce the size ofthe profile while adding columns
to the submatrix in unpredictable order. The other storage bottleneck is the initial QR
factorization of A. Here we use Heath’s technique of withholding any dense rows if
necessary [9]. This approach may lead to a few extra "spurious" start columns, but these
are detected correctly by the subsequent null vector algorithm and do not affect the
ultimate null basis (although they may incur extra computation). We do not have detailed
statistics on the relative seriousness of these two bottlenecks.

We made some tests of the numerical quality of the computed null basis B. We
estimated IIAB II/IIAII liB to see how nearly orthogonal A and B were, and the answer
was always near machine precision. We estimated the condition number of B for six of
the problems (all but MIXED1, ADLITTLE, and SHARE1B). The answer was almost
always reasonably small, but on PLANE and WHEEL there were a few bases with con-
ditions as high as 108. The ill-conditioned bases do not seem to correlate with choice of
algorithm or choice of preordering. We think these results on condition number are
acceptable--at least, for every problem the majority of the algorithms and preorderings
produced well-conditioned basesbut we do not know how to guarantee good condi-
tioning. Coleman and Pothen [3] gave an algorithm for finding an orthogonal basis for
the null space, but they also showed that the sparsest orthogonal null basis may be very
much denser than an arbitrary null basis. How to trade off sparsity for conditioning is
an interesting open question.

Coleman and Pothen [4] are experimenting with the null basis algorithms from
Pothen’s thesis, but we do not yet have any comparisons with our algorithms. Pothen
[14] has also recently suggested an interesting class of heuristics for null basis problems
from structural analysis, based on the structure of the object being analyzed in addition
to the structure of the matrix.

Appendix. Bipartite graphs, matchings and rank. Let A be a matrix. The bipartite
graph ofA is the graph whose vertices are the rows ofA and the columns of A, with an
edge between a row vertex and a column vertex if and only if the corresponding entry
ofA is nonzero. We do not distinguish between a row ofA and a row vertex of the graph
ofA. Informally, we do not distinguish between A and its graph.

A matching on A is a set of edges, no two of which have a common endpoint.
(Equivalently, it is a set of nonzeros, no two of which are in the same row or column.)
A vertex is covered by a matching if it is the endpoint of some matching edge, and
uncovered otherwise. A maximum matching is a matching such that no matching on A
has more edges.

A path in A is a sequence of distinct vertices v0,/)1, /)k such that {/)i 1, /)1 } is
an edge for =< -< k. The length ofthe path is k. IfM is a matching on A, an alternating
path (with respect to M) is a path whose edges are alternately in M and not in M. If P

Vo, , Vk is an alternating path from an uncovered vertex v0 to an uncovered vertex
/)k, we can modify the matching by removing edges {v,/)2}, {/)3, /)4}, {/)k- 2, /)k- 1}
and adding edges { v0, v }, { v2, v3 }, { vk , vk }. This is called alternating along the
path P. It increases the size ofthe matching by one edge, covers Vo and Vk, and leaves all
previously covered vertices covered.
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For proofs of Lemmas and 2 below and more background on bipartite matching,
see Lawler 12] or Papadimitriou and Steiglitz 13].

LEMMA (Hall’s Theorem). Matrix A has a matching that covers every column if
and only ifevery set ofcolumns ofA intersects a set ofrows ofA that is at least as large.

LEMMA 2. IfM is a matching on A whose size is not maximum, then there is an
alternating pathfrom some uncovered row ofA to some uncovered column ofA.

LEMMA 3. Every matrix has a matching that is at least as large as its numer-
ical rank.

Proof Let k be the numerical rank of matrix A. Let B be a submatrix consisting of
k linearly independent columns of A. Any set of -_< k columns of B is a submatrix of
full column rank, so it must have nonzeros in at least rows. By Hall’s theorem, B has
a matching that covers all k columns, so A has a matching of size at least k.

The combinatorial notion of maximum matching size corresponds closely to the
numerical notion of rank. It can be shown that if we fix the nonzero structure ofA and
assign values to those nonzeros at random, then with probability the rank is equal to
the maximum matching size.
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A CLASS OF EFFICIENT VALUES FOR GAMES
IN PARTITION FUNCTION FORM*

EDWARD M. BOLGERf

Abstract. In this paper we derive a class oflinear, efficient, dummy-independent values for n-person games
in partition function form. Each of these values is an extension of the Shapley value.

Key words, game theory, value theory
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1. Introduction. Games in partition function form were introduced in Lucas and
Thrall [2] to generalize games in characteristic function form. Myerson [3] derived an
efficient value for games in partition function form which is a natural extension of the
Shapley [4] value.

Games in partition function form can be used to model r-candidate voting games.
In Bolger ], an efficient linear index which assigns value 0 to dummy players is derived
for such games. This index can be used as a value for games in partition function
form. In this paper we derive a class of efficient linear values for games in partition func-
tion form.

DEFINITION 1. Let N 1, 2, 3, n} and let I’ be a partition ofNinto nonempty
subsets of N. Let S I’. We call (S, F) an embedded coalition (ECL).

DEFINITION 2. A real-valued function v whose domain is the set of all ECL’s is
called a characteristicfunction. The pair (N, v) is called a game on N in partitionfunction
form. By convention, we set v($, F) 0 for each game v and each partition I’.

The collection of all such games is denoted by REcL. Considering REcL as a vector
space over R, Myerson [3] observed that its dimension equals the number of ECL’s.

Let (S, I’) be an ECL. Define the game vs’r by

if(s’, r’) (s, r),
vS’r(S’, F’)

0 otherwise.

As a basis for REcL, we can use the collection {vs’r (S, I’) is an ECL}.
For the ECL (S, F), IS[ denotes the cardinality of S and II’[ denotes the cardinality

ofF.
DEFINITION 3. Let r be a permutation of N. The game rv is defined by

rv(S, r)= rOtS, rr).

2. Main results. The Shapley value, , for games in characteristic function form
can be written in the form:

i (I)) E (IsI )l(n- IsI)t
v(s) E (IS[)l(n IsI 1)!

v(S).
SN n! S=N
iS

This Shapley value could be applied to games in partition function form; that is,
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one could use the value

0 (1)) E (IsI- 1)!(n -IsI)!
v(S, r) E ([SI)!(n -IsI- )!

n! n!(s,r) (s,r)
is is

v(s,v).

Theorem will show that this value is efficient. However, it sometimes assigns nonzero
values to dummy players and zero value to nondummy players in monotonic simple
games. Moreover, for each N, Oi(v s’r) Oi(v s’r’) whenever S e I’ f) I".

In our search for a value 0, we shall relax this last property slightly by requiting
instead that for in N, the value 0 satisfy

Axiom 1. Oi (v s’r) Oi (/)s,r’) whenever S e F F’ and Irl It’ I.
The remaining five axioms will be the familiar symmetry, linearity, efficiency and

dummy axioms.
Axiom 2. Oi (v) Oi Orv).
Axiom 3. O(v + w) O(v) + O(w).
Axiom 4. O, (v) + + O,(v) v(N, {N}).
We will begin with some results based on the first four axioms.
THEOREM 1. Let rb be a value on the class ofgames on N in partition function

form. Then satisfies Axioms 1-4 ifand only ifthere is afunction a(ISI, n, IF[) such that

(1)

and

I)i(U) E a(IS[, n, Irl)v(S, r)- E Isl a(ISI n, Irl)v(S, r)
(s,r) (s,r) n- IS[
ieS iS

(2) a(n, n, 1) -.
n

Proof We shall prove the necessity and leave the proof of the sufficiency for the
reader. For fixed and m, let S’ { 1, 2, t} and

I"={{1,2,...,t},{t+l,...,n-m+Z},{n-m+3},--. {n}}.
Now define

and let

a(t,n,m)=b(vs’’r’) and b(t,n,m)=-bn(Vs’’v’)

Oi (/))-- E a(ISI, n, Irl)v(S, r)- E b(ISI, n, Irl)v(S, r).
(s,r) (s,r)
iS iOiS

Clearly 0(vs’,r’ O(v s ’,r’ ).
Now let (S, I’) be an ECL. We can write r {S, Tl, Tk, { j }, {n} } where

ITil > for each and where j n [I’l + k + 2. Form a new partition F1 by removing
all but one player from each of T2, Tk and placing these removed players in with
the members of T1. Since II’l II’11, Axiom guarantees that O(vs’r) O(v s’r’)
O(v s’r’) O(vS’r). Since and 0 agree on {v s’r (S, I’) e ECL}, and 0 agree for all
games on N in partition function form by Axiom 3.

Finally, if we apply Axiom 4 to vs’r, we get immediately that for ISI < n,

Islb([SI, n, Ir I) a(ISI, n, Irl).n-ISI
In the sequel, we shall only consider values satisfying Axioms 1-4.
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DEFINITION 4. Playerj is called a dummy in the game v if for each nontrivial ECL
(S, F), v(S, I’) v(S { j }, I") for every I" where I" is a partition ofN obtained from
I’ by moving player j to some other set in I’ or to a new set by itself.

It is clear from Theorem that there are many efficient, linear, symmetric values
for games in partition function form. We shall now impose the restriction that 0 shall
assign value 0 to each dummy.

Axiom 5. If player j is a dummy, then 0j (v) 0.
DEFINITION 5. For a fixed (S, I’), let v vs’r and for d N, define the dummy

extension va on N U (d} by the following:
(i) re(S, r a) for each partition I’a ofNU {d} obtained by placing din some

set of I’ other than S or in a set by itself.
(ii) va(S U {d}, (I’ {S}) U (S U {d})) 1.
(iii) va(S ’, P’) 0 for all other (S’, r’) where I" is a partition ofNU {d}.
An easy calculation yields

Oa(va) a(ISI + 1,n + 1, Irl)-(Irl- )b(ISl, n + 1, Irl)- b(ISl, n + 1, Irl + 1).

We get immediately the following theorem.
THZOFM 2. satisfies Axioms 1-5, ifand only ifthere is a function a(IS[, n,

satisfying (1) and (2) above and

a(ISI + n, Irl)
(Irl- 1)lsI

a(ISI, n, Irl)
(3)

(n- ISI)

/ a(ISI, n, Irl / ) for Irl--< n- .
n-ISI

COROLLARY 1. Ifb satisfies Axioms 1-5, then

a(n 1, n, 2) [n(n 1)]-l.
Proof. Put IsI n- in Theorem 2.
Example. The function

(t- 1)!(n t)!(n 1)!
a(t,n,m)

nl(n- 1)n- t(n-
determines a value satisfying Axioms 1-5.

We proceed now to show that Axioms 1-5 determine an n 2 parameter family
of values. First we prove two combinatorial lemmas.

LEMMA 1. Ifj <= q- 1, then

q;1 (-- 1)l- llJ
O.

l= l(/- 1)!(q + 1-l)!

Proof The result is true for j 0 since (1 + (-1))q 0. Assume that the result is
true up to j- 1. Then

ql (__1)1--llJ (1)i(1 + i) j

/=1 (l-- 1)!(q + l)! i= 0 ii- i)!

(--1) ()ik

i= o i!(q i)! o

(i- 1)!(q i)! 0
k=O i=1

by the induction hypothesis since k -_% j =< q 2.
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LEMMA 2. IfO <= m <= q- 1, then
q (n- l+ q)m

)q+ (n- 1)m
(-1)t-
t= (l- 1)!(q + l)! q!

eroof.
q+l

(--I) I-I
I=I

(n_l+q)m q+l

m(m)(n_Fq)m-J(_l)jl (--1)1--1 Z ).--- i(l-1)!(q+l-l)! t= =o J (l-1

m(m) )Jq+ (--1) l-llj, (n + q)m-j(_
= o J t= (l-1)!(q + l)!

0 by Lemma 1.

Now for positive integers m and i, let

P(m, i) m(m -1) (m + fori=<m,

U(m, i) m(m + 1) (m + i- 1),

e(m, O) U(m, O) 1.

Furthermore, if is a negative integer, we set

P(m,i)
’-0
U(m,i)

and interpret all sums of the form Z/q= 0 to be 0. These conventions will also enable us
to avoid clumsy special cases in the succeeding results.

THEOREM 3. Equation (3) holds ifand only iffor- <-j < k,
k ple(n_k+j,j__p + 1)

a(k-j’n’n-k)=
U(k-j,j-p+ 1)p=01=l(4)

(n-k+p- 1) a(1 +k-p,n,n-k+p)
(n-k-l+p)j+2-p (-1)t- (1 1)!(p+ -l)!"

Proof By (3), Theorem 3 is true for k 1. Assume inductively that the theorem is
true up to and including k- 1.

For simplicity of notation, let

F(q,l)=(-1)t-(l- 1)!(q+ 1-1)!
and

A(t, m) a(t, n, m).

By successive application of Theorem 2,

A(k- j, n k)
P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)j+ IU(k-j,j+ 1)

P(n-k+j,j-i)A(k-i,n-k+ 1)

i=o (n-k- 1)s+i-iu(k-j,j-i)

P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)J+ U(k-j,j+ 1)
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J P(n-k+j,j-i)

" (n-k- 1)J+l-iU(k-j,j-i)i=0

kl pl P(n k + i, i-p) (n k +p)A(k-p, n k+ +p)

p=o t=, U(k-i,i-p) --- i-----/--iff(p i
P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)j+ 1U(k-j,j+ 1)

’e(n k+ j, j- p) (n k+p)A(k-p, n k+ +p)

z,=o t=1 U(k-j,j-p) (n-k+ 1-l+p)-’F(p,l)

(n-k+ 1-l+p)-(+1)

i=o (n-k- 1)+ 1-i

P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)J+ 1U(k-.Lj+ 1)

kl z,l P(n k+ j, j-p) (n k+p)A(k-p, n k+ +p)

p=0 l--1 U(k-j,j-p) (n- k+ +p)-Z’F(p,l)(l-p- 2)

n-k+l-l+p n-k-1

P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)J+ IU(k-j,j+ 1)
: P(n-k+j,j-q+ 1)(n-k+q- 1)A(1 +k-q,n-k+q)+

U(k-j,j-q+ 1) (n-k-l+q)TV-qF(q,l)q=l/=l

P(n-k+j,j-q+ 1)
(n-k- 1)j+ 1q1= t=l"" U(k-j,j-q+ 1)

(n-k+q- 1)A(1 +k-q,n-k+q)
(n- k- l+ q)l -’F(q,l)

P(n-k+j,j+ 1)A(k+ 1,n-k)
(n-k- 1)J+ 1U(k-j,j+ 1)

qlP(n-k+j,j-q+ 1)(n-k+q-1)A(1 +k-q,n-k+q)+
q=l t=l U(k-j,j-q+ 1) (n-k-l+q)J-+-’F(q,l)

by Lemma 2. This completes the proof of the necessity. The proof of the sufficiency is
left to the reader.

Remarks. Suppose n 4. Then the possible values of 4 (k p) will be 4, 3, 2,
1. If 0 satisfies Axioms 1-5, then since the values of a(4, 4, 1) and a(3, 4, 2) are known
(Theorem and Corollary 1), we need only specify the values of a(2, 4, 3) and a(1, 4, 4)
to determine all relevant values of the function a. That is, for n 4, we get a two-
parameter family of power indices 0 which are efficient and satisfy the dummy axiom.
Specifically, if we let x a(2, 4, 3) and y a(l, 4, 4), then a(2, 4, 2) -x + 2,
a(1, 4, 3) 1.5x- 0.5y, a(1, 4, 2) 0.25 4.5x + 0.5y.
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Example. Let n=3 and let v be the game on N defined by v(N,{N})=
v({1, 2}, {{1, 2}, {3} }) v({1, 3}, {{1, 3}, {2} }) v({1}, {{1}, {2}, {3}}) 1;
v(S, I’) 0 for all other (S, I’). If we choose a(1, 3, 3) 0.10, then O(v) .7667. Sup-
pose we add a dummy player 4 to the game v. Then ifwe let v4 be the dummy extension
of v, 01 (v4 will also equal 0.7667 provided we choose a(2, 4, 3) to equal 0.025.

The above example shows that the value of the other players may be affected by
adding a dummy player to the game. We seek now conditions on the function a which
will make 0 "dummy-independent."

For each game v on N and d N, we have the following axiom.
Axiom 6. Oi(vd) Oi(1) for e N.
LEMMA 3. IfO satisfies Axioms 1-6, then thefunction a(ISI, n, I1) in (1) satisfies

(5) a(ISI, n, Irl) (Irl- )a(ISI, n + 1, Irl) + a(ISI + , n + 1, Irl) + a(ISI, n + 1, Irl + ),

(6) b([SI, n, Irl) (Irl- )b(ISI, n + 1, Irl) + b(ISI + , n + 1, Irl) + b(ISI, n + 1, Irl + )
where b(ISI, n, Irl) ISla(ISI, n, Irl)/(n -ISI).

Proof For a fixed (S, F), let v v s’r and let vd be the dummy-extension of v.
Write IF[ m. For e S,

Oi(vd) (m 1)a(ISI, n + 1, m) + a(ISI / 1, n + 1, m) + a(ISI, n + 1, m + 1)

whereas for S, 4 d,

Oi(v d -(m 1)b([SI, n + 1, m) b(ISI + 1, n + 1, m) b(ISl, n + 1, m + ).

LEMMA 4. IfO satisfies Axioms 1-6, then

a(n -[rl + 2, n + 1, lrl) n-Irl +
n+l

a(n- Irl + 1, n, Irl).

Proof Write II’[ m. From Theorem 2,

(n + -ISI)a(ISI + , n + 1, m)a(ISI, n + 1, m) a(ISI, n + 1, m + 1).
(m- 1)IS[ m-

Using this in (6) we get, since b(t, n, m) ta(t, n, m)/(n t),

a(IS[, n, m)
n + a(ISI + 1, n + m).

Repeated applications of Lemma 4 yield the following theorem.
THEOREM 4. 0 satisfies Axioms 1-6 ifand only if there is a function a(ISI, n, Irl)

satisfying (1), (2), (4) and

(n-m)!
a(n m + 1, n, m) a(1, m, m).

P(n,n-m)

Consequently, if 0 satisfies Axioms 1-6, then the values of 0 are determined by the
choice of a(1, n, n), a(1, n 1, n 1), a(1, 3, 3). In particular, for n 4, the choice
of a( 1, 4, 4) and a(1, 3, 3) determines the value for all two, three and four player games.

3. A final note. For fixed r > 0, consider the collection ofgames in partition function
form for which v(S, I’) 0 if I1 > r. This collection of games may serve as models for
voting games in which a set of voters will select one of r candidates. These voting games
are determined by specifying for each ECL (S, I’) whether or not S wins with respect
to I.
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For the above collection of games, a value satisfying Axioms 1-6 is determined by

a(t,n,m)=
(t 1)!(n t)!(r- 1)!
n!(r- 1)"- t(r m)!
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THE STRUCTURE OF MONOMIAL CIRCULANT MATRICES*
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Abstract. Consider the generalized circulant matrices recently introduced by P. J. Davis and K. Wang,
where row is obtained from row by permuting the entries and also multiplying by scaling factors. When
such families are (like circulants) closed under multiplication, they can be reduced to certain standard forms
that are in fact related to twisted group algebras and group cohomology. For real matrices or complex matrices,
there are only finitely many such standard forms for each size. Similar results hold for the appropriate gener-
alizations of g-circulants. In particular, in each case (for complex matrices) we can describe the determinant as
a function of the first-row entries: it is a product of powers ofvarious smaller determinants, and up to (explicit)
scaling factors the list ofentries in these determinants is a unitary transformation ofthe original first-row entries.
Some of the ideas hold for even more generalized forms of circulants.
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cohomology, algebras of matrices
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The varied uses discovered for circulant matrices, ranging from physics to combi-
natorics with intermediate stops at geometry and statistics (cf. [6]), amply justify gen-
eralization-provided that the generalizations have a similarly reasonable and coherent
structure. Group matrices and g-circulants, for instance, are reasonable and (correspond-
ingly) useful; matrices constructed by random permutations ofthe first row have nothing
to recommend them. One helpful guideline has been to consider behavior under matrix
multiplication: group matrices, like circulants, are closed under multiplication, and
g-circulants are at least sent to other g-circulants when multiplied by ordinary circulants.
It is in fact true 14] that a suitable combination of these two types gives all possible
families of matrices that are constructed by permuting the first row and are well behaved
under multiplication.

Just recently, Wang and Davis 13] introduced a far-reaching generalization of cir-
culants where the entries are derived from the first row by permuting the elements and
multiplying by fixed (nonzero) constants depending on the position. Another way of
saying this is that row comes from row under multiplication by a monomial matrix
(one with just one nonzero entry in each row and column), and hence I propose to call
such families of matrices monomial circulants. The goal of this paper is to analyze and
classify those families ofmonomial circulants that are well behaved under multiplication.
Wang and Davis began such an analysis, showing that the families that formed algebras
could all be constructed as the "k-group matrices" introduced earlier by Wang 11 ]. But
the definition of ,-group matrices allows the same family of matrices to arise from quite
different input data, and thus their results do not make clear how many essentially different
types of such circulants exist.

It turns out that the correct analysis uses what are called "twisted group algebras."
Fortunately, this paper can be understood with no previous knowledge of that topic.
Readers who want a quick idea of the types of matrices involved over the real numbers
can turn immediately to 4, where the 4 by 4 families are written out in standard form.
The analysis itself begins in by showing how the ,-group matrices of[13] lead us to
twisted group algebras. Section 2 shows more generally how monomial circulant families
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closed under multiplication (but perhaps not including the identity) can be reduced to
twisted group algebras. Section 3 lists some of the results that follow from this analysis,
information not at all apparent from the original definition of the circulants. We shall
see, for instance, how the determinant depends on the entries in the first row. Furthermore,
over the real or complex numbers there will be only finitely many equivalence classes of
any given size. Section 5 contains a selfadjointness result yielding an improved block
decomposition theorem (which Wang and Davis proved in the commutative case). The
final sections characterize the analogue ofg-circulants associated with monomial circulant
algebras and show how their equivalence classes can be computed in terms of algebra
automorphisms.

To emphasize the underlying algebra, I have included an Appendix briefly discussing
the "ultimate" generalization of circulants, where row is derived from the first row u
as uC[i] for some arbitrary (fixed) set of invertible matrices C[i]; we might call these
linear circulants. Even the families of this general type closed under multiplication turn
out to be objects already studied in ring theory (and they have a surprisingly large amount
of structure; see [9, pp. 445-455] or [5]).

1. The meaning of X-groul matrices. To make contact with the earlier work, we
begin by analyzing the definition of X-group matrices, as given in [13]. The definition
starts with a finite group G of order n and a central group extension E,

1-- H--- E-- G-- I.

There is also a specified homomorphism , from H to the multiplicative group of some
base field k. The "X-group matrices" over k are then the matrices of the form

A ck(tv, tj)

where tl 1, t2, "", t, are coset representatives for H in E and $ runs over all
"X-maps," maps E - k satisfying the condition ok(he) ,(h)ch(e) for all h in H and e in
E. (There is a more special but equivalent definition of ,-group matrices in 11 for the
case when H is finite.) Our goal in this section is to show how these matrices can be put
in a more recognizable form.

For convenience, we identify G with the set of indices of the t; (so becomes the
identity of G); this identification can best be interpreted as introducing a group structure
on the set of indices. Now we choose a nice basis Sg for the ,-maps E -- k: clearly any
X-map 4 is determined by the values 4(ti), and we let ckg(ti) be when g and 0
otherwise. When we compute the matrix A[g] corresponding to Sg, we find that

Atg]o ii,jX(h(i,g)).

By construction these matrices are a basis for the X-group matrices. An arbitrary ,-group
matrix with first row entry (say) c[g] in column g is equal to ,c[g]A[g], and its entry in
some subsequent row and column j is given by

,c[g]A[g]ij X(h(i, i-lj))c[i-lj].

Thus we do indeed have monomial circulants.
Associativity in the group E tells us that ti(tt,) (tit)tp, so if we write 3(i, g)

(h(i, g)), we have the identity

B(i, g)[3(ig, p) 13(i, gp)B(g, p).

This says that/3 is a "two-cocycle" of G with values in the multiplicative group k*. (It
is a "normalized" cocycle, which is to say that 3(1, p) =/3(p, 1) for all p in G; this
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just corresponds to the choice of tl in E.) Now using (,) we can compute that our
matrices satisfy the basic multiplication rule

A[g]A[p] {3(g, p)A[gp].

Some readers may recall that similar formulas occur in the (related) topic of projective
representations.

The algebra of dimension n over k with one basis element for each g in G and
multiplication given by the "twisted" group multiplication (**) is what is called the
twisted group algebra for the cocycle/3, denoted k[G,/3]. Thus we see that the algebra of
k-group matrices is isomorphic to the twisted group algebra for the cocycle /3( g, p)
k(t-p tgt). But actually we have a more explicit expression. If e is the row from kn with
a single nonzero entry equal to in column s, the formula for A[g] gives us eA[g]
[3(s, g)esg. Comparing this with the formula (, ,) for fight multiplication in the algebra,
we have our first theorem.

THEOREM 1. A family of k-group matrices consists precisely of the matrices ex-
pressing a right regular representation ofa twisted group algebra in its natural (group-
element) basis, ff]

Note that the original group extension Ewas scaffolding that has now been removed
from the finished construction: the X-group matrices depend only on the normalized
cocycle/3 that we derived from the original data. Furthermore, any normalized cocycle
can occur. Indeed, it occurs with h identity and H k*, as follows from the standard
theory of group extensions [5]. The role of the homomorphism h H -- k* was merely
to move a cocycle with values in H over to the cocycle/3 with values in k*. Thus the
possible families of h-group matrices for a given index group G correspond precisely to
the normalized 2-cocycles of G with values in the multiplicative group k*.

There is a noncanonical choice involved in the definition of h-group matrices: they
depend not only on G and the extension but also on the choice of coset representatives

te. If we replace tu by tuh[g] for some (arbitrary) elements h[g] in H, then we have

tgph[gp] { h[gp]h[g]- h[p] } h(g, p)(tgh[ g])(tp h[p]).

Thus if we let 3’(g) h(h[g]) in k*, we will replace/3(g, p) by

fl’(g, P) 3"(gP)T(g)-3"(P)-lfl(g, p),

which in the cohomology theory is called changing/3 to a cohomologous cocycle. With
an appropriately chosen extension we can change/3 to any such cocycle. (To keep it
normalized, wejust need to have 3’(1) 1, which corresponds to maintaining the original
condition t 1.) Then in the family of matrices for/3’, the matrix Zc’[g]A’[g] with first
row (c’[g]) will have its (i, j)-entry equal to

[3’(i, i-j)c’[i-lj] 3"(j)3"(i)-3"(i-j)-{3(i, i-lj)c’[i-j].

Thus ifwe write c[g] c’[g]3"(g)- and let D be the diagonal matrix with entries -y[g]-,
we have

Y,c’[g]A’[g] D(Z,c[g]A[g])D-.
That is, one family is taken to the other by conjugation by a diagonal matrix. Clearly
the computation can be reversed. Thus we have a further correspondence.

THEOREM 2. Two families of k-group matrices for the same index group G but
different cocycles differ by a diagonal conjugation iffthe cocycles are cohomologous, ff]

2. Algebras of monomial circulants. Wang and Davis showed 13] that any family
ofmonomial circulants which is an algebra (i.e., contains the identity and is closed under
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multiplication) is actually a family of X-group matrices. In view of the results of 1, this
theorem is included in the following result.

THEOREM 3. Suppose afamily ofmonomial circulants is closed under multiplication.
Then there is a composition law on the index set making it a semigroup with bijective
left multiplications, and thefamily is the right regular representationfor a twistedsemigroup
algebra on this semigroup. Ifthe identity matrix is in thefamily, then we have a twisted
group algebra.

Proof. Take the element A[p] in the family whose only nonzero entry in row is
a in column p. The monomial property says that in row it has an entry in just one
column. We denote the column involved by ip and the entry by fl(i, p). Thus in the law
of formation for these monomial circulants, p -- ip is the permutation involved in row
i, and the/3(i, p) are the multipliers. By definition then lp p for all p, the operation
p I- ip for fixed is bijective, and fl(1, p) 1. The product A[p]A[q] has only one
nonzero entry in row 1, namely fl(p, q) in column pq. Since this product must be in the
family, we get A[p]A[q] 13(p, q)A[pq]. Comparing the entries in row on each side of
this equation, we first find (by seeing where they are nonzero) that (ip)q i(pq); this
shows we have a semigroup ofthe type required. Then by comparing the nonzero entries,
we find that

[3(i, pq)[3(p, q) [3(i, p)[3(ip, q),

precisely the cocycle identity that yields associativity for the twisted semigroup algebra.
If the identity matrix is in the family, it must be given by A[ 1], and hence also il for
all i; thus since is a two-sided identity and p . ip is bijective, the index set is a group.
(In this case we also have (i, 1) 1.) V1

Clearly we should say that two families of monomial circulants are (monomially)
equivalent if one can be taken to the other under conjugation by a monomial matrix.
Using that equivalence relation, we can in essence reduce the general case of Theorem
3 to twisted group algebras.

THEOREM 4. Take anyfamily ofmonomial circulants closed under multiplication.
Then (up to monomial equivalence) the matrices in it have theform

M2 M
IoM.2.oo Ms
1M

where all the M are monomial circulants comingfrom the same twisted group algebra.
Proof. The structure of semigroups of the type occurring here is known [8, p. 54]

(the proofis also reproduced in 14]). The subset G ofindices for which gl gis a group.
There is also a subset S of elements s for which sp p for all p, and every element in
the semigroup is uniquely expressed as a product gs. We shall build our block decom-
position on this, letting each block consist ofrow and column indices with fixed S-factors.
We also arrange the entries in the different blocks with their G-factors always in the same
order. This all just permutes the original index set, and hence it changes the family only
up to equivalence.

The cocycle identity for g in G gives us

fl(g-l,g)fl(g-lg, 1) fl(g-l,gl)fl(g 1),

which yields/3(g, l) for all such g. Define now in general "y(gs) to be fl(gs, 1). Since
3’(1) "y(g) l, we have "y(gs)’y(1)’y(gsl)- [3(gs, 1). By Theorem 2, a cohomology
change of/3 corresponds to a diagonal conjugation, so after such a conjugation we can
assume that [3(gs, 1) for all gs.
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It follows now that [3(gs, t) (gs, t)/3(gst, 1) =/5(gs, tl)/3(t, l) for all t in S.
From this it follows that (ht, gs) B(ht, gs)(3(g, s) (ht, g)/(htg, s) (ht, g). Further,
/(g, g-l) B(t, gg-)(g, g-l) [3(t, g)/5(tg, g-l), so/5(t, g) 1. Hence it follows that
/5(ht, g) 3(ht, g)/5(h, t) [3(h, tg)/(t, g) (h, g).

Now we just need to interpret these results. We know by definition that A[gs] will
have in row ht an entry in place htgs hgs, and that entry will be (ht, gs). Since this is
independent of t, and lies again in the column-block for s, the blocks will indeed repeat
in the style described in the theorem. Since further (ht, gs) is independent of s, the
individual Mi are all monomial circulants coming from the twisted group algebra induced
on the subgroup G of the original semigroup.

In view of this result, we shall confine our attention from now on to algebras of
monomial circulants. We can now extend Theorem 2 to monomial equivalence.

THEOREM 5. Two algebras of monomial circulants derived from index groups
G, G’ and cocycles , ’ are equivalent iffthere is an isomorphism G
to a cocycle cohomologous to ’.

Proof. Ifwe have an equivalence, we can decompose the monomial matrix effecting
it into a product of a diagonal matrix and a permutation matrix. We have already seen
that diagonal conjugation changes the cocycle to a cohomologous one for the same group.
It remains only to test when a permutation matrix can conjugate one of our families to
another. Conjugating the basis matrix A[g] in one family by a permutation 7r, we get a
matrix which has 4[g],ri,rj in entry (i, j); in particular, in row it has only one nonzero
entry,/(r 1, g) in column r-(r(1)g). This matrix is in the family coming from G’, and
it must be/(rl, g) times A’[Tr-(r(1)g)]. Comparing the unique nonzero entries of the
two in row i, we find first r-(Tr(i)g) i.Tr-l(r(1)g), where is the multiplication of
elements in G’, and then

fl ri, g) fl r 1, g fl i, r r(1)g

Set $(g)= r(g)r(1)-l. If we let h r-l(r(1)g), we have r(i.h)= r(i)r(1)-r(h), or
k(i.h) $(i)$(h); thus $ G’ -- G is an isomorphism. Let us now rewrite the fl-identity
by setting r(1), substituting s r-(tg) and using $ in place of r; we get

fl(k( )t, k(s)t) fl(t, k(s)t)fl’(i, s).

Using the cocycle identity twice, we find that fl($(i)t, t-k(s)t) equals

fl($ l, t)-fl($s, t)-l fl(cki, ks)fl(d)(i)k(s), t)fl(t, t-k(s)t),

and putting that in and cancelling we get the cohomology relation

fl(di, ks) "y[ ]’y[s]’y[is]- fl’( i, s)

with "y[g] -/($g, t). E]

In the twisted group algebra, change to a cohomologous cocycle replaces A[g] by a
scalar multiple of itself, and so we are considering two such algebras as equivalent when
there is an algebra isomorphism of one to the other that respects the family of one-
dimensional subspaces spanned by the group elements. This is the usual equivalence for
such algebras.

3. Circulant theorems deduced from the structure of k[G, B]. We can now read off
quite a good deal of information about algebras of monomial circulants from known
results on twisted group algebras; the following list is only a sample. The necessary facts
on cohomology and twisted group algebras are conveniently assembled in Chapters 2
and 3 of Karpilovsky’s book [9], but the reader could also consult [5] or [4].

(1) A direct computation of the discriminant using the basis A[g] shows that
k[G,/] is a semisimple algebra when the characteristic of k does not divide n [G]. In



472 WILLIAM C. WATERHOUSE

particular, if k is algebraically closed and char (k) does not divide n, then for our regular
representation there is an invertible matrix P (not necessarily monomial) such that the
matrices PAP- for A in the family have a block-diagonal structure

diag (X X X2 Xz Xm Xm).

Here Xi is an arbitrary n; by ni matrix repeated ni times, and the Xi are independent of
each other. In particular, (r/i)2 r/. Just as for group matrices, this tells us how the
determinant for one ofour algebras factors as a polynomial in the entries ofthe first row:
there are independent linear functions x(-i) of the entries, falling into m families of (r/i)2pq

each, such that the factorization of the determinant into irreducible factors is
IIi(det (X(pi)q )n’).

(2) If any one of the blocks Xi in (1) is by 1, then the cohomology class of/3 is
trivial, and there is a diagonal matrix which conjugates our circulants to the family of
group matrices for G. In fact this is true if we simply assume (with no hypothesis on k)
that there exists a common eigenvector v for the matrices in our family. Indeed, we then
have vA[g] x(g)v for some nonzero scalar x(g), and the multiplication rule .) gives
x[g]x[p] =/3(g, p)x[gp]. But this says that/3 is cohomologous to the trivial cocycle.

(3) It is clear from (..) that the matrices in the algebra all commute with each
other iff (a) the group G is abelian, and (b) the cocycle/3 is symmetric (i.e.,/3(p, q)
/3(q, p) for all p, q in G). If in addition the field k is algebraically closed of characteristic
not dividing n, then the algebra will necessarily be conjugate to the algebra of all diagonal
n by n matrices. The monomial equivalence families of this type correspond precisely to
the different abelian groups of order n. This follows from (2) above, which implies that
here all cohomology classes are trivial.

(4) Suppose that k is algebraically closed, or more precisely just that it is closed
under taking nth roots. If Un denotes the nth roots of in k, we have then the exact
sequence of multiplicative groups

and in turn by [9, p. 42] this gives us a cohomology exact sequence

"HI(G,k*)-’-H2(G,I,tn)’-"H2(G,k*)" 1.

In particular, all classes in H:Z(G, k*) are represented by cocycles with values in #n. In
terms of the earlier X-group matrices, this says that (under our hypothesis on k) any
family of them can be conjugated by diagonal matrices to one where the kernel H is
cyclic of order n. As Hi(G, k*) Hom (G, k*) =Hom (G, Un) is computable, the
sequence also allows us to compute the size of HZ(G, k*) in finitely many steps.

(5) In particular, ifk satisfies the hypothesis in (4), then there are only finitely many
different equivalence classes of algebras of n by n monomial circulants. For there are
only finitely many ways to make the index set into a group; and for each group G there
are only finitely many cocycles with values in #n, and hence each H2(G, k*) is finite.
Theorem 4 then shows more generally that there are only finitely many equivalence
classes closed under multiplication.

A similar result holds when k is the field for real numbers. For here we can
write * as a direct product 2 X >0, and the multiplicative group of positive reals is
uniquely divisible by n. Hence the cohomology with values in it is trivial, and we have
H2(G, *) H2(G, t2) for any G. Thus we get the following result, which is not at all
obvious from the original definitions:
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THEOREM 6. Over either the real numbers or the complex numbers, there are only
finitely many different classes ofn by n monomial circulants closed under multiplication.
For any given n, representatives for all the classes can be computed. [2]

(6) On the other hand, for fields like k (C) there will be infinitely many different
types. Indeed, suppose that we take G cyclic of order n (where the trivial cocycle yields
ordinary circulants). Then H2(G, k*) is isomorphic to k*/(k*)n, and for k (C) this
quotient is infinite for every n >= 2. Ifg is a generator of G, we get a cocycle corresponding
to a given element r in k* by letting

i(gi, gj) if + j< n,

=r if i+j>=n.

Here A[g]n rI, and the algebra is isomorphic to k[X]/(X" r). One familiar example
of this is the family of "skew circulants," where r -1.

(7) Generalizing (3) above, one can directly compute which matrices Z,c[g]A[g] in
an algebra of monomial circulants commute with the whole algebra. The result is that
each c[g] determines the value of all c[hgh-], and also c[g] must actually be zero unless
the cocycle/3 satisfies

/3(g, p) =/3(p, g) for all p commuting with g.

Thus the dimension of the center is equal to the number of conjugacy classes in G for
which this condition on the cocycle is satisfied, and we can explicitly determine a basis
for the center. In the situation of (1), the dimension of the center tells us the number of
blocks Xi. In particular, the number of blocks is never greater than the number of con-
jugacy classes in G. We can find the sizes ofthe blocks by diagonalizing the basis elements
of the center.

4. Examples for order 4. Over any field there are at least two equivalence classes
of4 by 4 algebras ofmonomial circulants, one for each group oforder 4; the corresponding
matrices are

a b c d

d a

c d

the ordinary circulants corresponding to the cyclic group of order 4, and

a b c d
b a d c

c d a b

d c b a

corresponding to the Klein 4-group 7//2Z 7//27/. Over a field like (C), there are infinitely
many others.

When k C, we can compute all equivalence classes as in (5) in 3. There are no
additional types arising from the cyclic group, because H2(7//4Z, C * C */(C * )4 1.
When G 7//27/ 7//2Z, multiplication by 2 is a homomorphism that annihilates G
and hence annihilates all cohomology of G, and thus in the reasoning of (4) in 3 we
can replace 4 by #2 { +-1 }. Mechanical computation shows that there are exactly 16
(normalized) cocycles/3 on G with values in #2, and there is just one nontrivial coboundary
to change them, so there are eight elements in H2(G, t2). But there are four elements in
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H(G, C * ), and hence there are two elements in H2(G, C * ). The nontrivial one (which
is of course supplied to us by the computation) can be represented by matrices of the
following form:

a b c d
-b a -d c
c -d a -b
d c b a

The center contains only multiples ofthe identity, and hence our algebra must be abstractly
isomorphic to 2 by 2 matrices. Explicitly, set

0 0

Q= 0 0 -1
0 0

-1 0 0

Then it is easy to compute that the general matrix A above satisfies

a+c b-d 0 0

QAQ_= -b-d a-c 0 0
0 0 a+c b-d
0 0 -b-d a-c

Notice that (up to a scalar factor) the matrix Q that we took here is unitary. In the
next section we shall show that we can do almost as well in all cases over C. The only
other thing we may need is a diagonal factor to adjust for the absolute values of/3.

We can extend this example [9, p. 62] to compute H2(G, C * for all abelian groups
G, and a little attention to the details of the proof will produce the cocycles (and thus
the circulant families) explicitly.

Now consider the possible structures over . As we saw in (5) above, H2(G, *)
H2(G, ix2). For G cyclic of order 4, we get two possibilities. One type is again the usual
circulant matrices corresponding to the usual group algebra; the other is the "skew-
circulant" matrices

a b c d
-d a b c
-c -d a b
-b -c -d a

given by the formula in (6) in 3 with r -1.
For G - 7//27/ 7//27/, we have (as we saw before) eight elements in H(G, 2). But

this does not directly tell us the number of monomial equivalence classes, because in
Theorem 5 it is possible to have G G’ with a nontrivial map between them. That is,
the automorphism group Aut (G) acts on HZ(G, k* ), and two classes in the same orbit
of that action will give algebras differing only by permutations of the basis elements. In
our particular case, Aut (G) has six elements. We know already that four of the eight
classes in HZ(G, * will become trivial in H-(G, C * ), and all these correspond to sym-
metric cocycles. It is easy to calculate that the three nontrivial symmetric classes form a
single orbit for Aut (G) and give us just one more type of generalized circulant, which
we can write as

a b c d
b a d c

-c -d a b
-d -c b a
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By (2) in 3 we know in advance that this is a commutative semisimple algebra of real
matrices having no common real eigenvector, and hence it is isomorphic as an algebra
toC XC.

The other four cohomology classes must be in the other coset of the image of
H(G, C * ); they yield the nontrivial class over C and are nonsymmetric. They again fall
into just two orbits, one being again the type isomorphic to the 2 by 2 matrix algebra.
The other can be written for instance as follows:

a b c d
-b a -d c
-c d a -b
-d -c b a

This is the fight regular representation for the quaternions (in basis 1, i, j, k). In rough
summary, we have the following theorem.

THEOREM 7. There are precisely six equivalence classes of real 4 by 4 algebras of
monomial circulants. Over the complex numbers, they collapse to three classes.

5. Unitary reduction overC. In 11 ], 12], 13] it has been shown (by a computation
using eigenvalues) that any commutative algebra of monomial circulants over C can be
reduced to diagonal form under conjugation by the product of a unitary matrix and a
diagonal matrix; this is a stronger statement than the abstract result that follows from
(1) in 3. We saw further in 4 that in a particular (4 by 4) noncommutative case we
could likewise reduce the family to its standard block form by such a transformation. In
this section we establish that result in general.

THEOREM 8. For any algebra ofmonomial circulants over C, there exist a diagonal
matrix D (with real positive entries) and a unitary matrix U such that conjugation by UD
puts the algebra into the blockform of(l) in 3.

Proof We begin with an explicit version of the reduction done abstractly in (4) in
3. The cocycle identity on/3 tells us that

B(c, d)(cd, g) [3(c, dg)[3(d, g).

If we define ,(d) to be the product of all/3(c, d), then we find by taking products over c
that

y(d)y(g) "(dg)[3(d, g)n.

Hence the absolute values of the entries satisfy

[/(d, g)l [3’(d)[;"l’(g)l’nlf’(dg)[";".

Since the cocycle is normalized, we have of course (1) 1. If we let D be the diagonal
matrix diag (]3,(g)l-/") and replace A[g] by DA[g]D- as in the proof of Theorem 4, we
get an algebra corresponding to a cocycle/3’ for which all I/3’(g, P)I 1. A straightforward
computation now establishes the following lemma.

LZMMA 9. When I’[--1, the conjugate transpose matrix A[g]* is equal to
/3’(g, g-)-A[g-]. In particular, when 113’1 1, the algebra of monomial circulants is
closed under taking conjugate transposes.

Algebras ofmatrices with this selfadjointness property are known to be quite special,
essentially because the orthogonal complement of any invariant subspace is again an
invariant subspace. Specifically [10, pp. 5-8], under conjugation by a unitary matrix,
any such algebra can be transformed to one of the following form:

block diag (X ...,X X2, X2, ,Xm, Xm)



476 WILLIAM C. WATERHOUSE

as in (1) of 3, except that in general here the number ofrepetitions of each independent
block X; can depend on the particular algebra involved. But we know already that we
are dealing with a regular representation, and hence an ni by ni block must occur n times
whenever we get the matrices into block form. Thus Theorem 8 is proved.

COROLLARY 10. Let ’) be a list (in some order) ofthe entries in the block matrix
above. Then there is a unitary map that sends the n-tuple (l(g)ll/nc(g)) tO the corresponding
n-tuple ((ni/n)l/2x()a ).

Proof The first n-tuple is the first row of Zc(g)DA[g]D- above, so we may make
that change first and assume that our cocycle has absolute value 1. Now on n by n
matrices we have an inner product (1/n) Tr (AB*), for which the matrices with single
nonzero entries are orthogonal. By Lemma 9, the A[g] are orthonormal (and the map
A -- elA is an isometry from our algebra to C"). The map B UBU- for unitary U
is an isometry on the whole matrix algebra, and thus the UA[g]U- are an orthonormal
basis for the block-form image. But the matrices b-’(i) with one block entry equal to are-,pq

also an orthogonal basis. As the block Xi is repeated ni times, the norm of b-’(i) in ourpq

inner product is (ni/n)/2. Thus (n/ni) 1/2rr() is another orthonormal basis for our block-,pq

matrix algebra, and the transformation between coordinates in the two bases is uni-
tary.

6. Monomial circulants preserved by the algebras. It is known 14] that the
g-circulants are characterized among all permutation circulants by the fact that they are
preserved under multiplication by ordinary circulants. To find their analogues, then, we
must determine the families of monomial circulants preserved under multiplication by
some algebras of monomial circulants. We shall first give the result of a direct analysis
and then show how the families are related to endomorphisms of twisted group algebras.

We start with a fixed algebra of monomial circulants coming from a group G and
a cocycle/3. As before, we denote the basis matrices by A[g]. Consider now some other
monomial circulants, with permutation p - i,p in row and nonzero scalars ’(i, p);
recall that by definition 1,p p and (1, p) 1. A basis of the family is then given by
the matrices M[r] with nonzero entries ’(i, r) in row and column i, r. A computation
very much like those that have gone before establishes the following criterion.

THEOREM 11. The monomial circulants spanned by the M[r] are preserved under
multiplication by the A[g] (on both sides) iff

(1) i, r 4(i)rfor some homomorphism cb G -- G, and
(2) the (i, j) satisfy the identities

’(i, g) ’(i, 1)fl(b(i), g)
and

(ig,

Re-interpreting condition (2), we see that monomial circulants of the type in
Theorem 11 exist for given G and/3 and a given homomorphism G -- G iffthe cocycle
/o(, q) is cohomologous to /3, or, in other words, iff the cohomology class of/3 is
preserved by

COROLLARY 12. There are onlyfinitely manyfamilies ofmonomial circulants pre-
served under (two-sided) multiplication by the circulant algebra corresponding to afixed
G and 13.

Proof There are only finitely many possible b G -- G. For those that satisfy the
necessary condition, the choice of the values ’(g, 1) (which determine all others) is
unique up to multiplication by values 3’(g) satisfying "(ig) 3’(i)3"(g). Such T form a
homomorphism from G to k*, and there are only finitely many such homomor-
phisms.
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Ifwe change the algebra ofmonomial circulants by a (monomial) equivalence, then
we change the circulant families preserved by it in the same way. In view of Theorem 6,
then, we have the following result:

THEOREM 13. Over the real or complex numbers, there are onlyfinitely many dif-
ferent equivalence classes ofmonomial circulants ofa given size that are preserved under
multiplication by some algebra of monomial circulants. In principle, we can compute
them all.

Now we can connect these families with our twisted group algebras. Just as we
interpreted the A[g] as right multiplication maps on k[G,/3], so now we shall interpret
the new families as linear transformations on that algebra, using as before A[g] as the
element corresponding to the basis vector eg of kn.

THEOREM 14. Each family ofmonomial circulants preserved by a given algebra of
monomial circulants is given (as linear transformations on k[G, /3]) by maps oftheform
x - (x)vfor varying v in k[G, [3]. Here is an algebra endomorphism ofk[G, [3] that
sends each A[g] to a multiple ofsome A[h]. Conversely, every such b gives such afamily
ofcirculants.

Proof. It is trivial to compute that a monomial mapping sending Z,c(g)A[g]
to Z,c(g)A[ck(g)]y(g) will preserve multiplication iff b is a homomorphism and the
y(g) satisfy y(g)y(h){3(ckg, ckh)= y(gh)(g,h), precisely the conditions required for
’(g, 1) in Theorem 11. The condition y(1) is implied because we must preserve the
unit element, and then we get y(g) 4:0 by taking h g- in the equations. We then
just compute that the mapping sending A[i] to (A[i])A[r] for some fixed A[r] has
image y(i){3(ck(i), r)A[4(i)r], which agrees exactly with the formula for ’(i, r) in
Theorem 11.

This result says that the circulant matrices in question are very close to the regular
representation, differing from it only in that some fixed algebra endomorphism is applied
before the fight multiplication. In particular, we have the following fact.

COROLLARY 15. Thefamily ofmatrices in Theorem 11 contains an invertible matrix
iffthe endomorphism 4 is an automorphism.

Proof Clearly is bijective itt’ is. When this is so, then actually M[ (corresponding
to v in the above formula) is an invertible mapping. When is not bijective, every
element in its kernel is in the nullspace of all matrices in the family.

In view of Theorem 14, we shall call the monomial circulant families occurring in
Theorem 11 monomial endomorlhism circulants; those containing an invertible matrix
(which, as with the algebras, are likely to be the most important) will be monomial au-
tomorphism circulants. Since det (x - ,(x)v) det () det (x - xv), we have the
following factorization.

COROLLARY 16. The determinant on matrices in a family ofmonomial automor-
phism circulants is a polynomial in thefirst-row entries with a factorization ofthe same
kind as thatfor the algebra. [2]

We should also note how matrix multiplication of such families corresponds to
composition.

PROPOSITION 17. Let l and V’be two families ofmonomial endomorphism cir-
culants for the same algebra. Let , be the corresponding endomorphisms. Then the
matrix products in //[V" are thefamily ofmonomial endomorphism circulants for that
same algebra and the endomorphism.

Proof Each matrix product sends a vector x to an image of the form [(x)v]w,
which equals [o(x)][x(v)w].

This is a wide generalization ofthe familiar fact that the product of a g-circulant
and an h-circulant is a gh-circulant.
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7. Equivalence classes of monomial automorphism circulants. As with algebras of
circulants, we can find an algebraic classification of the families we have just studied.
Again we focus only on those containing invertible matrices.

LEMMA 18. A family ofmonomial automorphism circulants uniquely determines
the algebra ofmonomial circulantsfrom which it came.

Proof. The monomial automorphism family has dimension n and contains some
invertible matrix M. The map X - MX on matrices is bijective, and hence at most an
n-dimensional family of matrices X can send this particular M into the family under
fight multiplication. Since by definition the circulant algebra does this, it coincides with
the family of all such matrices and is thereby determined.

Iftwo families ofmonomial automorphism circulants are equivalent, then the same
monomial conjugation will give an equivalence of the associated algebras of monomial
circulants. Thus to determine the equivalence classes it will be enough to determine those
arising for a fixed algebra. To express the classification, let M Aut (k[G, 3]) be the group
of all monomial automorphisms of k[G,/3]. Straightforward computation shows that
there is an exact sequence of groups as follows:-- Hom (G, k* --MAut (k[G, /]) -- Auta (G) -- 1,

where Auta (G) is the subgroup of Aut (G) preserving the class of /in H2(G, k*) and
the induced action of this group on Hom (G, k*) is the natural one.

THEOREM 19. Consider twofamilies ofmonomial automorphism circulants corre-
sponding to elements , ofMAm (k[G, 3])for the same algebra ofmonomial circulants.
Then they are equivalent iff and /are conjugate in M Aut (k[G, /]).

Proof. Let us suppose first that the two families of matrices are conjugate by a
monomial transformation. We view both families as acting on k[G, ], and we let
F: k[G, ] - k[G, #] be the monomial map (written on the left) that conjugates one to
the other. One of the families comprises the maps sending the element x to c(x)u for
various u; the other comprises the maps sending x to various /(x)v. The assumption
thus is that for each u in the algebra there is some other v such that cb(Fx)u F(C/(x)v)
for all x. Setting x [=e ], we have (F1)u F(v), and this equation determines u
from v. Putting in that value, we get the equation

(Fx)(F 1)-’F(v) F(q(x)v),

for all x and v. Setting v 1, we can solve to find cb(Fx)b(F 1)-IF(l) F(x), and then
we can put in the resulting value for ,(Fx) to get

F(q/x)F( 1)-1(F1)(F1)-IF(v) F((x)v).

Now let H(x) F(I )-F(x). Then the condition says that H(x)H(v) H((xx)v); as
is bijective, H is an automorphism of the algebra. Since F is monomial, F(1) is a scalar
times a basis element of k[G, ]; and since the multiplication by these basis elements is
monomial, the automorphism H is in MAut (k[G, /]).

Now let r F(1). If we rewrite our basic identity in terms of H and r, with
F(x) rH(x), we get

b(rH(X))O(r)- rH(v) rH((x)v) rH(x)H(v).

If we here put v 1, we see that this is equivalent to

(r)(H(x))(r)-= rH(x)r .
Let A(x) rH(x)r-. Since r F is a scalar times a basis element, this operation A is
also in M Aut (k[G, ]). Since F is an automorphism, our equation then tells us that



THE STRUCTURE OF MONOMIAL CIRCULANT MATRICES 479

OA AxI,, or in other terms A-OA , as claimed. Conversely, we can read the whole
computation backwards (taking r and F A) to show that this condition is suf-
ficient. [3

For example, let us return to the 4 by 4 case over C. We found the three inequiv-
alent monomial circulant algebras in 4. For a group algebra (trivial cohomology
class), all elements ofAut (G) preserve the class. Furthermore, a group automorphism can-
not take a nontrivial cohomology class to a trivial one, so the unique algebra class for
G Z/2Z Z/27 with nontrivial cocycle will also have its class preserved by all auto-
morphisms. For group algebras, there is always a subgroup ofM Aut (k[G]) naturally
isomorphic to Aut (G); thus the exact sequence mentioned at the start of the section
splits, and we have a semidirect product (and the monomial automorphism circulants
coming from the elements in Aut (G) are actually permutation circulants). For G
7//47/, it is easy to compute thatMAut (k[G]) is the dihedral group of order 8, and hence
there are five conjugacy classes in it, giving rise to five equivalence classes of monomial
automorphism circulants. The conjugacy class consisting ofthe identity gives the algebra
itself. A typical example of the other classes is given by the family of matrices

a b c d
-b -c -d -a
c d a b

-d -a -b -c

Like g-circulants, this family will be closed under multiplication on both sides by ordinary
4 by 4 circulants. As was predicted by Corollary 16, the determinant here factors in the
same way as for ordinary circulants.

For the trivial cocycle on G Z/2Z Z/2Z, we have M Aut isomorphic to the
alternating group A4 Because IGI is relatively prime to IAut (G)[, the group M Aut for
the nontrivial class also splits to give the semidirect product .44. There are 4 conjugacy
classes in .44, and thus this G yields eight equivalence classes ofmonomial automorphism
circulants (two of them algebras). Thus

COROLLARY 20. There areprecisely 13 equivalence classes ofcomplex 4 by 4 mono-
mial automorphism circulants.

Those who need to compute more general examples may want to recall one standard
theorem that did not arise in these abelian examples: the inner automorphisms of G are
always contained in Aute (G). This is actually obvious with our algebras, since the inner
automorphism x - A[g]-xA[g] on the twisted group algebra induces the inner auto-
morphism h - g-hg in Aut (G).

Appendix. Linear circulants. It is clearly possible to replace monomial transfor-
mations by various other linear groups of transformations. In this Appendix we look
very quickly at the most general possibility, where the entries in subsequent rows are
obtained as (invertible) linear transformations of the first row. More precisely, we begin
with a fixed sequence of invertible matrices C {C[ ], C[n] } with C[ I; this
will define our style of circulants. Starting then with any row u in kn (basis vectors el),
we get a matrix M(u) {or Me(u), ifwe must be precise} with row given by uC[i]. Clearly
the family /’ of all such matrices is n-dimensional, and we call it the family of linear
circulants defined by C. It has the additional property that its individual rows are arbitrary,
i.e., ei/l k for each i; conversely, a simple dimension count shows that an n-dimen-
sional space of n by n matrices with this property is indeed a family of linear circulants.
Thus we are dealing with fairly general families. Again we focus on those that are closed
under multiplication.
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THEOREM A1. (a) The linear circulant family lg is closed under multiplication
iff there is an associative bilinear multiplication on kn for which el is a left unit and
uC[i] ei, u for all i. In that case, we have in general wM(u) w, u.

(b) In the situation of(a), thefollowing are equivalent:
(i) One ofthe M(u) is invertible.
(ii) The identity matrix is in l.
(iii) el is a two-sided unit in the algebra.
(iv) For every i, thefirst row ofC[i] is

When these conditions hold, then the inverse of every invertible matrix in is again
in

Proof (a) If we have the multiplication on kn, we define C[i] by the condition that
row,j in it be ei,ej. Bilinearity then shows that uC[i] ei,u, and so more generally
wM(u) w,u. By associativity then wM(u)M(v) (w,u),v w,(u,v) wM(u,v),
and the family of matrices is closed under multiplication. The condition on el tells us
that C[ is the identity.

Conversely, ifwe have a family dosed under multiplication, the condition on C[
tells us that el M(v) v, so that v -- M(v) is a linear bijection from kn to /’. As ’ has
an associative bilinear multiplication, we can pull it back to get such a multiplication on
kn; specifically, ifM(u)M(v) M(z), then z elM(Z) eM(u)M(v) uM(v), so we see
that the multiplication is indeed given by the formula in the theorem. By construction
also el is a left identity.

Before continuing with part (b), we should insert a lemma analyzing the structure
possible at this stage. The older papers on this topic [7], [2] do not seem to contain
precisely the result we need, but it is reallyjust the Peirce decomposition for the idempotent
el and thus little more than an exercise.

LEMMA A2. Let R be a ring with a left identity, e. Then R has theform Ro M,
where Ro is a subring having e as a two-sided identity andM is a unital left Ro-module;
the multiplication has theform

(r, m),(r’, m’) (rr’, rm’).

Conversely, any such construction yields a ring with a left identity. IfM is nonzero (e not
a two-sided identity), then there are other left identities; they all yield the same M, while
Ro is replaced by {(r, rm)lr R0} for an m in M that is (fixed but) arbitrary. In particular,
Ro andM are determined up to isomorphism by the original R. [2]

Now we prove part (b) of Theorem A1. Let M(u) be an invertible element in /.
Then all sums of powers of M(u) are in /g. The characteristic equation has nonzero
constant term, and so we can express I in terms of these powers; hence I is in ///. (The
converse implication is evident.) As there is thus a two-sided identity in /g, it must
coincide with the left identity given in the algebra by el. Conversely, if el is a two-sided
identity, then u u,e uM(e), so M(e) L We have e ei,e eC[i], so we find
that condition (iv) is also equivalent. Finally, if M(v) is invertible, then its inverse is a
linear combination of I and powers of M(v), and hence it is again in //. [21

We can of course write out conditions on the C[i] that yield various properties of
the algebra. Here for instance is the basic result on diagonalization.

PROPOSITION A3. Let 11 be afamily oflinear circulants over afield k. Thefollowing
are equivalent:

(a) //is an algebra, and each matrix in it is diagonalizable over k;
(b) PIP- consists ofdiagonal matricesfor some matrix P.
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IfthefieM k is algebraically closed, these are equivalent to thefollowing identities:
(cl) ZrC[i]jrC[r]pt ZrC[j],rC[i]rt;
(C2) e C[i] ei;

(c3) eC[j] ejC[i];
(c4) 0 4: detj (,,C[k]rC[r]).
Proof Clearly (b) implies (a). Conversely, if we have (a), we know the matrices are

the fight regular representation of some algebra. By assumption, none of the matrices
can be nilpotent. Hence the algebra is semisimple. Thus it is a product of matrix algebras
over division tings. These matrices must be by 1, since otherwise we would again have
nilpotent elements. Thus we have a product of division tings. If any one of them is
not k, then the regular representation of something in it outside k is not diagonalizable
over k. Thus we have the regular representation of kn, and in an appropriate basis that
will coincide with the family of diagonal matrices. In (c), condition (1) makes the family
closed under multiplication, condition (2) gives it an identity, condition (3) then makes
it commutative, and condition (4) then makes it separable [3, p. 45] by making its dis-
criminant nonzero, 0 4: det (Tr (ei.ej)). I-q

To conclude, we briefly discuss the families preserved by such algebras. The proof
of Theorem 14 shows in this context that if is a linear circulant algebra and /g is a
linear circulant family with’ /’ ’, then the matrices in /are those cor-
responding to maps u - (u).v for some endomorphism of the algebra . The
family includes invertible matrices iff is an automorphism. If ff is another family
corresponding to and the endomorphism , then as in Proposition 17 we find
that the matrix products in /’ff are a family corresponding to and the endomor-
phism .

The intrinsic definition of the algebra from the matrices in Theorem A1 shows at
once that two linear circulant families are conjugate by an invertible matrix iffthe algebras
involved are conjugate. As in Lemma 18, a family of linear automorphism circulants
determines the associated algebra; and as in Theorem 19, we find that two of them for
the same algebra are conjugate iff the automorphisms are conjugate in Aut (). Finally
we have the following result, one that shows how our generalized circulant algebras form
a reasonably self-contained topic.

THEOREM A4. Letl be afamily oflinear circulants containing an invertible matrix.
Suppose there is some n-dimensional subalgebra 1 ofmatrices for which ll l.
Then in fact is a linear circulant algebra.

Proof Let C[i] be the matrices defining /’. By assumption, there is some vector u
with the uC[i] all independent. For each r, then, we can write uC[i]C[r] sD[r]isuC[s];
that is, D[r] is the matrix expressing multiplication by C[r] in this new basis. In particular,
D[r] is invertible and D[ is the identity. Now for each A in , AM(u) is contained in
//, say M(v). The first row of M(v) is v, and so we have /)r--,kAlk(tlC[k])r.
Then row of M(v) will be vC[i], and this must agree with row of AM(u), with
entry in column s given by ,tAit(uf[t])s. Hence this latter expression is equal to
,r,kAlk(UC[k]r)C[i]rs. Now this can be rewritten as

,kAk(uC[k]C[i])s ,kAk,tD[i]kt(UC[t])s.

Thus we have the vector equality ,tAit(uC[t]) Zt(,kAkD[i]kt)(uC[t]). Since the uC[t]
are independent, we conclude that

Ait ,kAkD[i]kt.

Thus indeed the matrices A are in a fixed linear circulant family.
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INVERTIBLE SELFADJOINT EXTENSIONS OF BAND MATRICES
AND THEIR ENTROPY*

ROBERT L. ELLIS, ISRAEL GOHBERG:I: AND DAVID C. LAY

Abstract. A maximum entropy principle for positive definite extensions of band matrices is generalized
here to a large class of indefinite selfadjoint matrices. It is known that a selfadjoint band matrix R with certain
nonvanishing minor determinants has a unique extension to an invertible selfadjoint matrix F such that F- is
a band matrix. Sufficient conditions are described here such that Idet FI > Idet GI when G is any other invertible
selfadjoint extension of F.

Key words, selfadjoint, hermitian, Toeplitz matrix, entropy, extension
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Introduction. The following problem was considered in [5]. Let m and n be integers
with 0 _-< m =< n 2. Suppose the entries of an n n selfadjoint matrix F are specified
only for [k jl --< rn (that is, in a "band" with "bandwidth" m). Under what conditions
is it possible for F to be positive definite with all entries of F-l equal to 0 outside the
band of F- with bandwidth m? This problem has important connections with signal
processing, system theory and other areas. It can be reformulated as follows. We say that
an n n matrix R (Rjk) is an m-band matrix if Rjk 0 for ]k-J I> m, and that an
n n matrix F extends such an m-band matrix R if Fk Rjk for Ik -Jl --< m. Then the
problem is to determine conditions on an m-band matrix R under which R has a positive
definite extension whose inverse is an m-band matrix. Throughout the paper, ifM is a
matrix, then M(j, k) denotes the principal submatrix (mpq)j_ p,q_ k. In [5, Thm.
6.1] it was proved that ifR(j,...,j +m) is positive definite for -< j -< n -m, then there
is a unique positive definite extension F of R whose inverse is an m-band matrix. (See
also ].) This so-called band extension Fcan also be characterized as the unique positive
definite matrix whose determinant is as large as possible. It was also proved that F is
Toeplitz ifR is.

In [6], a "permanence principle" was found which states that ifF is the band exten-
sion of an m-band matrix R satisfying the conditions above, then any principal sub-
matrix F(j, ..., k) ofF is the band extension ofthe corresponding principal submatrix
R(j, ..., k) of R. This principle implies that the band extension F can be obtained by
a series of "one-step" extensions of band matrices each having bandwidth two less than
its size. A selfadjoint one-step extension F of an n n band matrix R is determined by
its (n, 1)-entry w. In [6] it was shown that the set of all w for which F is positive definite
is the interior of a disk whose center is the unique value of w for which F is the band
extension of R.

The main purpose of this paper is to generalize the preceding results to indefinite
selfadjoint matrices. To simplify the exposition we assume the bandwidth m is pos-
itive, but our results extend easily to the case m 0. The positivity assumptions on sub-
matrices ofR will be replaced by the requirement that the matrices R(j, j + m) be
invertible for -< j =< n m and the matrices R(j + 1, j + m) be invertible for

=< j =< n m 1. The results depend on the signs of the following determinants:

Dk=detR(k, ,k+m) (1 <=k<-n-m)
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and
dk=detR(k+ 1, ,k+m) (l<=k<=n-m-1).

For example, if the Dk all have the same sign and the dk all have the same sign, then R
has a band extension the absolute value ofwhose determinant is maximal over the class
ofall selfadjoint extensions ofR that lie in the connected component ofthe band extension.
This case includes the Toeplitz case. If the signs of Dk are alternating and the same is
true of the signs of dk, then the results are quite different. In particular, the absolute
value of the determinant of the band extension is minimized rather than maximized. In
the general case, the band extension is a stationary point for the determinant function,
and can yield a maximum, a minimum, or a saddle point.

The paper is divided into five sections. In the first the situation for one-step extensions
is analyzed. In the second we introduce the concepts of a band extension and a central
extension and prove that they coincide. In 3 we investigate interior extensions, those
in the connected component of the band extension. Another class of extensions, the so-
called sign-consistent extensions, appears in 4. The final section is dedicated to extensions
of Toeplitz matrices.

1. One-step extensions. Let R be an n n selfadjoint matrix with Rn 0. For
any complex number w, let F(w) be the n n selfadjoint matrix such that F(w)n w
and F(w)jk Rjk for any pair of indices other than (1, n) and (n, 1). Then F(w) is called
a one-step extension ofR. The two main problems discussed in this section are to determine
the values of w for which F(w) is invertible and to describe various properties of
det F(w). We will assume that the determinants of R(1, n 1), R(2, n), and
R(2, n 1) are not 0.

THEOREM 1.1. Let R be an n n selfadjoint matrix such that R 0 and the
determinants ofR(1, n 1), R(2, n), and R(2, n 1) are not O. For any
complex number w, let F(w) be the selfadjoint extension ofR such that F(W)nl w.

(a) Ifdet R(1, n 1) and det R(2, n) have opposite signs, then F(w) is
invertiblefor all w. In that case, det F(w) and det R(2, n 1) have opposite signs.

(b) Ifdet R(1, n 1) and det R(2, n) have the same sign, then F(w) is
invertiblefor all w except those on a circle. The center Wo and the radius o ofthe circle
are determined asfollows. Let

detR(1, ,n- 1)
detR(2, ,n- 1)

and let x2, x,_ be the unique numbers satisfying

Then

R(1, ,n-l)

Xn- 6

n-I

(1.1) Wo Rnjxj
j=2

and

(1.2) ,o
/det R(1, ..., n 1). det R(2, n)

Idet R(2, ..., n 1)l



INVERTIBLE SELFADJOINT EXTENSIONS 485

Moreover, det F(w) and det R(2, n 1) have the same sign for Iw wol < o, but
opposite signs for w Wol > o.

(c) The entry [F(w)-l]nl is 0 ifand only ifw Wo.
Proof We have

where A R(1, n 1) and b [w Rn2 Rn,n- 1]. Since A is invertible,

F(w)
bA-l v 0

where v Rnn bA-lb*. Therefore, det F(w) v det A, so that F(w) is invertible if and
only if v 4: 0, that is,

(1.3) bA-lb* 4 Rnn.
Let

0
(1.4) el and bl

Then b* vel + bl and

where

0
R2n

Rn’-ln

bA-lb* (A-lb*, b*) awff, +w+ ff+ 3"

w+ +3"-

detR(2, ,n- 1)
(1.5) a=(A-lel’el) detR(1,...,n-1)4:0’
(1.6)

Therefore the condition in (1.3) for F(w) to be invertible becomes

le Rnn 3" [fil e
(1.7) w+ 5/=

a 0/2

If the fight side of (1.7) is negative, then F(w) is invertible for all w. If the right side of
(1.7) is nonnegative, then F(w) is invertible for all w except those on the circle with center

Wo given by

(1.8) Wo=

and radius o equal to the square root of the fight side of (1.7). Let

R(1, ,n- 1)-l =(Sjk)l _j,k_n-1.

Then from (1.4), (1.5), (1.6) and (1.8) it follows that
.-i n-1

(1.9) Wo SljRjn

_
RnjSjl.

Sll j=2 Sll j=2
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Similarly, ifF(w) is partitioned into a 2 2 block matrix with R(2, ..., n) in the lower
fight corner, and if we let

then
R(2, ,n)-1 =(tjk)2_j,k_n,

n--1

(1.10) Wo---- Z Rutjn.
tnn j=2

Now let

detR(1, ,n- 1)
(1.11) Pn--detR(2,...,n-1) and Q-I

so that

det R(2, n)
detR(2, ,n- 1)

(1.12) P,_=s-( and Q,_=t.

Also, let x2, "", Xn- and w2, w,_ be the unique numbers satisfying

(1.13a)

and

R(1, ,n-l)

Xn

_
(1.13b) R(2, ,n)

w: 0

W -1

so that

(1.14) xj Pn ISjl and wj Qn- tj, (2=<j=<n- 1).

Let w be a complex number and define

n-I

(1.15) A’,,= w+ Z Rnjxj
j=2

and
n-I

j=2

(1.16) c,= an- and Cn Pn-l’

(1 17) P,, Pn-1 "Jr" t.’nl_n

Then from (1.13)-(1.17) it follows that

x2
(1.i8) F(w)

and

+c;,

Q, Qn- -1- than.

o 1,.
W2 0

0
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and

(1.19)

so that

F(w)

0 0
x2 w2 0

det F(w) det F(w)
(1.20) Pn and andetR(2, ,n) detR(1, ,n- 1)"

Also (1.16) and (1.17) imply that

1.21) Pn Pn- 1(1 C’nC’) and Q, Q, 1(1 c,c).
It follows from (1.20) that F(w) is invertible if and only if Pn 4= 0 or, equivalently, if and
only if an =/= O. Therefore (1.21) implies that F(w) is invertible if and only if

(1.22) 4:1CnCn

From (1.12) and (1.14) we find that (1.9) and (1.10) may be rewritten as

n-I n-I

(1.23) Wo gnjxj gljwj
j-2 j=2

so that (1.15) becomes

(1.24) A’= W-- Wo and A,= W-- Wo.

From (1.16) and (1.24) it follows that

(1.25) Iw- wol2 CnCn-rn- IOn-
Therefore the condition in (1.22) for the invertibility of F(w) becomes

detR(1, ,n- 1).detR(2, ,n)
(1.26) Iw-wol2e_lQn_

[det R(2, ,n- 1)]2

All statements in the theorem involving the invertibility of F(w) follow from (1.23) and
(1.26). For the statements involving det F(w), observe from (1.11), (1.20), (1.21) and
(1.25) that

detR(1, ,n- 1).detR(2, ,n)
det F(w)=

detR(2, ,n- 1)

( [w-w12(detR(2’"’’n-1))2 )
We conclude that if det R(1, n 1) and det R(2, n) have opposite signs,
then so do det F(w) and det R(2, n 1), and that if det R(1, n 1) and
det R(2, ..., n) have the same sign, then

detF(w)
detR(1, ,n-1)’detR(2, n) ( Iw-w01____2)

so that det F(w) and det R(2, n 1) have the same sign for Iw w0l < p, but
opposite signs for [w w0[ > p. Finally, it follows from (1.18) that the first column of
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F(w)-1 is
0

X2 W2

P ." +c,,
Xn0- Wnl-1

Therefore [F(w)-l]ni is 0 if and only if c, 0, which means that w w0 by (1.16) and
(1.24). This completes the proof of Theorem 1.1.

Suppose the matrix R in Theorem 1.1 is Toeplitz. Then

R(1,...,n- 1)=R(2, ,n),

so it follows from (1.11) that Pn Qn and from (1.16) and (1.24) that c c,. Then
(1.21) becomes

en en 1( -Ic 12).
Thus the two sequences {c, } and {c } may be regarded as a generalization of the single
sequence of reflection coefficients that appear in the version of the Levinson algorithm
in [3].

Let R be as in Theorem 1.1. The number w0 given by (1.1) is called the center of
extension of R. The radius ofextension o ofR is defined by (1.2) if det R(1, n 1)
and det R(2, n) have the same sign and otherwise is defined to be . The extension
F(wo) is called the central extension of R, and F(w) is said to be an interior extension if
w w01 < o. According to Theorem 1.1, every interior extension is invertible.

Statement (c) ofTheorem 1.1 characterizes the central extension as being the unique
invertible selfadjoint extension whose inverse has (n, 1) entry equal to 0.

An alternate formula for the center of extension Wo ofR is given by

W0 [Rn2 Rn,n llR (2, n 1)-1

LRn "-- 1,1

To see this, we partition the minor of Fin in F(wo) as follows:

R21

Rn- 1,1

w0

R22 R2,n-

R,_I, Rn-l,n-1 wo

Rn2 Rn,n-

where D R(2, n 1). Then D is nonsingular, and

where I is the (n 2) (n 2) identity matrix, and x Wo BD-1C. If we consider
the adjoint formula for F(wo)-1, it is clear from statement (c) of Theorem 1.1 that the
matrix on the left of (1.27) is singular. This implies that x 0, and hence w0 BD-IC.

The next theorem characterizes the central extension by means ofextremal properties
of the absolute value of its determinant.

THEOREM 1.2. Let R be an n n selfadjoint matrix such that Rnl 0 and the
determinants ofR(1, n 1), R(2, n), and R(2, n 1) are not O.
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(a) Suppose det R(1, n 1) and det R(2, n) have the same sign. Then
for any interior extension F(w) ofR,

Idet F(w)l--< Idet F(Wo)l
with equality only ifw Wo.

(b) Suppose det R(1, n 1) and det R(2, n) have opposite signs. Then
for any selfadjoint extension F(w) ofR,

Idet F(w)l >= Idet F(wo)l
with equality only ifw Wo.

(c) If F(w) is an interior extension of R, then det F(w) and det F(wo) have the
same sign.

Proof Observe from (1.11), (1.20) and 1.21) that

detR(1, ,n- 1).detR(2, ,n)
(1.28) det F(w) (1 c’,c’)

detR(2, ,n- 1)

so that

(1.29) det F(w) det F(wo)(1 c’c’).

If det R(1, n 1) and det R(2, n) have the same sign, then 0 < C’nC, <-
1, whereas if detR(1,..., n-1) and detR(2,..., n) have opposite signs, then

"> Moreover,cnc, CnCn only if w Wo. The conclusions in (a) and (b)
follow immediately from these remarks. Statement (c) is a simple corollary of Theo-
rem 1.1.

The following result complements Theorem 1.1.
PROPOSITION 1.3. Let R be an n n selfadjoint matrix with R, 0 and suppose

that R (1, , n 1) and R(2, n 1) are invertible with determinants ofthe same
sign. Suppose det R(2, n) 0. IfF F(w) is an invertible selfadjoint extension of
R, then det F does not have the same sign as det R(1, n 1).

Proof We define P,_ and x2,’", x,_ as before by (1.11) and (1.13).
Since R(2, n) is singular but R(2, n 1) is nonsingular, the nullspace of
R(2, n) is one-dimensional, so that there are unique w2, "", Wn- such that

w2 0

(1.30) R(2, ,n)
Wn

1-
We now define A, A, and c by (1.15) and (1.16), respectively. We also define

Then
Qn Cnmn

(1.31)

We will now show that AA >- O. For e > O, let

F,=F+eI.

Since det F(2, n) 0 and det F(1, n 1) and det F(2, n 1) have the
same sign, if e > 0 is small, then det F(2, n) 4:0 and det F,(1, n 1) and
det F(2, n 1) have the same sign. Let Xz(e), "", xn_ (e), P,_ (e), Wz(e),
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Wn- l(e), Qn- l(e), A,(e), AT,(e), and w0(e) be the numbers defined by (1.9), (1.11), (1.13)
and (1.15) when R is replaced by R R + el. From (1.13) and (1.11) it follows that

det R(2, n)
(last column of [R(2, n)]-).

Wn 1(e det R(2, n 1)

But lim_0+ det R(2, ..., n) (last column of [R,(2, .-., n)]-1) exists, and

lim detR,(2, ,n- 1)=detR(2, ,n- 1)4:0.
e.-0

Therefore there exist scalars v2, vn- such that

lim

:l-
Since lim,_ 0+ Qn- O, it follows from (1.13) with R replaced by R, that

v2 0

:. iR(2, ,n)

ni
Therefore, (1.30) implies that

so that by (1.15)

Similarly,

I)2 W2

n W -1

lim A,(e)= A.
e-0

lim A,(e)= A,.
e.-. 0

Since A(e)A(e) >= 0 by (1.24), it follows that AA, >= 0. Since Pn_ > 0 (because
det R(1, n 1) and det R(2, n 1) have the same sign), it follows from (1.31)
that Q <- 0. Moreover, it is easy to verify that (1.19) is satisfied by Q, so that

det F(w)= Qn det R(1, n- 1).

Therefore det F(w) does not have the same sign as det R(1, n 1).

2. Band extensions, central extensions and the permanence principle. Let m and n
be integers with 0 < m =< n 2. An n n matrix R is called an m-band matrix if
Rjk 0 for [k- Jl > m. Such a matrix will be called a standard m-band matrix if
R(j, j + m) is invertible for =< j =< n m and R(j + 1, j + m) is invertible
for =< j =< n m 1. In we analyzed the situation for (m + 2) (m + 2) selfadjoint
standard m-band matrices. In this section we begin to generalize the results of 1 to
n n selfadjoint standard m-band matrices, for any n >_- m + 2.
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Let R be an n n selfadjoint standard m-band matrix. An extension of R is an
n n matrix F such that Fjk Rjk for Ik -jl -< m. A band extension ofR is an invertible
extension of R whose inverse is an m-band matrix. Let F be a selfadjoint extension of
R. For m + 2 =< -<- n and =< j =< m 1, F(j, i) may be considered as a one-
step extension of the (i -j 1)-band matrix formed from F(j, i) by replacing Fo.
and Fji by 0. If for all such and j, F(j, i) is an interior one-step extension, we say
that F is an interior extension of R. If for all such and j, F(j, i) is the central one-
step extension, we call F the central extension of R.

THEOREM 2.1. Let R be an n n selfadjoint standard m-band matrix. Then the
central extension F ofR is the unique band extension ofR. Moreover, F- admits unique

factorizations oftheform F- LMIL* and F-1 UM2U*, where L (respectively, U)
is a lower (respectively, upper) triangular m-band matrix with diagonal entries equal to
and with L(n m,..., n) and U(1,..., m + 1) equal to the (m + 1) (m + 1)

identity matrix, and where

MI=[ ] and M2=[ 0T]
with S and T (n m 1) (n m 1) diagonal matrices, C R(n m, n)-,
and D R(1, m + 1)-. In fact,

where
S=diag(P-j-1)_j<=n_m_l and T diag (Q)-l)m + 2 _-<j_ n,

and

det R(j- m, j)
(2.2) (m+2<-j<=n)J det R(j- m, j 1)

and the entries ofL in the band and below the diagonal are determined by the conditions
L(n m, n) =Iand

(2.3) R(j, ,j+m) LJ+.. ’d i (l <-j<=n-m-1)"

LL; m,;

The entries of U in the band and above the diagonal are determined by the conditions
U(1,...,m+ 1)=Iand

(2.4) Uj._ m,; Uj_ , ]R (j, j + m) [0 0 Q;] (m + 2 =< j =< n).

Proof We will first prove that the inverse of the central extension F is an m-band
matrix. The proof is by induction on n. Suppose that n m + 2. Using (1.17) and (1.18)
and the fact that c, 0 for a central one-step extension, we have

Pn-!
X2

(2.5) F

detR(j, ,j+m)
(2.1) (l<=j<=n-m 1)*=detR(j+ 1, ,j+m)
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From (2.5) it follows that F-1 is an m-band matrix. Now suppose n > m + 2 and assume
the result is true for (n 1) (n 1) matrices. We will first prove that the entries in the
first column ofF-1 that lie outside the band are 0. By the inductive hypothesis applied
to F(1, n 1) and from the equation

R(1,...,n-1) x2

which appeared in (1.13), we have Xk 0 for m + < k =< n 1, so (2.5) becomes

F
Xm+l
0

so that the entries in the first column of F- that lie outside the band are 0. Now let
D R(2, ..., n) and let a be the (n 1) matrix defined by

ro o o a]
Fl_o D -1 .0 iJ

Therefore

1
0

0"
F +P’ ![1 -a =I.O- -] Xm+

0

0

This implies that F- is an m-band matrix since D- is an m-band matrix. Therefore the
inverse of the central extension is an m-band matrix, so the central extension is a band
extension of R.

We next prove that the inverse of any band extension F ofR has a unique factori-
zation F- LML* of the form given in the statement of the theorem. For e > 0 let

0 0,
F=F+e

0

Then
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where I is the (m + 1) (m + 1) identity matrix. For e small and different from 0, F, is
a standard m-band matrix and F,(j, n) is invertible for n m =< j -< n. Thus by
Theorem 3.1 of [5], F71 has a unique factorization of the form

(2.6) F-l LM,L*

where L, is a lower triangular band matrix with diagonal entries equal to 1. From the
construction of this factorization in [5], it follows that the first n m columns of L,
equal the corresponding columns ofthe lower triangular matrix L defined in the statement
of the theorem. Furthermore, the construction in [5] shows that M,(1, n m 1)

S, where S is as in the statement of the theorem. Thus (2.6) may be rewritten in the
form

F2 L
C

where C, is an (m + 1) (m + 1) matrix. Since L is invertible and

lim F- lim (F+ el)-l F-
0 0

it follows that lim,_0+ C, exists. Therefore F-l has a factorization of the form F-l

LMIL* as given in the statement of the theorem. To prove the uniqueness of such a
factorization, we suppose that LIML’ and L2M’L are two such factorizations. Then

Let A LlLl and B lvl*’r*r*-lmi-l_,21 Then A(1, n m 1) is lower triangu-
lar and B(1, n m 1) is upper triangular. Therefore A(1, n m 1) is diag-
onal and hence is the identity. Therefore L2 Ll since L2(rt- m,..., n)= I-
Ll(n m, n). It follows that M’ M, so F- has a unique factorization of the
form LMIL*. A similar proof shows that F-1 has a unique factorization of the form
UM2U * as stated in the theorem.

Now we will prove that there is a unique band extension of R. Let F be a band
extension ofR. By what wejust proved, F-1 has a factorization LML* as in the statement
of Theorem 2.1. Let

L-l=[AB ] and M=[S00C].
Then

F=L*-IM-IL-l

C_

C-B C-

It follows that C F(n m, n)- R(n m, n)-1, so that C is unique. Now
let =< j =< n m 1. From the equation

it follows that

R(j, ,j+m)

FL L*-M-
(l<j<-n-m-1).
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Therefore

det R(j+ 1, ,j+m)
Sj=

detR(j, ,j+m)
(l <=j<=n-m-1)

so that S is unique. Since each R(j, ..., j + m) is invertible, L is also uniquely determined.
Therefore there is a unique band extension of R. This completes the proof of Theo-
rem 2.1.

We remark that the existence of a band extension of a standard m-band matrix was
also established in ].

From Theorem 2.1, we obtain the following generalization ofthe permanence prin-
ciple [6, Thm. 4].

THEOREM 2.2. Let F be the band extension of an n n selfadjoint standard
m-band matrix R. Then F(j, k) is the band extension ofR(j, k)for <= j <=
n-m- andj+m+ <=k<=n.

Proof. If "band extension" is replaced by "central extension," the result is true by
definition. Thus the theorem follows immediately from Theorem 2.1.

3. Interior extensions and extremal properties of the determinant. Let R be an
n n selfadjoint standard m-band matrix and let F be a selfadjoint extension of R. If
F(j, j + k) is invertible for -< j =< n m and m < k -< n j, then F is said
to be strongly invertible (with respect to the band). Clearly every interior extension is
strongly invertible. In the next theorem we prove that the interior extensions are precisely
those extensions that can be connected to the central extension by a path in the set of
all strongly invertible extensions of R.

THEOREM 3.1. Let R be an n n selfadjoint standard m-band matrix. Let 6 be
the set ofall strongly invertible selfadjoint extensions ofR. The connected component in
6 ofthe central extension Fc ofR is the set ofall interior extensions ofR.

Proof. Let F be an interior extension of R. For m + =< k =< n let Rk be the n n
(k- 1)-band matrix whose (i, j) entry is the (i, j) entry of F for li-j I--< k- 1. For
m + =< k =< n and 0 =< t =< let R (k, t) be the n n selfadjoint k-band matrix that
agrees with Rk in the band of Rk and whose (i, j) entry for i-j k is (1 t)Fo + tCo,
where Co is the center ofthe one-step extension ofR(j, i). By Theorem 1.1, R(k, t)
is a standard k-band matrix. For any n n selfadjoint standard band matrix S let C(S)
be the central extension of S. From (1.1) it is clear that the center ofa one-step extension
is a continuous function of the other entries in the matrix. It follows that C(S) is a
continuous function of the entries in S, and R(k, t) is a continuous function of (for
0 <- =< 1) and the entries in R. Therefore C(R(k, t)) is a continuous function of for
0 <- =< that joins C(Rk / ) to C(Rk) in 6. Chaining together these functions for k
n 1, ..., m + 1, we obtain a continuous function joining F to Fc in 6. Therefore
every interior extension is in the connected component of Ft.

Now let F be a strongly invertible selfadjoint extension ofR that is not an interior
extension. Then there are and j such that -j > m and F(j, i) is not an interior
one-step extension of Ri-j(j,’", i). By Theorem 1.1, det F(j,..., i) and det
C(Ri_j(j, i)) have opposite signs. Suppose there is a continuous function o from
[0, into 6 that joins F to F. Then o(t)(j, i) is a continuous function of t that joins
F(j, i) to the central extension of Ri-j(j, i) in the set of invertible (i -j + 1)
(i-j + 1) matrices. This contradicts the fact that det F(j, i) and det

C(Ri_j(j, i)) have opposite signs.
Let R be an n n selfadjoint standard m-band matrix and let F be a strongly

invertible selfadjoint extension of R. Let andj be integers with m + 2 =< =< n and -<
j =< m 1, and consider the (i -j 1)-band matrix formed from F(j, i) by
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changing Fij and Fi to 0. If the radius of extension of this matrix is finite, we say that F
has finite radius at (i, j) and (j, i). Otherwise F has infinite radius at (i, j) and (j, i).

By Theorem 1.1, F has finite radius at (i, j) and (j, i) if and only if

detF(j, ,i- 1).detF(j+ 1, ,i)>0.

THEOREM 3.2. Let R be an n n standard m-band matrix R. For any interior
selfadjoint extension F ofR, the positions at which F has infinite radius and the signs of
the determinants

detF(j, ,k) (l <=j<=n-m-1, j+m<k<=n)

are uniquely determined by the signs ofthe determinants

det R(j, ,j+m) (1 <=j<=n-m),
and

det R(j+ 1, ,j+m) (1 <=j<=n-m- 1).

Proof The proof is by induction on n. For n m + 2 the result follows from
Theorem 1.1. Suppose the result is true for (n 1) (n 1) matrices. Then the po-
sitions in F(1, ..., n- 1) and F(2, ..., n) at which F has infinite radius are deter-
mined by the signs of the given determinants in R. Also the signs of the determinants
det F(j, k) for k > j + m, and k < n ifj 1, are determined. In particular, the signs
of det F(1, n 1), det F(2, n), and det R(2, n 1) are determined, and
these, in turn, determine the sign of det F(1, , n) and whether F has infinite radius
at (1, n) and (n, 1).

Let R be an n n selfadjoint standard m-band matrix. We define

Dk=det R(k, ,k+ m) (1 <=k<=n- m),

dk=detR(k+ l, ,k+m) (l <=k<=n-m-1).

For any strongly invertible selfadjoint extension F ofR and for m + 2 -< =< n and =<
j =< m we let c and c be the numbers defined in (1.16) when F(j, i) is
considered as a one-step extension.

THEOREM 3.3. Let R be an n n selfadjoint standard m-band matrix and let F be
a selfadjoint extension ofR. Then

Ol Dn- m H(1---’ijC’ij)-’(3.1) detF=d dn-m-
where the product is taken over all i, j such that m + 2 <= <= n and <= j <= m 1.

Proof. The proof is by induction on n. For n m + 2, it follows from (1.28) that

detR(1, ,n- 1).detR(2, ,n)
detF= (1--CnlCnl)

detR(2, ,n- 1)

DD2=(1 -c.c.).
d

Let n > rn + 2 and assume the result is true for k k matrices with rn + 2 -< k =<
n- 1. Then

detF(1, n 1) D’"D,,-m-I-I(1 --cijcO)
d dn-m-2

where the product is over all i, j such that rn + 2 =< -< n and =< j =< rn 1;

det F(2, n) D2"" D._ I-[ (1 cjci)
d2 dn-m-I
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where the product is over all i, j such that m + 3 -< -< n and 2 =< j =< m 1; and

det F(2, n- 1) D2 Dn-m-1H (1 CijCij)’
d2"" dn-m-2

where the product is over all i, j such that m + 3 -<_ =< n and 2 =< j =< m 1.
From these formulas it follows that

detF(1, ,n- 1).detF(2, ,n)
detF (1-- CnlCnl)

detF(2, ,n- 1)

Ol On- m I(1-cijcij)
d d-m-

where the product is over all i, j such that m + 2 =< =< n and =< j =< m 1.
The determinant formula (3.1) generalizes a formula in [1]. See also [2].
The next theorem is a generalization of the maximum entropy principle [3], [5],

[6]. Recall that for m + 2 -< =< n and -< j -<- m 1, F(j, i) may be viewed
as a one-step extension.

THEOREM 3.4. Let R be an n X n selfadjoint standard m-band matrix. Let F be an
interior extension ofR with the property that ifF has infinite radius at (i, j), then Fo. is
the center ofthe corresponding one-step extension. Then

Idet F[>= Idet FI
with equality only ifF Fc.

Proof. We use (3.1) along with the fact that cjc > 0 for interior extensions,
cjc’ ifF0 is the corresponding center, and cc =< if (i, j) has finite radius

with equality only if F0 is the corresponding center. It follows that

Idet F[-< D Dn-m Idet FcI
d d_,_

with equality only if F F.
From the determinant formula (3.1) we also obtain the following minimum entropy

principle.
THEOREM 3.5. Let R be an n n selfadjoint standard m-band matrix. Let F be an

interior extension ofR with the property that ifF hasfinite radius at (i, j), then Fi is the
corresponding center. Then

Idet FI -< [det F[
with equality only ifF F.

Proof The result follows from (3.1) and the fact that if F has infinite radius at
(i, j), then cc >= with equality only ifFo is the corresponding center.

4. Sign-consistent extensions. There is interest in the inertia ofextensions ofselfad-
joint band matrices [4], [7], [8]. In this section we investigate a class of such extensions
whose inertia are determined by the given band matrix.

THEOREM 4.1. Let R be an n n selfadjoint standard m-band matrix, and let F
be an interior extension ofR. Then

det F(1, ..., j) det R(j- m, ..., j)
sgn sgn (m + 2 _-< j -< n).

detF(1, ,j- 1) detR(j-m, ,j- 1)

Proof Let F be the central extension of R. Since F is the band extension of R,
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F-1 has the factorization

F21= U
0

U*

where U is an upper-triangular band matrix with diagonal entries equal to and T
diag (Qj-I)m / 2

_
j

_
n, where

det R(j- m, j)
QJ

det R(j m, j- 1)

Then

Fc U_I. JR(l, ,m+ 1)
0

Since U-1. is lower-triangular it follows that

Fc(1, ,J)=U-I*( 1’ ,j)[R(I’ ...0,m+l)
for m + 2 -< j =< n, so that

0 ] --1(
T-l(m + 2, j)

U 1, j)

(m+2<=j<=n).

Now let F be any interior extension. By Theorem 3.1, F lies in the same connected
component of as Ft. It follows that for any k, F(1, ..., k) is in the same connected
component as Fc(1, k), so that

detF(1, ,j) detFc(1, ,j)
sgn sgn (m + 2 =< j =< n).

det F(1, ,j- 1) detFc(1, ,j- 1)

This proves the theorem.
In view of Theorem 4.1, we make the following definition. Let R be an

n n selfadjoint standard m-band matrix and F a selfadjoint extension of F such that
F(1, j) is invertible for m + 2 =< j =< n. Then F is sign-consistent if

det F(1, ,j)
sgn

detF(1, ,j- 1)
det R(j- m, j)

sgn (m + 2 -< j-< n).
detR(j-m, ,j- 1)

Theorem 4.1 states that every interior extension of a selfadjoint standard m-band matrix
is sign-consistent.

To simplify notation we define the pattern matrix PF (Pk) of an n n matrix
Fby

Pk Pk sgn det F(j, k) (1 <= j <- k <= n).
IfF is a strongly invertible selfadjoint extension of an n n standard m-band matrix R,
then for k j > m the entries Pk, PZk- 1, P / l,k and p / l,k- in the pattern matrix PF
determine whether the matrix F(j, , k) is an interior one-step extension. In fact, the
following criteria follow immediately from Theorem 1.1"

(1 ) If P,k- IP + l,k --1, then PjkP / l,k- --1 and F(j, k) is an interior
one-step extension with infinite radius.

(2) If PZk-I P / 1,k-I P,k, then all three equal pj / l,k and F(j, k) is an
interior one-step extension with finite radius.

(3) The matrix F(j,..., k) is an interior one-step extension if and only if
Pj,k- Pj + l,kPj,kPj + l,k- 1.

(m+2<=j<=n).

o]T_
U-1.

det Fc(1, j) det R(j- m, j)
detFc(1,...,j-1)

Q
detR(j-m, ,j-1)
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The next two theorems give sufficient conditions on a standard m-band matrix R
for every sign-consistent strongly invertible selfadjoint extension of R to be an interior
extension of R.

THEOREM 4.2. Let R be an n n selfadjoint standard m-band matrix such that
Dk/dk is positivefor <- k <= n m 1. Then a strongly invertible extension F ofR is
sign-consistent if and only if F is an interior extension. In that case, for each k with
m + 2 <= k <= n, the entries pjk in PF have the same sign for <= j <= k m.

Proof. By Theorem 4.1 every interior extension is sign-consistent. Now suppose
that F is sign-consistent and observe that

Pk,k + m sgn Dk (1 <= k <= n m)
and

pk+l,k+m=sgnd (l <=k<=n-m-1).
The proof is by induction on n. Suppose first that n m + 2. Since F is sign-consistent,
we have

(4.1)
Pl,n /2,n

Pl,n- P2,n-

and since D/dl > 0, we have Pl,n-l P2,n-1. Therefore, Pl,n P2,n, and it follows
from (3) that F is an interior extension. Now assume the result for (n 1) (n l)
matrices. Then F(1, ..., n 1) is a strongly invertible sign-consistent extension of
R(1, n l) and Pf(1, n 1), which equals Pft,...,n-1), has the desired form.
In particular, the entries Pj,n- are equal for -< j -< n m 1. There are two cases to
consider: eitherP,n Pl,n or Pl,n -Pl,n 1. Ifp,n P,n 1, then repeated applications
of criterion (2) imply that the entries pj,, are equal for -<_ j =< n m and that F is an
interior extension. If Pl,n --Pl,n-1, then repeated applications of criterion (3) imply
the same conclusion. This completes the proof.

THEOREM 4.3. Let R be an n n selfadjoint standard m-band matrix such that
D/dk is negativefor <= k <= n m 1. Then a strongly invertible extension F ofR is
sign-consistent if and only if F is an interior extension. In that case, for each k with
m + <= k <= n the entries P,k, Pg-m,cform an alternating sequence.

Proof By Theorem 4.1 it suffices to prove the necessity. Suppose that F is sign-
consistent. The proof is by induction on n. Suppose that n m + 2. Then P,n-
-P2,,- and (4.1) holds. Therefore P,n -P2,,, and along with (3) this implies that F
is an interior extension. Now assume the result is true for (n 1) (n 1) matrices.
Then as in the proofofTheorem 4.2 we find that F(1, , n 1) is an interior extension
of R(1, n 1) and that the entries in PF(1, n 1) have the desired pattern.
In particular, the entries P,n- , P2,n- 1, Pn-m- l,n- alternate in sign. If p,,
--Pl,n- 1, then repeated applications of (1 o) imply that F is an interior extension of R
with p,n, Pn m,n alternating in sign. Ifpl,n Pl,n l, then p, m,n Pn m,n since
F is an interior extension ofR with Pl,n, Pn m,n alternating in sign. This completes
the proof.

Theorems 4.2 and 4.3 do not cover every standard m-band matrix with the property
that each of its strongly invertible sign-consistent extensions is interior. For example, let
R be the following standard 1-band matrix:

2 0 0 0
2 2 0 0
0 2 0
0 0 2 2
0 0 0 2
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It is easily seen from Theorem 1.1 that every strongly invertible sign-consistent extension
of R is interior. However, D/d and D2/d2 are negative, whereas D3/d3 is positive, so
that R is not covered by either Theorem 4.2 or Theorem 4.3.

Furthermore, not every strongly invertible sign-consistent extension of a standard
m-band matrix is interior. For example, if

-2 -1 0 0 -2 -1 10

-10 -1 2 0
and F= -11 -1 2R= 2 -1 0 2 -1

0 0 10 3 0

then R is a standard 1-band matrix and Fis a strongly invertible sign-consistent extension
of R. However, F is not an interior extension of R. Since the interior extensions form a
connected component in the set of strongly invertible extensions (by Theorem 3.1),
this example shows that the set of sign-consistent extensions may have more than one
connected component.

We conclude this section by considering special cases ofTheorems 4.2 and 4.3 along
with corresponding entropy results for the central extension Fc.

THEOREM 4.4. Let R be an n n selfadjoint standard m-band matrix such that
D, Dn-m have the same sign and d, dn_m- have the same sign. Then a
strongly invertible selfadjoint extension F ofR is sign-consistent if and only ifF is an
interior extension with finite radius at every position outside the band. Moreover,

Idet FI--< Idet Fc[
with equality only ifF Fc.

Proof By Theorem 4.1 every interior extension ofR is sign-consistent. Let F be a
strongly invertible sign-consistent selfadjoint extension ofR. Since D, , D,_ have
the same sign and d, ..., d,-m- have the same sign, it follows that the hypotheses
of either Theorem 4.2 or 4.3 are satisfied, and hence that F is an interior extension of
R. If Dk/dk > 0 for =< k =< n m 1, then it is easy to see from the proof of Theorem
4.2 that the entries Pjk ofPF are the same for Ik -jl > m, which implies that F has finite
radius at every position outside the band. On the other hand, if Dk/dk < 0 for =< k -<
n m 1, the proof of Theorem 4.3 shows that the entries pjk with Ik jl > m form a
checkerboard pattern, which also implies that Fhas finite radius at every position outside
the band. Thus in either case it follows from Theorem 3.4 that

Idet F[ _-< Idet Fcl
with equality only if F Fc.

THEOREM 4.5. Let R be an n n selfadjoint standard m-band matrix such that
D, D-m and d, "", d-m- are each alternating sequences. Then a strongly
invertible selfadjoint extension F ofR is sign-consistent if and only ifF is an interior
extension with infinite radius at every position outside the band. Moreover,

Idet FI >--Idet Fcl
with equality only ifF Fc.

Proofi As in the proof of Theorem 4.4 it follows that F is a strongly invertible sign-
consistent extension of R if and only if F is an interior extension. If Dk/dk > 0 for --<
k =< n m 1, then the proof ofTheorem 4.2 shows that the entries Pgk above the band
are constant in each column, with entries in adjacent columns having opposite signs.
This implies that F has infinite radius at every position outside the band. If Dk/dk < 0
for =< k =< n m 1, then the proof of Theorem 4.3 shows that the entries Pgk above
the band are constant in each row, with entries in adjacent rows having opposite signs.
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This also implies that F has infinite radius at every position outside the band. Thus in
either case it follows from Theorem 3.5 that

Idet FI >= Idet
with equality only if F Ft.

5. Extensions of Toeplitz band matrices. Let R be an n n selfadjoint Toeplitz
standard m-band matrix. It is not difficult to prove by induction that the central extension
ofR is also Toeplitz. Since R (j, j + m) R(1, m + 1) for =< j =< n m and
R(j+ 1,.-.,j+m)=R(2,...,m+ 1) forl-<j=<n-m- 1, we need to consider
only two possibilities:

(i) det R(1, m + 1) and det R(2, m + 1) have the same sign;
(ii) det R(1, m + 1) and det R(2, m + 1) have opposite signs.

In either case it follows from Theorem 4.4 that every sign-consistent extension is an
interior extension with finite radius at every position outside the band, since it is clear
that a sign-consistent selfadjoint extension of a Toeplitz matrix is strongly invertible.
Furthermore, in view of Theorem 4.1, this implies that a selfadjoint extension of R is
sign-consistent if and only if it is interior. In case (i), if F is an interior extension of R,
then det F(j, k) has the same sign as det R(1, m + 1) for -< j -<- n m
and j + m + =< k =< n. In case (ii), if F is an interior extension of R, then for =<
j=<n-m- and j+m+ =<k=<n, detF(j,...,k) has the same sign as
det R(1, m + 1) if k -j m is even, and has the same sign as det R(2, m + 1)
if k -j m is odd. In both cases, the absolute value of the determinant of the band
extension is greater than the absolute value of the determinant of any other interior
extension of R. These results are summarized in the following theorem.

THEOREM 5.1. Let R be an n n selfadjoint Toeplitz standard m-band matrix.
(a) The band extension F ofR is Toeplitz.
(b) A selfadjoint extension ofR is sign-consistent ifand only if it is interior.
(c) Every sign-consistent extension ofR has finite radius at every position outside

the band.
(d) For any sign-consistent extension G ofR,

Idet G I_-< Idet FI
with equality only ifG F.
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A PROJECTION DECOMPOSITION FOR BIVARIATE DISCRETE
PROBABILITY DISTRIBUTIONS*

DEVENDRA CHHETRYf AND ALLAN R. SAMPSONf:i:

Abstract. Let Q {Prob (X xi, Y yj)} for X < < Xm, Yl < < Yn. A new matrix decomposition
of Q is given in terms of certain projections on linear spaces related to the marginal probabilities. It is shown
that this decomposition implies Fisher’s canonical decomposition and also a representation important in positive
dependence. Also considered are applications ofthese ideas to the concordant monotone correlation, the maximal
correlation and Hotelling’s canonical correlation.

Key words, probability decomposition, bivariate ordinal random variables, maximal correlation, canonical
correlation, concordant monotone correlation, positive quadrant dependence
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1. Introduction and motivation. Let Q denote the probability mass function matrix
of two random variables X and Y on the lattice (x, Xm) (y, Yn), i.e., Q
{Prob (X xi, Y yj)}. The canonical decomposition of Q in terms of its x and Y
marginal distributions (Fisher (1940), Maung (1941) and Lancaster (1958)) plays an
important role in the structural analysis of bivariate distributions and in the analysis of
contingency tables. For instance, Lancaster (1969) discusses the structural interpretation
ofthe canonical decomposition, and Gilula (1984) indicates its application to the analysis
of contingency tables. An important property of the canonical decomposition is that the
corresponding second canonical correlation is the maximal correlation, a measure of
association introduced by Hirschfeld (1935), and the second pair of canonical variables
are the optimal scales for nominal contingency tables. This property is fundamental to
the development of correspondence analysis (Benzecri (1973)) and dual scaling (Nishisato
(1980)). More recently, motivated by ordinal contingency tables, research has focused
on the study of monotonic relationships between X and Y (see Kimeldorf and Sampson
(1978), Kimeldorf, May and Sampson (1982) and Nishisato and Arri (1975)). More
generally, there is extensive literature concerning positive dependence among random
variables, e.g., Tong (1980). With the exception of the recent work of Schriever (1985),
the canonical decomposition apparently has not been used to study monotonic relation-
ships and positive dependence. The purpose of this note is to obtain a new and more
general decomposition of Q and to show that special cases of this decomposition yield
the canonical decomposition, as well as a decomposition implicit in positive dependence.

Throughout we use the following notation. The row totals (X-marginal p.m.f.)
of Q are denoted by the vector r (r, rm)’ and the column marginals by c
(cl, "", Cn)’. For meaningfulness it is assumed that ri > O, 1, m and that cj >
0, j 1, n; this is denoted by r > 0 and c > 0. For a vector x (x, Xp)’,
x1/2 denotes (x/, x/)’, and Dx denotes the diagonal matrix Diag (xl, xp).
The p-dimensional vector (1, 1)’ is denoted by 1 or simply 1; Jp lp1; and ek de-
notes the kth coordinate unit vector. If VI and V2 are two vector spaces such that
V1 (R) V2 RP, then p vV21 denotes the projection matrix onto V1 along the direction of
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V_. If V2 Vi, t.hen we use Pv, for pvVwhere Vi is the orthocomplement of V. Observe
that (pV2’v,) pVv2 and (I- Pv,)V- p,. Finally, for a matrix A, &t’(A) denotes the linear
space spanned by the columns ofA.

In terms of Q, the canonical decomposition can be expressed as follows where it is
-/2 and write Q* in tes of its spectral decomposi-assumed m < n. Let Q* Dr /QDc

tion as

(1.1) Q* [Diag (1,o, ,am-l)’Om,n-m]G’

where [D/21m F] and G [D/21n G] are ohogonal matrices, Om,n-m is an
m X (n m) matrix of zeros, and

_
0 are the eigenvalues of Q*’Q*

(or Q’Q*’). Then the canonical decomposition of Q can be derived from (1.1)as

(1.2) Q re’ + D/2 Do(D/2 G)’
where Do [Diag (O, am-) Ore-,n-m], and O am- 0 are the
canonical co,elations of Q. Saanov (1958a), (1958b) also calls o the maximal cor-
relation.

In the study ofmonotone dependence and positive (negative) quadrant dependence
(Lehmann (1966)), in paicular, the quantities Prob (X > x, Y > y) Prob (X > x) X
Prob (Y > y) play an impoant role. It is straitfoard to show that Q admits a
decomposition in tes of these quantities, namely,

(1.3) Q rc’+ m(H-FG’)

where the (m 1) X (n 1) matrix H {e> t> qt }, the (m 1)-dimensional
vector (ffi) (> r), and the (n 1)-dimensional vector (i) (> cj),
and

(1.4) (e2 e’, ,’%- %_ ).

Note that equivalently H- FG’ can be expressed as {Xzi 1 qt ki Fk lj el}.
We term this interesting decomposition ven by (1.3) the quadrant dependence decom-
position.

2. The general projection decomposition. A straightfoard theorem for decom-
posing Q is proved and the general propeies of this decomposition are studied. In 3,
it is shown that this decomposition yields as special cases the canonical decomposition
of (1.2) and the quadrant dependence decomposition of (1.3).

THEOREM 2.1 (Projection Decomposition). Let Q be an m n probability matrix
with r > 0 and c > O. Then

n(l)n(c) (1)i o(c)(2.1) Q=rt) rt) +(Im--Ft,) ) n--t) ).

Proof Let Qi, 1, n denote the columns of Q. Then, for 1, n

Q (cir) + ((1- A)r Q )
ji

Because ((1 ci)r jiQj)’l 0 and cir (r), it follows that

(r) rc’.
()Now use the analogous result for e() to obtain
(c), J,zc)z) ((Pzm) Q (P )Q’)’= (ce)’= rc’.

Finally note r(,) trc (rc’), so that the result follows from simple algebra.
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Remark 2.2. An alternate expression for (2.1) is

(2.2) Q re’ +
This expression relates a probability matrix to its coesponding independence distribution
by means of projection operators.

COROLLARY 2.3. Let Q* DTnQDn, where r > O, c > O. Then

(2.3) Q* P(rn)Q*Pon)+ P(n)Q*P(on).

Proof Equation (2.3) follows from (2.2) if it is shown that

D7/2ot)n/2 p(r /2)(r)(2.4)

and

(2.5) Dc1/2 D’W+/-(e) r-l/2 Poo(el/2e(1) Z’c

The symmetry of the matrix in the 1.h.s. of (2.4) follows if D-/:oumn)/(r)

D)/2oX(r)n 1/2 Dx(1)n ox(1) X(r)
<) which holds because <r) r rr’ implies z,) r DrP<) Because

this matrix is also idempotent and has rank of one, to show (2.4) it is sufficient that
X()n)/2 / /2 /2

<r) r D r Analogously, (2.5) holds.
While the projection matrices in (2.2) (or in (2.3)) are unique, there are various

ways to represent them by choosing different bases for (r) and (e). A basis (or basis
matrix) for (r) is an m X (m 1) full rank matrix A whose columns are ohogonal
to r, and a basis for (e) is an n (n 1) full rank matrix B whose columns are
ohogonal to e. Define

(2.6a) 11 A’DrA,

(2.6b) 22 B’OcB

and

(2.6c) ,2 A’QB(=,’2 ).

The following technical lemma permits the representation ofthe relevant projection
matrices in terms ofA, B, 2; and Z22.

LEMMA 2.4. Suppose A and B are basis matricesfor Z’+/-(r) and "(c), respectively.
Let Ag Z-(A’Dr and Bg ,2B’Dc. Then

(a) Ag is a generalized inverse ofA and Bg is a generalized inverse ofB;
r2(r) (AAg) and ..e<) (BBg).(b) re()

Proof Part (a) is obvious. To show part (b), note that (AAg)’ (A(A’DrA)-A’Dr)
ffZA)D-1/2 lr/2 Dlr/2 I---’(r).-q’(D D P.w+/-(rl/Z)O 1/2 I p.(rln)D- /2 pe+/-(z)

with a similar result for BB.
THEOREM 2.5. Let Q be an m n probability matrix with r > 0 and c > 0 and let

A and B be basis matricesfor &t’+/-(r) and &t’+/-(c), respectively. Then

(2.7) Q= re’ + DrA-{ll122-B’Oc

Proof The proof follows directly from Lemma 2.4 and Remark 2.2.
As noted in 1, the eigenvalues of Q*’Q* or (Q’Q*’) play an important role. In

the following theorem, we show that the eigenvalues of Q*’Q* (or Q’Q*’) can be obtained
from 21712;1_2;2121 (or 2;2;212;112;2), no matter the choice of basis matrices A and B.

THEOREM 2.6. (i) The eigenvalues of ]-?12-21 (or 21]-1112) do not
depend on the explicit choice ofthe basis matrices A and B.
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(ii) The eigenvalues of Q’Q*’ (or Q*’Q*) are 1, and the eigenvalues of

Proof To show (i), let A and A2 be arbitrary basis matrices for t’S(r), and B and

B2 for t’+/-(e). Then there exists (m 1) (m 1) and (n 1) (n 1) nonsingular
matrices G and H, respectively, such that A A2G and B B2H. Hence

(2.8)

where [Zi-Z2ZZ21]a, denotes the matrix ]-22121 derived from the bases A, B.
The result now follows from (2.8).

To show (ii), let A* [Dr/21m "DYA] and B* [D/21, D/2B1. Then

Furthermore,

B*’B*= and A*’Q*B*=
Ell 22 0 12

Q*Q*’=A* -i - B*’Q*’(A*A*-)
11 12Z22

0’ ]=A*[0
so that the result now follows.

Note that because the eigenvalues of Q*Q*’ are less than or equal to (Lancaster
(1969, Corollary 1, p. 90)), the eigenvalues of 2]-22g21 have the same property.

THEOREM 2.7. For every choice ofbasis matricesfor A and B, the matrix

is nonnegative definite, where 11, 12, 22 and Z21 are defined by (2.6).
Proof The nonnegative definiteness of Z is equivalent to the nonnegative definite-

ness of

Q*’ I

Because the eigenvalues of Q*’Q* are between 0 and (e.g., Lancaster (1969, Corollary
1, p. 90)), the result follows.

In {} 3 we identify explicitly a set ofm + n 2 random variables (W, Wm- 1,

Z, Zn- )’ (W’ Z’)’ whose covariance matrix is . In light of Theorems 2.6 and
2.7, we note that the canonical correlations between X, Y in the sense of Fisher and
Lancaster can be viewed as the canonical correlations between W and Z in the sense of
Hotelling (see Anderson (1984, Chap. 12)).

3. Derivation of the canonical and quadrant dependence decompositions. In this
section, we demonstrate that the version of the projection theorem given by Theorem
2.5, in fact, yields for a suitable choice of the basis matrices A and B Fisher’s canonical
decomposition, and for another choice the quadrant dependence decomposition. The
former result is stated in Theorem 3.1 and the latter in Theorem 3.3.

THEOREM 3.1. Let Q be an m n probability matrix of rank k with r > 0 and
c > O. Let 1, (1,1" 1’2) and G (GI G2) denote, respectively, m m and n n
orthogonal matrices such that Q’Q*’= 1"D1’’ and Q*’Q* GD2G’, where D
Diag (1,021, 0_1, 0,.-., 0), 92 Diag (1, 21,..-, _, 0,.-., 0), and >=
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oZl >- >- O,-1 are the nonzero eigenvalues ofQ’Q*’ (or Q*’Q*). Then Ao D-1/2I2
and Bo D-l/ZG2 are basis matrices for &t’+/-(r) and q+/-(e), respectively. Moreover the
decomposition

(3.1) Q= re’ + DrAo,-{,IZ,2B’oD
yields the canonical decomposition, where ,11, Z12 and 2;22 are defined by (2.6).

Proof The vector D/21m is clearly an eigenvector of Q’Q*’ corresponding to the
eigenvalue of 1. Therefore, Abr I"2D-l/2Drlm IIl 0 which implies from the
orthogonality of I’ that Ao is a basis matrix for &t’+/-(r). Similarly, Bo is a basis matrix for
+/-(c). Moreover, Zll A’oDrAo IF2 Im-1; Z22 In-1; and

,12=A,oQBo= F,2Q.G2= [Diag (pl, ,Ok) 0]0 0

SO that (3.1) yields (1.2).
In order to derive the quadrant dependence decomposition from the projection

decomposition, we require the matrices A and B to be defined by

(3.2a) A (I- JmDr)Pm

and

(3.2b) B (I-

where the p (p 1) matrix ffp is defined by (Yk> ek k>p- ek).
Three straightforwardly provable properties ofA and B are given below.
LEMMA 3.2. Suppose A and B are defined in (3.2). Then
(i) A’QB P’m(Q- rc’)!Pn.

(ii) A generalized inverse ofA is A’m and ofB is A’, where Ap is defined by (1.4).
(iii) A’m ,-{’Dr and A’ ,B’Dc, where ,11 Dr and
THEOREM 3.3. Let Q be an rn n probability matrix with r > 0 and c > O. Let A

and be defined by (3.2). Then and are basis matrices for ?+/-(r) and +/-(c), re-
spectively. Moreover, the decomposition

(3.3) Q rg’+ Drd,-{l,12,21j’Dc

yields the quadrant dependence decomposition, where ZI1, Z12 and ,22 are defined
by (2.6).

Proof Note that A’mA A’mm Im- which implies that the rank ofA rn 1.
Also A’r P’m(I- DrJm)r k,(r r) 0. Hence A is a basis matrix for &t’l(r), and
similarly/ is a basis matrix for &t’+/-(c). Theorem 2.5 along with Lemma 3.2 yields the
following result:

(3.4) Q rc’ + mmlzm
where Z12 ff,(Q rc’)n. But bLQffn H, b,r F, and c’b, G’, so that the quadrant
dependence decomposition of (1.3) now follows.

Simple algebra yields that for the quadrant dependence decomposition ZI { fj },
where fj (1 Fmi (i,j))Fmax (i,j)and Z22 {go}, where go (1 min(i,j))max(i,j).
Viewing Zll and Z22 as functions of r and c, respectively, we denote this by 11(r) and
22(C),

COROLLARY 3.4. The squares ofthe canonical correlations ofQ are the eigenvalues
of2(r)(I- I?,’)2(c)(/’ ").

Proof This follows immediately from Theorem 3.3 and Theorem 2.6.
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As noted in Theorem 2.7, the matrix

(3.5) Z(Q)=
;2(Q) 22(c)

where S12(Q) H- FG’, is nonnegative definite for each probability matrix Q. An
interesting and useful converse is to find conditions on an arbitrary (m + n 2)
(m + n 2) nonnegative definite matrix Zo so that for some m n probability matrix
Qo, we have S0 S(Qo). Partition

Sll S12]S0as
$21 $22

so that S is (m 1) (m 1). Clearly, there must exist r > 0, with Sri and
c > 0 with Scj 1, so that S (r) and $22 22(c). Then for such r and c, we must
have from (3.4) that re’ + AmSI2A has all nonnegative elements. This is summarized in
the following lemma.

LEMMA 3.5. Let

[ SI1 S12 ]S0"-
$21 $22

be a nonnegative definite matrix. If there exists r > 0, with Sri 1, and c > 0, with
Scj 1, such that Zl Sll(r) and Z $22(c), and if re’ + mmS12m 0, then there
exists a probability matrix Qo such that o Z(Qo), where Z(Q) is given by (3.5).

In some ways, Lemma 3.5 can be viewed as an analogue for the quadrant dependence
decomposition of results like those ofTyan and Thomas (1975) obtained for the canonical
decomposition in the more general continuous case.

We conclude this section by identifying m + n 2 random variables whose co-
variance matrix is . For a given p.m.f, matrix Q, define the nondecreasing functions
Wl, Wm- and Z1, Zn- by

(3.6a) Wk(x) --FkI-oo,xk(x) + &Ixk,oo)(x), k= 1, m-

and

(3.6b) Zl(y) -GlI(-o,yd(Y) + GlI(y,,oo)(y), l 1, n

where I(a,al(U) is the indicator function of(a, b]. The following theorem is straightforward
to prove.

THEOREM 3.6. Let Q be an m n probability matrix with r > 0 and c > O. Define
the (m + n 2)-dimensional random vector U by

U---(WI(X) Wm-I(X),ZI(Y), ,Zn_l(Y))

where { W(X)} and {Z(Y)} are given by (3.6). Then E(U) 0 and E(UU’)

4. Applications. We now consider some further applications of the previous results,
in particular, of the basis matrices A and B of (3.2). A vector x (x, Xp)’ is said
to be increasing ifxl --< =< xp, i.e., ifA >= 0, and decreasing if-x is increasing. The
basis matrices A and B provide a convenient way of representing a vector’s being in-
creasing, as is noted in the following lemma whose proof is straightforward.

LEMMA 4.1. Every increasing (decreasing) vector x &’+/-(r) can be written as
x Aa ifand only ifa >= (<=) O.

Kimeldorf, May and Sampson (1982) introduced the concordant monotone cor-
relation coefficient (CMC), which for two ordinal variables X and Y with probability
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matrix Q, is defined by

(4.1) CMC (Q)= max x’Qy

where the maximum is taken over all increasing vectors x e &t"(r) and y e t’Z(c), (i.e.,
EX EY 0) such that x’Drx and y’Dcy (i.e., EX2 EY2 1). Using Lemma
4.1 one can readily show that

(4.2) CMC (Q) max c’Zz(Q)/3

where the maximum is taken over all c >_- 0,/3 >= 0 with c’,,(r)c and/’22(C)/
1. Formulation of the concordant monotone correlation optimization problem as (4.2)
instead of (4.1) has the apparent benefit of reduced dimensionality and nonnegativity
constraints in place of the monotonicity constraints.

If we remove the constraint of c >_- 0 and/3 >_- 0 in the optimization problem of
(4.2), the resulting measure is o’(Q), the maximal correlation coefficient. In fact, to com-
pute the maximal correlation coefficient, it suffices to replace in (4.2), Z(Q) by Z, Z2,
Z22 where these three matrices are computed from arbitrary basis matrices using (2.6).
The following theorem and its corollary provide an approach to finding 19’(Q) and con-
ditions for having CMC (Q) t9’(Q).

THEOREM 4.2. Let Q be an rn x n probability matrix with r > O, e > 0 and let A
and B be basis matricesfor &t’+/-(r) and t’(c), respectively. Then 19’(Q) c’,Z2/,, where
c, and [3, are any vectors satisfying

(4.3) ZTI1Z12Z2Z2IO, (19’(Q))2a,,

(4.4) c’, c,

and

(4.5) /, (19’(Q))-l21ot,

where Z, 12, 22 are given by (2.6) and 19’(Q) is assumed positive.
Proof Suppose c, and/3, satisfy (4.3), (4.4) and (4.5). Then

Ot,12/, (pt(Q))-lott,122--210t,

p’(Q)cZo,

19’(Q).

COROLLARY 4.3. If (r)z(Q) >- 0 and (e)_(Q) >_- 0, then CMC
(Q) 19’(Q).

Proof It follows that i-(r)2(Q)(C)z(Q) >= 0. Let c<) be the eigenvector
of (2 corresponding to the largest root 192 (19,(Q))2 such that a{)’Z,(r)a{) 1. It fol-
lows, e.g., Gantmacher (1959, p. 66), that a{) >_- 0. Let/3{) (19’(Q))-(e),z(Q)a),
so that/3{) >- 0 and/()’22(C)/() 1. Hence, from Theorem 4.2, and (4.2), it follows that
19’(Q) c’,Z2(Q)/3, CMC (Q).

Corollary 4.3 is implicitly contained in the results of Schriever (1983).
To see that the conditions of Corollary 4.3 are not necessary, let

I2/8 2/8 0 1Q= 2/8 1/8 0
0 0 1/8
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Then p’(Q) CMC (Q) 1, but

-1/6 0]2i-?(r)2z(Q)= 2J(e)2(Q)=
4/6

We conclude by establishing a connection between a problem related to the tradition
canonical correlation analysis of the multivariate normal and the CMC. Suppose

(X’ X[)’ N O,
T21 T22

where X is (m 1) and X2 is (n 1) X 1. Define p+(Xl, X2) sup p(a’X, fl’X2),
subject to Var (a’Xl) > 0, Var (fl’X2) > 0 and a >- 0,/3 >- 0. Following the terminology
of Waterman (1974), we call p+ the nonnegative canonical correlation coefficient. This
optimization problem does not appear to be addressed in the statistical literature, and
seems to be fairly difficult to solve for general r l, 7"12, 7-22. However, ifthere exists a pmf
matrix Q+ so that

[ 7-11 7-12 ](Q+)7-217-22

(see Lemma 3.5) then clearly O
+ CMC (Q+). In this case the program MONCOR

described by Kimeldorf, May and Sampson (1982) would permit the computation of 0+.
Also using the argument ofthe proof ofCorollary 4.3, and standard results (e.g., Anderson
(1984, Chap. 12)), we can establish the following theorem.

THEOREM 4.4. Let

(X] "X)’ N(O’ [ 7-11/21 7-12]).r22

Ifr-(]r2 >- 0 and r7-21 >= O, then o+(X, X2) is Hotelling’s canonical correlation coefficient
between X and X2.

REFERENCES

T. W. ANDERSON (1984), An Introduction to Multivariate Statistical Analysis, 2nd ed., John Wiley, New York.
J. P. BENZECRI (1973), L’analyse des donnees II: l’analyse des correspondences, Dunod, Paris.
R. A. FISHER (1940), The precision ofdiscriminant functions, Ann. Eugen. London, 10, pp. 422-429.
F. R. GANTMACHER (1959), The Theory ofMatrices, Chelsea, New York.
Z. GILULA (1984), On some similarities between canonical correlation models and latent class modelsfor two-

way contingency tables, Biometrika, 71, pp. 523-529.
H. O. HIRSCHFELD (1935), A connection between correlation and contingency, Proc. Camb. Philos. Soc., 31,

pp. 520-524.
G. KIMELDORF AND A. R. SAMPSON (1978), Monotone dependence, Ann. Statist., 6, pp. 895-903.
G. KIMELDORF, J. MAY AND m. R. SAMPSON (1982), Concordant and discordant monotone correlations and

their evaluation by nonlinear optimization, in Optimization in Statistics, S. H. Zanakis and J. S. Rustagi,
eds., TIMS Studies Management Sci., 19, pp. 117-130.

H. O. LANCASTER (1969), The Chi-squared Distribution, John Wiley, New York.
(1958), The structure ofbivariate distributions, Ann. Math. Statist., 29, pp. 719-736.

E. L. LEHMANN (1966), Some concepts ofdependence, Ann. Math. Statist., 37, pp. 1137-1153.
K. MAUNG 1941), Measurement ofassociation in a contingency table with special reference to thepigmentation

ofhair and eye colours ofScottish school children, Ann. Eugen. London, 11, pp. 189-223.
S. NSHISATO AND P. S. ARRI (1975), Nonlinear programming approach to optimal scaling ofpartially ordered

categories, Psychometrika, 40, pp. 525-548.
S. NISHISATO (1980), Analysis ofCategorical Data: Dual Scaling and Its Applications, University of Toronto

Press, Toronto, Ontario, Canada.



PROJECTION DECOMPOSITION 509

O. V. SARMANOV (1958a), The maximal correlation coefficient (symmetric case), Dokl. Akad. Nauk. SSSR,
120, pp. 715-718. (In Russian.)Selected Transl. Math. Statist. Probab., 4, pp. 271-275. (In English.)

(1958b), The maximal correlation coefficient (non-symmetric case), Dokl. Akad. Nauk. SSSR, 12 l, pp.
52-55. (In Russian.) Selected Transl. Math. Statist. Probab., 4, pp. 207-210. (In English.)

I. F. SCHRIEVER (1985), Order dependence, Ph.D. Dissertation, Free University of Amsterdam,
(1983), Scaling oforder dependent categorical variables with correspondence analysis, Internat. Statis.
Rev., 5 l, pp. 225-238.

Y. L. TONG (1980), Probability Inequalities in Multivariate Distributions, Academic Press, New York.
S. TYAN AND J. B. THOMAS (1975), Characterization ofa class ofbivariate distributions, J. Multivariate Anal.,

5, pp. 227-235.
M. S. WATERMAN (1974), A restricted least squares problem, Technometrics, 16, pp. 135-136.



SIAM J. ALG. DISC. METH.
Vol. 8, No. 3, July 1987

(C) 1987 Society for Industrial and Applied Mathematics
017

OPTIMAL ASSIGNMENTS FOR CONSECUTIVE-2 GRAPHS*

D. Z. DU AND F. K. HWANG,

Abstract. Let G represent the graph structure of a system of components each of which can either work
or fail. Suppose that the system itself fails if and only if two adjacent vertices both fail; then G is called a
consecutive-2 graph. Given a set of probabilities p pt, "’", Pn where n is the number of vertices in G, the
problem is to assign Pi to the n vertices to minimize the probability ofthe system failing. Previous literature has
dealt with the case that G consists of lines and cycles. Here we give some results applicable to general graphs.
We also discuss the conditions for G to have an optimal assignment which depends only on the ranks ofpi.

Key words, consecutive-2-out-of-n system, consecutive-2 graph, reliability

AMS(MOS) subject classification. 90B25

1. Introduction. Let G (V, E) be a graph with vertex set V
and an edge set E. Suppose that each vertex can either work or fail. G is called a consec-
utive-2 graph provided that G fails if and only if two adjacent vertices both fail. Let
P {Pl --< P2 -< --< P, } denote a set ofn probabilities. An assignment P is a one-to-one
mapping from p to V, i.e., Pi, when assigned to vj, will be interpreted as the proba-
bility that vj works (does not fail). The problem is to find the assignment which mini-
mizes the probability of G failing.

An example of a potential application of this model is the storage of m pieces of
data into n memory units which can occasionally lose their contents. To prevent loss of
data we decide to duplicate each piece of data and store it in two distinct memory units.
So G is the graph with memory units as vertices and an edge between two memory units
if there exists a piece of data stored in both units. The storage program is considered
failed if any piece of data is lost. The problem is to assign the n memory units to a fixed
set of n environments (an environment can affect the performance of a memory unit)
to minimize the failure probability of the storage program.

Optimal assignments have been obtained for consecutive-2 graphs consisting of
lines and cycles ]-[4]. In this paper we will give some results applicable to general
graphs which help to narrow down the candidates for optimal assignments. We also
discuss the conditions for G to have an optimal assignment which depends only on the
ranks ofpi.

2. The main results. Consider an automorphism 0 of G, that is, 0: V -- V is one-
to-one, onto and such that [0(u), 0(v)] e E if and only if [u, v]e E. If 02 1, then O(u)
v is an equivalence relation on V and each equivalence class contains one or two ver-
tices. Let g denote the equivalence class containing u. Define a new graph Go (Vo, Eo)
where Vo {1 u V} and an edge [, ] exists for every pair of edges [u, v] E and
[0(u), 0(v)] e E. Note that if g {u} and {v, v’} with [u, v]e E and [u, v’] e E,
then there is only one edge between g and since the two pairs ({u, v}, {0(u), 0(v)})
and ({ u, v’ }, { 0(u), 0(v’) }) are identical.
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0 is called regular if it satisfies the following three conditions:
(i) 0= 1.
(ii) G0 has no multiple edges, i.e., there do not exist four distinct edges [u, v],

[u, #(v)], [0(u), v], [0(u), 0(v)] in E.
(iii) Let (, ill, tim, m +1 0) denote any cycle in Go and let ui be an

arbitrary element of i, 0, 1, m. Then ](U’=o[Ui, ui + 1]) N El is always an even
number.

An edge [, 3] E0 is called normal (or singular) with respect to P0 if [u, v] E and
[P(u) P(O(u))] [P(v) P(O(v))] <= 0 (or >0).

THEOREM 1. Let O be a regular automorphism of G. Then for any assignment P
there exists an assignment Po such that

(i) {Po(v), Po(O(v))} {P(v), P(O(v))} for all v V;
(ii) Go has no singular edge with respect to Po.
Proof If Go has no singular edge with respect to P, set Po P and we are

through. Otherwise, let [o, o] denote a singular edge of Go with respect to P. Set E
{[, 3] Eo[[, 3] is normal with respect to P} and G (Vo, E’o). Then and 3o are not
connected in G. Suppose to the contrary that there exists a path

(7o, 7, Tm o)-

Let u . i for 0, 1, m such that [Ui, U + 1] E for 0, 1, m 1.
Without loss of generality, assume P(uo) >= P(O(uo)). Since [gi, gi-1] are all normal,
we have e(Um) >= P(O(um)) for m even and P(Um) <= P(O(um)) for m odd. Since [o, gm]
is singular, we have [Uo, Um E for m even and [Uo, Um] E for m odd. In either case,
I(UT’= 0[u, ui + ]) El is odd, contradicting condition (iii) of a regular automorphism.

Define C to be the component ofG containing o. Define:

P(u) if u C,
Pl(U)

tP(O(u)) if uqC.

Then every edge of Go normal with respect to P is also normal with respect to P1 since
the components of G remain intact. But P1 contains one additional normal edge
[tT0, gm]. Replace P by P1 in the above argument and proceed accordingly, eventually
we obtain Po with respect to which Go has no singular edge. D

Let P { G, A } denote the joint probability of the graph G working and the event A
occurring under the assignment P. Let P(A) denote the probability ofthe eventA occurring
under the assignment P. For U a set of vertices in G, G U denotes the graph obtained
from G by deleting U and all edges incident to it. Consider g { u, u’} e V0. Suppose
that u q: u’ and P(u) >- P(u’). Define gt(gs) to be the event that u(u’) works and u’(u)
fails. For u u’ define gt gs an impossible event, i.e., P(g1) P(gS) 0. We also
define l s and l.

THEOREM 2. Let 0 be a regular automorphism ofG and Po an assignment such that
Go has no singular edges. Thenfor U

_
Vo and x(g) or s we have:

(ii) Po(G,a?vt) +Po(G,a) >-P(G, agvx(a’ ) +P(G, aga))
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Proof. We prove Theorem 2 by induction on Vol. The proof is trivial for iV01 1.
Consider general Vol m > 1. For any o e Vo define a(o) {l U, [, o] e Eo}
and d(vo) (v )1 a(o)}. For any 1

_
Vo define W= {v e VI e I}.

Case 1. U :/: . Suppose that o (Vo, v)) e U. To prove (i), we have

(I)

W_ a(eo) 7 (U\o) t_J (a(eo)\W)

>= p()6(o)) , (1-] P(w) )- a(o) we W

P(G- {Vo,V}- W,
(U\o) ((o)\W)

where

y(tT) X(o) if either te a(Vo) and [o, t] is normal with respect to P, or U

2(o) ife a(Vo) and [o, ] is singular with respect to P.

The inequality is obtained by using the induction hypothesis (i) and noting that

p(to) >_ p(o)).

To prove (ii) we assume without loss of generality that X(o) ! from the symmetry
of (ii). Then

W (o) a (uo) ((o) W)

W_ a(o) we w Te (U\o) u (a(o)\W)

[Po(,o Po(5 )] Po(G- {Vo, v} W,
a (U\o) u (,(o)\W)_

-(vo ,v b) a (U\o) u (-(o)\#)

!

+Po[G- {Vo, V’o } W,(2)
a (u\o) u ((%)\W)

=_ ,(vo,vb) \w-e-w]\ ae (u\%) u ((o)\W)

+P() (I-[ Po(w))[P(G- {vo, V’o)- W, ("1 Y())I$z a(o) we W e(Uk)U(a()\l)
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+P(- (Vo, v } w,
a (U\o) o (a(eo)\W)

where the inequality is obtained by using the induction hypothesis (i) and (ii).
Case 2. U (both (i) and (ii) are reduced to Po(G) >- P(G)). Choose any

o {Vo, vb } E Vo. Suppose that Po(vo) >= Po(v’o). Define

Then

0 if[vo, v’olEE,
/3(o)=

if not.

Po(G) [Po(vo)Po(v’o)lPo(G { Vo, v) }) + [( Po(vo))( Po(v’o ))1

d(o)

(3) >= [P(vo)P(v’o)lP(G- {Vo, v }) + (1 P(vo))(1 P(v’o))

/3(o)[ 1-I P(v)]P(G-{vo, V’o}-d(vo))+P(G,to)+P(G,){(o)}

=P(G)

where the inequality is obtained by using the induction hypothesis (ii) and inequal-
ity (2).

COROLLARY. The inequalities in Theorem 2 are strict ifPo 4: P and pl > O.
Proof We prove this by induction on Vol. Note that if Po 4: P, Go must have a

singular edge for P, so vol >= 2.
Let V= {l, 2}. Since [l, 2] is singular for P, we can assume that P(Vl) > P(O(v))

and that P(v2) > P(O(v2)) without loss of generality. Then G has four possibilities as
shown in Fig. 1. It is not hard to verify the corollary directly for all cases.

Next, consider the case Vol >-- 3. Choose o such that G {Vo, v } retains a singular
edge. Then

Po(G- {Vo, V’o })> P(G- {Vo, v})
by induction. Furthermore, Po(vo)Po(v’o)= P(vo)P(v’o)> 0. Hence inequality (3) is
strict.

3. Applications. We give some examples of how the theorems in 2 can be used
to determine optimal assignments for consecutive-2 graphs.

O(v) O(vz) O(v) O(va) O(v) O(vz) O(v) O(vz)

FIG. 1. Four cases for lVol 2.
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FIG. 2. A 5-cycle.

Example 1. Consider a 5-cycle as shown in Fig. 2 and a set of probabilities p <
P2 <P3 <P4 <Ps.

By symmetry we may assume without loss of generality that P5 is assigned to a.
Consider the regular automorphism:

O(a, b): a b, c e, d,--, d.

By Theorem there exists an assignment Po(a,b) without a singular edge with respect to
O(a, b) which satisfies

Po(a,b)(C) > Po(a,b)(e).
By the corollary of Theorem 2 any assignment violating the above inequality can be
improved in the working probability for the graph. We denote this fact by the notation
c > e which means that the probability assigned to c should be larger than the one
assigned to e.

Similarly, by considering the regular automorphisms

O(a, c):a c, e--, d,b b,

O(a,d):ad,bc,ee,

O(a, e): a e, b d, c c, and

O(a, a): a,--, a,b e, c,--, d,

we obtain d > e, c > b, d > b and b > e, d > c. By symmetry we may assume without
loss of generality that the probability assigned to b is larger than the one assigned to e.
Thus we obtain the ordering a > d > c > b > e, i.e., an optimal assignment is p5 -- a,
p2 b, p3 c, p4 "-*" d and Pl - e.

An analogous argument allows us to obtain an optimal assignment for any n-cycle.
Example 2. Let G consist of two 4-lines as shown in Fig. 3 and

p= {p<pz<

Without loss of generality, assume that a > e > h and a > d. Consider the regular
automorphisms:

O(a,e):ae,bf,cg,d h,

O(a,h): a-, h,bg,cf d*--, e,

O(a,d): a- d,bc, e*--, h,fg.

a-b-c-d

e-f-g-h

FIG. 3. Two 4-lines.
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P4 P5 P8 P

P3 -P6 -P7

FIG. 4. Optimal assignmentfor two 4-lines.

We obtain
a>e, b>f c>g, h>d,

a> h, g> b, c>f e> d,

a> d, c> b, e> h, g>f
Thus we obtain the partial order

a>e>h>d and c>g>f>b.
However, a 4-line assignment problem is equivalent to a 5-cycle assignment problem
with one additional probability (since we can cut open the cycle at the vertex assigned
with probability 1). From Example 1, an optimal 4-line with p’ { pl < p < p; < p}
should be

p-p-p-p.
Therefore b > a and we obtain the linear order

c>g>f>b>a>e>h>d.
An optimal assignment is as shown in Fig. 4.

An analogous argument allows us to obtain an assignment for any two n-lines for
even n. For odd n 0 is not regular since it violates condition (iii), so Theorems and 2
do not apply.

Example 3. A (k, m) caterpillar is a graph containing a path ofm vertices of degree
k >- 2 and having all other vertices of degree 1. Theorem and the corollary ofTheorem
2 can be used to obtain optimal assignments for arbitrary (k, m) caterpillars. Here we
only illustrate an optimal assignment for the (3, 4) caterpillar as shown in Fig. 5 with
P {Pl <P2 < <Pl0}.

Without loss of generality, assume that a > > j and a > b. Consider the regular
automorphisms:

O(a, i): a--* i, b--*j, c-- h, d--f e-- g,

O a j ): a --*j b -- i, c -- h, d--f e *-- g.

We obtain a > b > >j, h > c, d>f, g> e.
Let G’ be the graph obtained from G by adding edges [b, x], [b, y], [y, z] and [y, w]

as shown in Fig. 6.
Ifwe assign probability to x and y, probability p]2 to z and w, then any assignment

on G corresponds to an assignment on G’ with the same graph working probability.

a e

d f ,h

FIG. 5. A (3, 4)caterpillar.
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a c- d e

b f
/\ /\

x y g h

/\ /\.
z w

FIG. 6. The graph G’.

So an optimal assignment on G’, subject to the restriction we specified, induces an
optimal assignment on G. Consider the regular automorphism O(a, e), O(a, e): a ,--, e,
c d, b f, x g, y h, z i, w j. Since > z, j > w, x > g and y > h, we obtain
f> b, c> d, e> a.

Similarly, let G" be the graph obtained from G by adding edges [g, d’], [g, h’],
[d’, e’], [d’, c’], [c’, a’], [c’, b’], [h’, i’] and [h’, j’] as shown in Fig. 7.

Again, by assigning probability to a’, b’, d’, h’ and probability p/2 to c’, e’, i’, j’,
an optimal assignment on G" induces an optimal assignment on G.

Consider the regular automorphism O( f, g) on G", O( f, g): f g, v ,--, v’ for
v e {a, b, c, d, e, h, i, j }. Since d’ > d and h’ > h, we obtainf> g.

Combining all the paired comparisons of vertices, we obtain the linear order
h > c > d >f> g > e > a > b > > j, i.e., an optimal assignment of the (3, 4) caterpillar
is as shown in Fig. 8.

Example 4. We give an optimal assignment ofp {p < p_ < < P8 } for a cube
in Fig. 9 (the proof of optimality is left to the reader).

4. A remark. In the last section, every example has an optimal assignment which
depends only on the linear order of pi’s. We call such optimal assignments invariant
optimal assignments. However, invariant optimal assignments do not exist in general
(see [3] for examples). An interesting question is what graph G has an invariant optimal
assignment.

To see a sufficient and necessary condition, we first formalize the technique we used
in Example 3, which is to add some vertices with working probabilities or p. Let
G (V, E) be a subgraph of G’ (V’, E’). We call G’ afeasible extension of G ifwe can

FIG. 7. The graph G".



CONSECUTIVE-2 GRAPHS 517

P5

//P9---P8 P7 P’

FIG. 8. An optimal assignment for the (3, 4) caterpillar.

assign and G’-iPl to G such that:
(1) [u,v]eE’,ueV, ve V’- VimplyP(v)= 1;
(2) [u, v] e E’, u, v e V’ V imply P(u)= 1, P(v)= ipll or P(u) iPl,1 P(V) 1.

A regular automorphism 0 of G’ isfeasible for G if, for any assignment P to G’ satisfying
(1) and (2), there exists an assignment Po to G’ such that

(i) {Po(v), Po(O(v))} {P(v), P(O(v))};
(ii) G’ has no singular edge with respect to Po;
(iii) u e V’- V implies Po(u) P(u).

By an argument similar to the proof of Theorem 1, we see that 0 is feasible for G if and
only if the following condition holds. Let u’, e V, u, v e V and [u, u’] e E’,
Iv, v’l e E’. Then for any path (if, if0, U-m, #’) in G,

I{[Ut, U0I,[u0, uI], ,[Um,’I)’I)I’E
is always an even number.

Let u, v e V. We say that u, v are comparable ifthere exists a feasible extension G’
ofG and afeasible regular automorphism 0 ofG’for G such that O(u) v.

THEOREM 3. Ifall pairs u, v ofV are comparable, then G has an invariant optimal
assignment.

Proof. Let u, v e V be compared under G’ and 0. Suppose that there is a w e
V’ V, which is adjacent to a vertex of G, such that G’ has a path ( from u to w.
For any optimal assignment P of G, we extend P to G’ such that (1) and (2) hold.
Then G has no singular edge under P. Note that P(w) > P(O(w)). Thus, P(u) >
P(v) ifthe path ( contains an even number ofedges and P(u) < P(v) ifthe path ( contains
an odd number of edges. For this reason, we define v < u if the former case occurs and
u < v if the latter case occurs. The relation "<" induces a partial ordering on V. We first
prove that for any minimal element u, there exists an optimal assignment P* to G such
that P*(u) Pt. Suppose that P is an optimal assignment to G and P(v) pt. It is easy

P4 P7

P3 P5
FIG. 9. An optimal assignment for a 3-cube.
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to see that v is a minimal element of V. Consider G’ and 0 under which u and v are
compared. Then, there is no w e V’ V such that G’ has a path from w to u or v. Let
C be a connected component of G containing { u, v}. Define P*(x) P(O(x)) if is a
vertex of C and P*(x) P(x) if is not a vertex of C. Then G has no singular edge
under P* also. Therefore, P(G) P(G’) Po(G’) Po(G), that is, P* is an optimal
assignment to G such that P*(u) p.

Suppose that p, Pk have been assigned to v, Vk (k >- 1). We now assign
Pk /1. Extend the ordering "<" on V by considering every two vertices, u, v of V. If
u and v are not ordered under the ordering "<," we find G’ and 0 under which u
and v are compared. If G’ has a path from Vk to U or v, say u, and O(Vk) Vk, then
define v < u if this path contains an even number of edges, and u < v if this path
contains an odd number of edges. After extending this ordering, assign Pk / to a min-
imal element Vk / of V- {Vl, "’", Vk} under this ordering. We need to prove that
there exists an optimal assignment P* to G such that P*(l)i) Pi, 1, "’", k + 1.
Note that by the induction hypothesis, there is an optimal assignment P to G such
that P(vi) pi, 1, k. Suppose P(u) Pk / and u Vk / . It is easy to see that
u is also a minimal element of V- {v, Vk} under the extended ordering "<".
Thus, u and Vk / are not ordered under the extended ordering "<". Let u and Vk /l
be compared under G’ and 0. Let C be a connected component of G containing
{u, Vk + }. We can show that for any w V’ V, we have v C and if C for
some 1,... k then v O(v). Therefore, we can obtain the required optimal
assignment P* to G by defining P*(x) P(x) if Cand P*(x) P(O(x)) if:

Conjecture. If G has an invariant optimal assignment, then all pairs u, v of V are
comparable.
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SS/TDMA SATELLITE COMMUNICATIONS WITH k-PERMUTATION
SWITCHING MODES*
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Abstract. The Satellite-Switched Time-Division Multiple Access (SS/TDMA) scheme has been one ofthe
most effective techniques designed to allocate the communication bandwidth provided by communication
satellites. The scheduling problem for SS/TDMA corresponds to finding a positive linear combination of a pre-
defined set of (0, 1)-matrices which covers a given traffic matrix T such that the sum ofthe multiplying constants
used in the linear combination is minimum. In this paper, an algorithm is given to solve the optimization
problem using a result which is a generalization of a theorem by Birkhoff and von Neumann. The case of
k-permutation matrices is first addressed. The result is then further extended to more general sets of (0, 1)-matrices.

Key words. Birkhoff-von Neumann, network flow, combinatorial optimization
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1. Introduction. In recent years, many wideband satellite communication systems
have been constructed to link together a large number of earth stations. The Satellite-
Switched Time-Division Multiple Access (SS/TDMA) method is one ofthe most effective
techniques designed to allocate the communication bandwidth provided by a satellite
link to carry the traffic between earth stations [5]. In an SS/TDMA system, a number
of spot-beam antennas, on-board the satellite, divides the coverage area into spatially
disjoint common access channels. Traffic from an earth station is sent via an up-link
beam to the satellite and is routed by an on-board processor to a down-link beam which
is received by another earth station. An on-board switch connection which specifies the
interconnections of up-link beams to down-link beams via transponders is referred to as
a switching mode.

In a typical TDMA implementation earth stations have different amounts of infor-
mation to be transmitted to other earth stations. In general, there are a certain number
of up-link and down-link beams, denoted by n. The satellite also has some processing
capability which is used to route the information from the up-link to the down-link
beams. Let tij be the amount of information which is to be routed from the uplink beam
to the downlink beam j. We refer to tij as the amount of traffic from to j. This n n

matrix T is referred to as the traffic matrix. A particular choice oftraffic matrix is referred
to as a TDMA frame. To satisfy the traffic demand, each TDMA frame is divided into
a number of time slots. In each of these time slots, a different switching mode is used so
that traffic from earth stations in different beam zones can be routed to their destinations.
More specifically, each switching mode is specified by an n n (0, 1)-matrix which must
satisfy certain technologically dependent constraints and which shall be referred to as a
switching mode. We say that matrix X dominates matrix Y (which we denote by X >= Y)
if each of the entries in X is at least as large as the corresponding entry in Y. Let
Z, Z2, Z denote the switching modes used in a frame, and let ci, <- <- "y
be the length of time that the ith switching mode is used. The total amount of time
available in the frame to route traffic between different beam zones is given by the
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n n matrix T’:

T’= ZciZi.
i=l

Clearly, in order for all the traffic specified by T to be routed, T’ must dominate T. For
a given traffic matrix T, the problem of choosing a set of switching modes Z, Z2,
Z in order to maximize the utilization of on-board transponders (i.e., to minimize the
total amount of transmission time) = ci, which is known as the cost of the decom-
position, is referred to as the time-slot decomposition problem.

In 2, we describe the current problem and present the definitions needed in this
paper. In 3, an algorithm for solving this problem is presented, and its running time is
analyzed. In 4, a result is given on the performance of the decomposition generated by
our algorithm. In 5, a generalization of this algorithm is presented.

2. Definitions. In general, each up-link and down-link beam is a multiplex ofseveral
different signals. There are certain constraints, imposed by hardware considerations, on
the amount of demultiplexing of up-link beams, the ability to switch these signals, and
the amount of multiplexing that can be done into the down-link beams. We consider
the case where each of the up-link and down-link beams is a multiplex of no more than
a certain number k ofsignals. We therefore assume that the satellite is able to demultiplex
each of the up-link beams into k signals, switch each of these signals to different down-
link beams, and multiplex up to k of these signals into each of the down-link beams.
That is, the switching modes to be used are (0, 1)-matrices in which there are no more
than k l’s in each row and column. Mathematically, the problem can be formulated as
follows: Let V(k) denote the set of all (0, 1)-matrices which have no more than k l’s in
each row, and no more than k l’s in each column. Given a matrix T of nonnegative
entries, we wish to find positive constant , 2, and matrices Z, Z2, Z
in V(k) such that

(2.1) T=<T’= iZi
i=l

with

_
being minimum. In this paper, we solve a special case of this problem by

restricting ourselves to the class of (0, 1)-matrices which have exactly k l’s in each row,
and exactly k l’s in each column. We let U(k) denote this class of matrices, and call its
members k-permutation switching modes. In this paper, we solve the time slot assignment
problem for switching modes U(k), and give a bound on the performance ofthis algorithm
with respect to the optimal schedule for switching modes in V(k). This, and the gener-
alization presented in 5, solve a problem related to an open problem mentioned in [2].

3. Construction of T’. We state without proof the following theorem [3], which is
a generalization of the celebrated Birkhoff-von Neumann Theorem.

THEOREM 3.1. Let T’ be a matrix with nonnegative entries. Thefollowing conditions
are necessary and sufficient for T’ to be expressible as a convex sum of (0, 1)-matrices
in U(k).

(i) r kx for all i,

(ii) c=kx forallj, and

(iii) b <-_ x for all andj

where r denotes the sum ofthe entries in the ith row of T’, and c denotes the sum ofthe
entries in the jth column of T’, and x is a constant.
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It follows immediately that ifT’ r_ 1)iZi, then r= /)i X. Thus, our problem
is reduced to finding a matrix T’ such that (a) T’ >- T, (b) T’ satisfies the three conditions
of Theorem 3.1, and (c) x is as small as possible. From (iii) is follows that x must be
larger than or equal to the largest entry ofT. From (i) it is seen that x must also be larger
than or equal to the ith row sum ri divided by k for every i. Similarly, from (ii) it must
also be larger than or equal to thejth column sum c# divided by k for everyj. We therefore
have an initial lower bound on the value x:

x=max(to, ri )i,j -Construct the network in Fig. 1. There are n edges from the source a, which correspond
to the n row sums ofT, with the capacity of the ith edge being the total amount that the
entries in the th row must be increased in order to satisfy condition (i) in Theorem 3.1,
namely: kx ri. Similarly, there are n edges to the sink z, which correspond to
the n column sums of T with the capacity of the jth edge being the total amount
that the entries in the jth column must be increased in order to satisfy condition (ii),
namely: kx c. There are also n interior edges which correspond to the n entries of
T. The edge from the ith node on the left-hand side to the jth node on the fight-hand
side corresponds to the ijth entry of T, and its capacity is the largest amount that can
be added to this entry without condition (iii) being violated; namely: x t. By our
choice of x, it is easy to see that all of these capacities are nonnegative, so a maximum
flow (minimum cut) can be found by well-known methods [1 ].

A flow which saturates all of the edges coming out of the source for some value x
will be called a row saturatingflow. The value of such a flow is given by ’= (kx ri).
It is immediate that such a flow will also saturate all of the edges going into the sink,
which we recall correspond to the column sums. We have the following result.

THEOREM 3.2. There is a 1-1 correspondence between row saturatingflows in this
network, and matrices T’ which satisfy the three conditions of Theorem 3.1.

Proof Given a row saturating flow, if each entry in T is increased by the amount
of the flow in the corresponding edge in the network, the resulting matrix T’ clearly
satisfies the three conditions of Theorem 3.1. Conversely, given a matrix T’ which satis-

Rt z-t
"-o ,.

FIG. 1. The network.
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ties these conditions, let the flow through the edge connecting the ith node on the left
to the jth node on the fight be tj tij, the flow through the ith edge on the left-hand
side be j’= (tj tij), and the flow through the jth edge on the fight-hand side be

(tij tij). Clearly, the resulting flow is row saturating.
Therefore, we proceed by using the initial bound on x and try to find a flow which

is row saturating. If one can be found, T’ can be constructed. However, if no such flow
can be found, x must be increased, and the procedure iterated.

Any cut in this network can be put into the standard form shown in Fig. 2. This is
done by permuting the edges of the left- and fight-hand sides so that the first t edges on
the left-hand side are not in the cut, and the first s edges on the fight-hand side are in
the cut. (This corresponds to permuting rows and columns of T and the corresponding
rows and columns of all the switching modes in U(k), which can be done without loss
of generality.) The general form for the capacity of such a cut is given by

(kx- ri) d- (kx- c) + , (x- ti).
i=t+l j=l i=lj=s+l

If a cut F whose capacity is less than that of a row saturating flow is found, x must
be increased by some positive value 6 so that the capacity ofF will be at least as large as
a row saturating flow. If we replace x by x + 6, the following inequality must hold:

, [k(x + 3) ri] + [k(x + b) cj] + , , [(x+ a) tij] >-- [k(x + a) ril
i=t+l j=l i=lj=s+l i=1

which can be written as

i=t+l j=l

+ k+ k+(n-s)t X-- rid- cjd- tij
i=t+l j=l i=t+l j=l i=lj=s+l

>= kt3 d- (kx-ri).
i=1 i=1

If we let

B (kx- ri),
i=1

C k+ _, k+(n-s)t,
i=t+l j=l

D=Cx rid- cj d-
i=t+l j=l

the following must hold:

i=lj=s+l

C +D>=A + B.
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FIG. 2. The standardformfor a cut.

By the assumption that the flow is not row saturating, B > D. In order to show
that 6 can be increased in order to make the capacity of the cut which has been found
smaller than a the cut F, it must be shown that C > A. This is equivalent to show-
ing that

(3.1) (s- t)k + (n- s)t> 0

or, equivalently

(3.2) sk+nt>kt+st.

Since n > s and > 0 for nonrow saturating flows, (n s)t > 0, and (1) holds if s >- t.
We can assume, therefore, that > s. Since nt > kt, (2) holds if k >= t; therefore we assume
that > k. Thus, (1) holds if n s >= s t, or n + >= 2s. But we have assumed that
> s, so (1) holds. From this argument it is seen that the smallest possible which

can be chosen is 6 (B D)/(C- A).

3.1. Algorithm Expand. In this section, we present an algorithm for expanding the
entries ofan n n matrix T so that the resulting matrix T’ satisfies the three requirements
of Theorem 3.1.

ALGORITHM EXPAND.
Step 0:

Let x max (maxi,j (tij), max/(ri/k), maxj (cflk)).
Step 1:

Construct the network described above, find a maximum flow (minimum cut), and
let F denote its capacity.

Step 2:
IfF .m,__ (kx ri), a row saturating flow has been found, go to Step 5.

Step 3:
Compute the capacities of this minimum cut and of the row saturating flow in the
form C + D, and Ai + B, respectively, as above.
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Step 4:
Let 6 (B D)/(C- A), which is a positive value by our previous argument, x
x + 6, and return to Step 1.

Step 5:
Increase each ofthe entries in T by the amount ofthe flow through the corresponding
interior edges in this network, forming the new matrix T’, which at this point satisfies
the conditions of Theorem 3.1. HALT.

The correctness of the algorithm follows from the above discussion. Termination
is insured by the fact that there are only finitely many cuts in the network, while each
iteration of Steps 1-4 satisfies the capacity requirement of at least one additional cut.
(However, for a better estimate of the running time of Algorithm Expand, see 3.2.)
The algorithm given in [3] can now be used to decompose T’ into a sum of switching
modes in U(k). The minimality of the sum of the coefficients vi in equation (2.1) is
guaranteed by the fact that at each iteration of Step 4, x is incremented by the smallest
amount which might allow for the expansion to be possible. As an example of the ex-
pansion of a traffic matrix T using Algorithm Expand, we consider the traffic matrix in
Fig. 3. The initial bound for x is 10. The corresponding network is shown in Fig. 4(a),
and the maximum flow (whose value is 0) is shown in Fig. 4(b) with the edges in the
corresponding cut marked. This cut is ofthe form 136, and a row saturating cut is ofthe
form 86 + 1. Therefore we select .2 as our 6 and let 10.2 be our new value for x. Figure
4(c) shows the new network corresponding to this value for x. Figure 4(d) shows the
maximum flow in this network, which in this case is row saturating. Finally, Fig. 4(e)
shows the corresponding traffic matrix T’ which satisfies the three requirements ofTheo-
rem 3.1.

3.2. Analysis of the running time of Algorithm Expand. In this section, the running
time of Algorithm Expand is analyzed. We first show that the coefficients of 6 which
occur during the execution of Algorithm Expand lie in specific range. Using this fact,
the number of iterations of the algorithm is bounded.

By examination, the coefficient of 6 (C in our notation) is at least as large as
7;,=l k for every cut in the network. It can also be seen that this coefficient must be
integral. It is, however, no larger than

k+ k+nt
i=l j=l

or
2nk+nt.

This value may not be attained for any cut in the network, but is useful for the analysis.
This value is on the order of O(n2), and in fact can be no larger than 3n 2. Therefore, C
can only take on values between n and 3n 2. Arrange the capacities of all of the cuts of

16 210
8110 1
88 I 3

35 7 5

FIG. 3. The traffic matrix to be expanded.
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0

1

5

FIG. 4(a). Network and capacities for x 10.

the network in the form Ci6 + Di in increasing lexicographical order. That is, Cii +
Di >= C6 + Dj if C > C, or C C and Di >= Dj. If Ci6 + D is at least as large as a
row saturating flow, then it is easy to show that Ci5 + Dj is at least as large as a row sat-
urating-flow for all C6 + Dj which are lexicographically larger than Cdi + D:. This
proves that each coefficient of i5 appears at most once during the execution of Algo-
rithm Expand; and therefore, the algorithm terminates after at most O(n2) iterations.

The time for each iteration of the algorithm is bounded by the construction of the
network, and the calculation of the maximum flow. The construction can be done in
O(n 2) time, the maximum flow can be computed in time O(n 3) [1 ]. Therefore, the total
running time of this algorithm is O(nS).

4. Analysis of the decomposition generated by Algorithm Expand. A solution for
the decomposition problem using switching modes in the class U(k) has been presented.

PiG. 4(b). Maximumflowfor network in Fig. 4(a).
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5.2

FIG. 4(C). Network and capacitiesfor x 10.2.

.4

.4 "’"". 1.4

O,,o....,...
.4

FIG. 4(d). Maximumflowfor network in Fig. 4(c).

1.4 6.4 2.4 10.2[
8 1 10 1.4|
8 8 1 3.4

3 5 7 5.4

FIG. 4(e). Corresponding traffic matrix T’.



k-PERMUTATION MATRICES 527

However, the problem of decomposing a matrix into a convex sum of switching modes
in V(k) is perhaps of more practical interest. It has been assumed until now that there
are exactly k l’s in each row and column of the switching modes. But in practice, all
that is required is that there are no more than k l’s in any row or column. That is, none
of the technical limitations of the system should be exceeded. We should hope that
forcing exactly k l’s in each row and exactly k l’s in each column does not cost very
much. In this section, we prove that, indeed, the cost of the decomposition generated by
Algorithm Expand for switching modes in U(k) is no worse than twice that ofthe optimal
decomposition using switching modes in V(k).

As an example of a traffic matrix which is decomposable into switching modes in
V(k) with unit cost, but which can not be decomposed into switching modes in U(k)
with this cost, consider the one shown in Fig. 5. Clearly, this matrix can be dominated
by one switching mode in V(3). However, it is easy to see that no switching mode in
U(3) can dominate this matrix. This implies that more than unit time is needed for any
decomposition of this matrix into switching modes in U(3). (In fact, it can be shown
that 9/7 is the optimal cost for decomposing this matrix into switching modes in U(3).)
We shall use the following result.

THEOREM 4.1. Ally switching mode in V(k) can be dominated by a matrix which
is decomposable into a sum ofswitching modes in U(k) with a cost ofat most two.

Proof We consider two cases.
If k >_- n/2, we note that the matrix J (that is, the n n matrix all of whose entries

are one) dominates every matrix in V(k). However, by the result of [3], this matrix can
be decomposed into a convex sum ofswitching modes in U(k) with cost n/k, and therefore,
the result holds.

If k < ll/2, we use a direct argument to dominate each switching mode in V(k)
by a sum of at most two switching modes in U(k). Let Z be any switching mode in
V(k). Let Z1 be the (0, 1)-matrix which is identical to Z for rows i, <= <-_ In and
is zero elsewhere. Similarly, let Z2 be the (0, 1)-matrix which is identical to Z for rows
i, In + <= <= n, and zero elsewhere. If it can be shown that Z1 and Z2 can have
some of their zero entries charged to ones so that the resulting (0, 1)-matrices are in
U(k), the result follows. We consider only the matrix Z1, as the argument for Z2 is
similar.

We first argue that some of the zeros in the upper half of Z1 can be changed to ones
so that the ith row sum is equal to k for i, _-< _-< In/2]. The procedure used is "greedy"
in that all of the zeros are scanned once in some order (say from left to fight, top to
bottom), with a zero in the ijth location changed to a one if both the sum of the entries
in the ith row and the sum ofthe entries in thejth column are less than k. This algorithm
is run on the first n/2] rows and columns; let Z’ denote the resulting matrix. We claim
that when this procedure terminates, the first In/2 ] row sums are k. If some row sum is
less than k, there must be at least n k + zeros in this row. Since none ofthese entries
were changed to one during the execution ofthe "greedy" algorithm, each ofthe columns

1000
111
111
111

FIO. 5. A traffic matrix.
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lOOllOI
011010
11OO101
ooooool
0000001
ooooooj

FIG. 6. A partial k-permutation
switching mode.

"145
235
125
O00
O0 0
000

a= 2 a2= 2 aa= 1 a= 1 a= 3 a= 0

FIG. 7. The corresponding matrix K.

235

125
136
246

346.1

FIG. 8. The completed K.

100110
011010
110010
101001

010101]001101

FIG. 9. The completed k-permutation switching mode.

must have sum k. For this to be true, there must be at least (n k + 1)k ones in the
matrix. But since k < [n/ 2 ], this quantity is greater than (fn / 2 ] + 1) k. As there are only
In/2 ] rows, there is a contradiction; therefore, the first In/2 ] row sums are k.

In order to complete this construction some ofthe O’s in the bottom half ofZ’ must
be changed to l’s so that the resulting matrix is a k-permutation switching mode. It is
easily seen that a k-permutation switching mode is equivalent to an n k matrix K such
that: (a) The entries in K are integers in 1, n]. (b) No entry appears more than once in
any row of K. (c) Each entry appears exactly k times. If we construct the partial K for
the matrix Z, we see that condition (a) is satisfied for all entries in the first [n/2]
rows (where the other entries are filled in with zeros), condition (b) also holds for the
first [n/2] rows, and no entry occurs more than k times. Let al denote the number of
l’s in this matrix, a2 the number of 2’s, an the number of n’s. Therefore, in order
to complete the construction, the remaining entries must be filled in with k- a l’s,
k a22’s, k an n’s satisfying conditions (b) and (c). Start in the first column at
the (In/2] + 1)th entry and proceed by columns in the region which has not been filled
in and insert k a l’s, k a22’s, k an n’s. It is immediate that conditions (a)
and (c) are satisfied for the resulting matrix. In order to see that condition (b) is also
satisfied, we argue by contradiction. Assume that there is a row for which some value,
say appears (at least) twice. Since the entries were filled in by columns, the only way
for there to be two i’s in any row is if they have "wrapped around" one of the columns.
This implies that k ai is greater than the height of a column. However, these columns
have height l n/2 J. This implies that k > [n/2 ], which contradicts our assumption that
k < n2. Therefore, all three conditions are satisfied, and the corresponding switching
mode dominates Z. As an example of this procedure, consider the matrix Z in Fig. 6,
where n 6, and k 3, on which the "greedy" procedure has already been run. The
corresponding matrix K which has been partially filled in is shown in Fig. 7, along with
the ai’s. The matrix K, after it has been completed is shown in Fig. 8, and the corresponding
k-permutation switching mode Z’ is shown in Fig. 9. This, with a similar argument to
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"expand" Z2, completes the argument that every switching mode in V(k) can be dom-
inated by a sum of switching modes in U(k) with cost no more than two.

Ifwe now consider an optimal decomposition ofsome traffic matrix T using switching
modes in V(k) of the form:

T <= PiZi
i=l

where each Z is a member of V(k), we can partition the Z i’s into two sets: those that
are in U(k), and those that are not. After reordering the sum, this expression can
be written:

T <= PiZi-[- PiZi
i=l i=o+l

where Z is in U(k) for _-< a, and the rest are not. We now use the fact that each of the
Z, > a, can be written as a sum of switching modes in U(k) with cost no more than
two, and the result follows directly.

Since the decomposition given by Algorithm Expand is optimal for any decompo-
sition using switching modes in U(k), its cost can be no worse than the cost of the one
given by this procedure. However, we would expect the cost of the decomposition given
by Algorithm Expand to not be so bad as this construction suggests.

5. A generalization. It is possible to generalize Algorithm Expand to decompose
traffic matrices into sums of other (0, 1)-matrices. Given two vectors of natural numbers
/ (, 2, Om) and (, ,2, n) such that 7]7= oi )’= j, we consider
the problem of decomposing an m n traffic matrix into a sum of (0, 1)-matrices which
have no more than l’s in the first row, p2 l’s in the second row, ..., om l’s in the
ruth row, and no more than , l’s in the first column, 2 l’s in the second column, ...,,, l’s in the nth column. We let V(, ) denote the class of (0, 1)-matrices which satisfy
these constraints. Ifwe let U(, ,) denote the class of (0, 1)-matrices which have exactly
0 I’S in the ith row for all i, and Xj l’s in the jth column for all j, it is not difficult to
generalize Algorithm Expand to decompose m n traffic matrices into sums ofswitching
modes in U(, ,). There are, however, some restrictions on the traffic matrices which
the generalized algorithm will be able to expand. The first restriction comes from the
fact that for some/ and , the set U(, ) is empty [4]. If U(O, ) is empty, clearly no
traffic matrix can be decomposed. The second restriction is that, for certain and ,,
U(O, ) is nonempty, but there is at least one and j such that the ijth entry of every
switching mode in U(/, ) is zero. We define such an entry to be a forced zero entry.
For example, with (4, 2, 2, 1), U(, ) has several forced zero entries. Clearly,
it is impossible to decompose any traffic matrix into a sum of switching modes in
U(O, ,) if it has any nonzero entries which are forced zero entries for U(, ). We
present an algorithm which, given a traffic matrix T, will try to expand it into a traffic
matrix T’ such that: T’ dominates T, and T’ can be decomposed into a sum of switching
modes in U(, ) which has minimal cost. The algorithm does not assume that either
ofthe above restrictions holds for the particular traffic matrix T or set U(O, ,) in question.
However, if either of these restrictions is violated, the violation will be detected by the
algorithm (and in the case that the second restriction is violated, at least one nonzero
entry in the traffic matrix which is a forced zero entry will be located and reported).
Unfortunately, we have been unable to find a bound on the cost of the decomposition
generated for these switching modes as compared the optimal decomposition into switch-
ing modes in V(O, ,). Such a bound would correspond to the bound of twice optimal
which has been shown for the case of k-permutation switching modes.
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5.1. Some preliminaries. We first present the generalization of Theorem 3.1 above
for the case of switching modes in U(/, ), whose proof is left to the interested reader.

THEOREM 5.1. Let T’ be a matrix with nonnegative entries. Thefollowing conditions
are necessary and sufficientfor T’ to be expressible as a convex sum of(O, 1)-matrices in
u(t,, ).

(i) r-- Pi X for all i,

(ii) c:/ Xj x for all j, and

(iii) u=< for all andj

for some constant x.
The problem here is similar to the one solved in 3. That is, for a given traffic

matrix T, we want to find a matrix T’ such that T’ dominates T; T’ satisfies (i), (ii), and
(iii) of Theorem 5.1; and x is as small as possible. In an argument similar to the one
given in 3, we can derive a lower bound on x. From (i) it is seen that x must also be
larger than or equal to the ith row sum ri divided by 0i for every i. Similarly, from (ii) it
must also be larger than or equal to thejth column sum c divided by ,:. for everyj. And,
from (iii), x must be at least as large as the largest entry in T. We therefore have an initial
lower bound on the value x:

x= max ( tij,
ri )t,j

In order to perform the expansion, we construct a network which corresponds to the one
shown in Fig. 1. There are m edges coming out of the source a, which correspond to the
m row sums ofT, with the capacity ofthe ith edge being the total amount that the entries
in the ith row must be increased in order to satisfy condition (i) in Theorem 5.1, namely:
0i x ri. Similarly, there are n edges to the sink z, which correspond to the n columns
sums ofT with the capacity of the jth edge being the total amount that the entries in the
jth column must be increased in order to satisfy condition (ii), namely: 2x- c2. The
mn interior edges correspond to the mn entries ofT. The edge from the ith node on the
left-hand side to the jth node on the fight-hand side corresponds to the ijth entry of T,
and its capacity is the largest amount that can be added to this entry without condition
(iii) being violated, namely: x- tq. By our choice of x, all of these capacities are non-
negative, so a maximum flow can again be found by known methods.

We define a row saturating flow in this network to be the analogue of the one in
3, and note that its capacity is 7]7= (oix ri). We state without proof the following

analogue of Theorem 3.2.
THEOREM 5.2. There is a 1-1 correspondence between row saturatingflows in this

network, and matrices T’ which satisfy the three conditions of Theorem 5.1.
In the generalized algorithm, as in Algorithm Expand, we start with the initial lower

bound for x, construct the network, and try and find a row saturating flow. If one is
found, the traffic matrix T’, which is constructed in the same way it was in 3, is the
optimal solution. If one cannot be found, x must be increased, and the procedure iterated.

Again, by permuting rows and columns, any cut in this network can be put in a
standard form similar to the one in Fig. 2. The general form for the capacity of such a
cut is given by:

i=t+l j=l i=lj=s+l
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In a procedure similar to the one in 3, if a cut F whose capacity is less than that of a
row saturating flow is found, x must be increased by some positive value 6 so that the
capacity of F will be at least as large as a row saturating flow. If we replace x by x + 6
in the cut F, and in the row saturating flow, the following relationship must hold:

m m

[Pi(x+)--ri] + [kj(xdr)--cj] dr- E E [(x+)--tij] >= [pi(x+)--ri]
i=t+l j=l i=lj=s+l i=1

which can be written as

If we let

Oidr Xj+(n-s)t 6
j=l

dr Oidr , j+(n-s)t x- ri+ cj+ tij
j=l j=l i=lj=s+l

0 6 dr E (Oi X- ri).
i= i=1

m

A= EPi,
i=1

m

B E (Pix- ri),
i=1

m

C= oi+ , Xj+(n-s)t,
i=t+l j=l

D Cx ri + cj + tij
i= j=l i=lj=s+l

the following must hold in order for the expansion to be possible

C6 + D >=A6 + B.

By the assumption that the cut is not row saturating, B > D, the following three
cases can occur.

Case 1" C > A. For

or
C6+D>=A6+B

B-D
6>__

C-A

to hold, let 6 (B D)/(C A) (which is a positive value), x x + 6, and construct a
new network corresponding to this value for x. We again try to find a flow which will be
row saturating for this new value of x. However, by the selection of 6, there is at least
one fewer cut which has capacity smaller than a row saturating one.

Case 2: C A. We show that this can occur only if there is at least one nonzero
entry in T which is forced to be zero in every member of U(/, ). To show this and to
find at least one such entry, we need the following result.
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THEOREM 5.3. Given a cut ofthis type where C A, then

E Z Uij0
i=t+lj=l

for each U in U(p, ). (That is, each entry in this submatrix is aforced zero entry.)
Proof Rewrite A and C as

A Pi-’- Uij + E E Uij --i=1 i=lj=l l=lj=s+l

m n

Z Z Zui ,
i=t+l i=1 i=t+l s+l

E Oi-- Xj+(n-s)t
i=t+l j=l

ms m ms

E E blij -Jr" E blij-I" blij-JI uij+(n--s)t.
i=t+ j= i=t+lj=s+l j= i=t+lj

After equating A and C and simplifying, we get

But, since

m

IAij + (n s)t uij.
i=t+ j= lj=s+

(n- s) >= , , Uij
i=lj=s+l

we must have , ui=-O.
i=t+lj=l

Therefore, we know that every entry in this submatrix must be zero in each switching
mode in U(p, ). If it can be shown that the additional condition B > D implies that at
least one entry in this range is nonzero in the traffic matrix T, we know that the expansion
is impossible. By hypothesis

[ @+ tn](Pi X-- ri) > Cx- ri + cj +
i=1 i= j=l i=lj=s+l

however, since C A, this simplifies to

ri+ Cj+ tij> ri.
i=t+l j=l i=lj=s+l i=1

It is easy to show that this can be the case only if

i=t+ljl

So we conclude that the expansion is indeed impossible. This submatrix can then be
scanned in order to locate one such nonzero entry.

Case 3: C < A. We need the following result.
TF.OIFM 5.4. U(O, ) is nonempt ifand only if

for all subsequences {Xl, x,..., x} of{l, 2,..., m}, and {1, , } of
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Proof IfU(p, ) is nonempty, then for any subset ofthe rows and columns (which
can be assumed to be the first rows and columns by permutation), it is easily shown that
this inequality holds, and that in fact equality can hold only if Z’=/+ = zij 0 for
some Z in U(, ).

To prove the implication in the other direction, assume that U(p, ,) is empty, and
that without loss of generality X >_- X2 n, and/91 >- /92 /gm. We state
without proofa result from [4] giving a necessary and sufficient condition for the emptiness
question for U(p, ). We let k denote a vector of length n which has an initial segment
of k l’s followed by n k 0’s. We now consider the matrix A whose ith rows is o,- This
matrix is referred to as the maximal matrix with row sum vector p. Let aj denote the jth
column sum of this matrix. It is easily seen that a >-_ a2 >= >= an. In [4] it is shown
that a necessary and sufficient condition for the class U(p, ) to be empty is the existence
of some k for which = X9 > = a, and in particular, we choose the smallest such
k. With this choice, it is clear that the (1, k)th entry ofA is a one, or there is a contradiction
of the selection of k as smallest. We now let be the largest integer such that the (t, k)th
entry of A is one. With these selections, all of the entries with indices and j such that

_-< -< t, and _-< j -< k are one.
Now, since = a 7’= t+ /9i-’l- kt, we have = Xj > .m,=t+/9i + kt, or

m k

Pi> Pi-- )kj41- pi"-kt
i=1 i=1 j=l i=t+l

and from the fact that 7’-- /9i-- ;= kj, we get

/9i> kj+kt.
i=1 j=k+l

If we now let X i, and y k + j for < j -< n k s, we have

px,> Xyj + (n- s)t.
i=1 j=l

By assumption, C < A, that is,
m

i=t+l j=l i=1

or

X+(n-s)t< oi,
j=l i=1

and therefore, U(0, ) is empty, and we conclude that the expansion is impossible.

5.2. Generalized Algorithm Expand.

GENERALIZED ALGORITHM EXPAND.
Step 0:

Let x max (maxi, (ti), max/(ri//gi), maxj (c/Xj)).
Step l:

Construct the network described above, find a maximum flow (minimum cut), and
let F denote its capacity.

Step 2:
IfF ?=1 (/9i x ri), we have found a row saturating flow, and we go to Step 5.
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Step 3:
Compute the capacities of this minimum cut and of the row saturating flow in the
form Ci + D, and Ai + B, respectively, as above.

Step 4:
There are three cases:
C < A: U(/, ) is empty by Theorem 5.4. HALT.
C A: T has nonzero entries which are forced to be zero for every switching mode
in U(/, ). Find at least one as in Theorem 5.3, report it, and HALT.
C > A: Let (B D)/(C- A), x x + 6, and return to Step 1.

Step 5:
Increase each ofthe entries in T by the amount ofthe flow through the corresponding
edges in this network, forming the new matrix T’, which at this point satisfies the
conditions of Theorem 5.1. HALT.

The correctness ofthe algorithm follows from the above discussion, and termination
is insured by the fact that there are only finitely many cuts in the network, and that each
iteration of Steps 1-4 satisfies the capacity requirement of at least one more cut. If the
algorithm HALTed in Step 5 (that is, a suitable T’ was found), it can then be decomposed
using the algorithm presented in [3]. The minimality of the sum of the coefficients vi in
equation (2.1) is guaranteed by the fact that at each iteration of Step 4, x is incremented
by the smallest amount which might allow for the expansion to be possible.

5.3. Analysis of the running time of the generalized algorithm. The analysis of the
generalized expansion algorithm is very similar to the analysis of Algorithm Expand, so
we shall state without proof that its running time is O(5), where is the larger ofm and
n, and leave the details to the interested reader.

6. Conclusions. The algorithms presented here provide results related to a problem
posed in [2]. That problem corresponds to decomposing a tratflc matrix into a convex
sum of switching modes in V(, ) which have the further constraint that there is a limit
on the total number of ones which appear in each switching mode. It is hoped that the
methods presented here will be generalizable to finding optimal solutions to problems
of this type. We also hope to be able to bound the performance of the Generalized
Expansion Algorithm using switching modes in U(p, ,t) in terms of the cost of the
optimal decomposition using switching modes in (p, ). This would correspond to the
bound for constructing a decomposition using switching modes in U(k) which has cost
no worse than twice that of the optimal decomposition using switching modes in V(k)
which has been obtained here for Algorithm Expand.

REFERENCES

J. EDMONDS AND R. M. KnRP, Theoretical improvements in algorithmic efficiencyfor networkflow problems,
J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[2] I. S. GOPAL, G. BONGIOVANNI, M. A. BONUCCELLI, D. T. TANG AND C. K. WONG, An optimal switch-
ing algorithm for multibeam satellite systems with variable bandwidth beams, IBM Research Report
RC9006, 1981.

[3] J. L. LEWANDOWSKI, C. L. LIU AND J. W. S. LIU, An algorithmic proofofa generalization ofthe Birkhoff-
von Neumann theorem, J. Algorithms, 7 (1986), pp. 323-330.

[4] H.J. RYSER, Combinatorial Mathematics, Mathematical Association ofAmerica, Washington, D.C., 1963.
[5] A. K. SINHA, A modelfor TDMA burst assignment and scheduling, COMSAT Tech. Review, vol. 6, no. 7,

Fall 1975.



SIAM J. ALG. DISC. METH.
Vol. 8, No. 4, October 1987

(C) 1987 Society for Industrial and Applied Mathematics
002

A DYNAMIC PROGRAMMING APPROACH TO THE
DOMINATING SET PROBLEM ON k-TREES*
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Abstract. Dynamic programming has long been established as an important technique for demonstrating
the existence ofpolynomial time algorithms for various discrete optimization problems. In this paper we extend
the normal paradigm of dynamic programming to allow a polynomial number of optimal solutions to be
computed for each subproblem. This technique yields a polynomial time algorithm for the dominating set
problem on k-trees, where k is fixed. It is also shown that the dominating set problem is NP-complete for
k-trees where k is arbitrary.

Key words, dominating sets, k-trees, dynamic programming, chordal graphs
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1. Introduction. Dynamic programming is an important technique for the solution
of discrete optimization problems. To apply dynamic programming one must represent
such a problem by a decision process which proceeds in a series of stages. A dynamic
programming algorithm decomposes a problem into a number of smaller subproblems
each of which is then further decomposed. Such an algorithm gains its efficiency by
avoiding recomputing solutions to common subproblems. For example, a problem with
n stages may decompose into several problems with n stages, each ofwhich decomposes
into several problems having n 2 stages, etc.

In general, the solution to a subproblem will not be unique. In fact, there are often
an exponential number of solutions. For example, a subproblem ofthe traveling salesman
problem is to find a route from the salesman’s home city to city i. There are an exponential
number of such routes depending upon which intermediate cities are visited. Since it is
not clear which of the solutions to this subproblem will grow into the global solution, all
solutions must be considered in a dynamic programming algorithm.

If a dynamic programming algorithm is to run in polynomial time it cannot examine
an exponential number ofsubsolutions. Fortunately, there are problems for which keeping
a single solution to a subproblem is sufficient. For example, it is sufficient to keep only
one of the possibly exponential number of shortest paths from a source vertex to an
intermediate vertex when trying to find the shortest path from the source vertex to a
destination vertex.

It should be clear that it is desirable to keep as few solutions to a subproblem as
possible while ensuring that enough are kept so that at least one is able to form part of
the global solution. One way to reduce the number of necessary solutions is to recognize
that if two solutions are equivalent in terms of their forming part of a larger solution
then only one must be kept. Elmaghraby [3] was the first to recognize this concept of
equivalent "states." Note that in the shortest path problem all optimal solutions to a
subproblem are equivalent.

In most problems for which polynomial time dynamic programming algorithms
have been developed, the solutions to a subproblem form a single equivalence class. The
idea that a polynomial time dynamic programming algorithm can be achieved by iden-
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tifying a polynomial number ofequivalence classes of solutions to subproblems has been
recently exploited on some polygonal decomposition problems in the field of computa-
tional geometry [8]. In this paper we apply this idea of keeping a polynomial number of
solutions to each subproblem of a dynamic programming formulation to a problem in
graph theory.

Let us now turn to the problem in question. D, a set of vertices in a graph G(V, E),
is a dominating set if for every vertex in V\D there exists an adjacent vertex in D. As
reported in [5] the h-dominating set problem, i.e., determining if a graph has a dominating
set of cardinality -< h, is NP-complete for arbitrary graphs. Recently the problem has
been studied for various classes of chordal graphs (namely, graphs where every cycle of
length greater than three has a chord). In particular, Booth and Johnson have studied
domination on the following hierarchy of chordal graphs: chordal graphs undirected
path graphs directed path graphs interval graphs. They produced a linear time al-
gorithm for the h-domination set problem on directed path graphs and also established
the NP-completeness of the problem on undirected path graphs. Previous work on other
classes of chordal graphs includes polynomial time algorithms for trees [2] and strongly
chordal graphs [4].

A k-tree is defined recursively as follows: Kk is a k-tree, and if G is a k-tree then so
is G’ the graph formed by adding a new vertex to G and making it adjacent to all vertices
in a Kk in G. An example of a 2-tree is presented in Fig. 1. Note that a 1-tree is a tree in
the normal sense. Furthermore, k-trees are chordal and are specific examples of hook-
up graphs defined in [10].

Another class of graphs which is related to k-trees, but is not chordal, is the class of
series-parallel graphs. The class of series-parallel graphs includes the class of 2-trees but
has no strong relationship with other k-trees. Recently Kikuno et al. [9] have developed
a linear time algorithm for the h-domination set problem on series-parallel graphs.

In this paper we will examine domination problems on another hierarchy ofchordal
graphs, namely, chordal graphs k-trees with unbounded k k-trees with bounded
k trees. We will use our dynamic programming technique to outline a polynomial
time algorithm for k-trees with bounded k. We will also demonstrate the NP-completeness
of the h-dominating set problem on k-trees with unbounded k.

2. k-trees; k bounded. In this section we will show how the tree-like structure of k-
trees can be exploited in a dynamic programming algorithm for the domination problem.
A simplicial vertex is one for which the set of neighbours forms a clique. A graph has a
perfect elimination scheme if there exists an order of eliminating the vertices such that
each vertex is simplicial at the time it is eliminated. A graph is chordal iff it has a perfect

FIG.
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FIG. 2

elimination scheme [7]. This perfect elimination scheme indicates that the maximum
cliques of a chordal graph interlock in a very tree-like way. This clique tree [6] can be
constructed in linear time 11 ]. See Fig. 2 for an example of a clique tree.

One obvious approach to the dominating set problem on k-trees is to attempt to
use the clique tree to generalize the tree algorithm ofCockayne et al. [2]. The tree algorithm
starts at the leaves and delays putting a vertex in the dominating set until such a move
is forced. For k-trees we would first find minimum dominating sets of the subgraphs
corresponding to the leaves in the clique tree and then form minimum dominating sets
for the subgraphs corresponding to larger and larger subtrees ofthe clique tree. This does
not work since a minimum dominating set on a sub-k-tree does not necessarily belong
to any minimum dominating set of the k-tree. The existence of families of k-trees where
the number ofdominating sets grows exponentially with n rules out an exhaustive search
strategy to achieve a polynomial time algorithm. Instead we use the previously mentioned
idea of keeping a polynomial number ofdominating sets ofeach sub-k-tree in a dynamic
programming formulation.

2.1. Terminology. Given a k-tree G, an associated clique tree Tand a (k + 1)-clique
C ofG we define G(C) to be the subgraph ofG corresponding to the cliques in the subtree
of T rooted at C. In the example in Fig. 2, if C {5,10,14} then G(C) corresponds to
the graph induced on the nodes { 5,10,11,12,13,14 }. Furthermore, we let CI, C2,
Ct denote the children ofC in the tree T. In our example the children ofC are { 10,11,14 },
{ 10,12,14 } and { 10,13,14 }. If C is a child of C, then X denotes the vertex C\Ci and
x-,. denotes the vertex C\C. In Fig. 2, if Ci { 10,12,14}, then x 5 and 12.

The algorithm will calculate a minimum dominating set of G by performing a dy-
namic programming algorithm on Tand for each clique C of T calculating the following
two sets of quantities. For every subset S of C we determine the following:

(i) DS(G(C), S)ma minimum sized dominating set of G(C) such that the domi-
nating set contains S.

(ii) S(G(C), S)ma minimum sized dominating set of G(C) assuming that the
vertices in S are already dominated.

Clearly ifR is the root of T then G(R) G and DS(G(R), ) is a minimum sized
dominating set of G.

2.2. The algorithm. Before describing the algorithm we present a procedure "GEN-
ERATE" used in the algorithm. Given a clique C with children (Ci } <= <= ! and a
subset S of C, GENERATE attempts to compute V(a union of/S sets) which dominates
G(C)\S. A successful computation of V is determined by a mapping of the vertices in
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C\S to the cliques C, Ct. If Vi denotes the set of vertices of C\S assigned to Ci,
and if I)S(G(Ci), (C I") Ci)\Vi)l IbS(G(C), C fh Ci)l, then V U_- fiS(G(C),
(C fh Ci)\ Vi). If such a V does not exist, then GENERATE fails. The following descrip-
tion of GENERATE allows each Vi to be chosen nondeterministically. As discussed in

2.5, a deterministic implementation could result in an exponential time bound.

Procedure GENERATE (C, { C/}, S)
input C with children { Ci}, =< _-<

S_C
output V, the union of l/S sets or "Failure"

v= (3 bS(G(C/), (C c G)\ v/)
i=1

such that (i) IbS(G(G), (C C C/)\ V,.)I I:S(G(G), C f’) C,.)I,
(ii) V,.___ Cfh C;,
(iii) Vdominates C\S.

If no such set exists return "failure".

We now describe the algorithm. The computation progresses from the leaves of T
to the root R. In all cases the DS sets are calculated before the/S sets. Throughout the
algorithm MIN refers to choosing the set with the smallest cardinality.

Step I. C is a leaf of T
(a) Compute DS(G(C), S), VS 2c

(1) If S 4 , DS(G(C), S) S
(2) If S , DS(G(C), ) {x} where x is an arbitrary element of C.

(b) Compute JS(G(C), S), VS 2c

(1) If S C, )S(G(C), C)
(2) If S 4 C, S 4 j, S(G(C), S) (x) where x is an arbitrary element

of C.
(3) If S , S(G(C), )= DS(G(C), j).

Step II. C is not a leafof T. (We assume that the DSand the/S sets have been computed
for all Ci, -< _-< l.)
(a) Compute DS(G(C), S), VS 2c. This progresses in nonincreasing order of

IsI so that in calculating DS(G(C), S) we may assume that DS(G(C), S’) is
known VS’, IS’] > sI.
(1) IfS q: ,
DS(G(C), S)= MIN

[ {DS(G(G), S C/)}
=, {/S(G(C), C VI C/)}

{DS(G(C),SLJ {x})} Vxe C\S.

(a)

(b)

(c)

(2) If S

GENERATE (C, { C}, ),
DS(G(C), )=MIN

{DS(G(C), {x})} VxeC.

(b) Compute bS(G(C), S) VS 2c. (We assume that DS(G(C), ) has already
been computed.)
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(1) IfS 4: ,
GENERATE (C, { Ci}, S),

S(G(C), S)= MIN
DS(G(C), ).

(2) If S , S(G(C), ) DS(G(C), ).

2.3. Example. Let us consider how the algorithm would progress on the 2-tree
shown in Fig. 1. At a particular point the sets DS and DS are available (see Table 1).
Using the rules in the algorithm the sets DS and DS are computed as shown in Table 2.
After the sets DS and/S are available for G({5,10,14}) we compute the DS and/S for
G({5,9,14}) (see Table 3).

2.4. Proof of correctness. We now show that the set produced by DS(G(R), ) is
a minimum sized dominating set of G. First we state some lemmas which will be used
in the proof.

LEMMA 1. Let C be a clique with children C, C2,’", Ct. For any i, j, <= i,
j <= l, 4 j. G(Ci) f) G(Cj) C.

Proof In fact G(Ci) fq G(Cj) C\((xi } tO {xj }). This follows from the definitions
of k-trees and clique trees.

LEMMA 2. Given x G(Ci)\C, the vertices ofG adjacent to x must lie in G(Ci).
Proof This follows from the definition of k-trees. See Fig. 3.
LEMMA 3. Let X be a dominating set ofG(C).
(i) IfX N (C Ci) 4 , then X f) G(Ci) dominates G(Ci).
(ii) IfX f3 C {xi ), then (X CI G(Ci)) tO {xi } dominates G(Ci).
(iii) IfX fq C , then X fq G(Ci) dominates G(Ci)\(C fq Ci).
Proof From Lemma 2, any vertex in G(Ci)\C can only be dominated by vertices

in G(Ci) and thus the vertices in X fq G(Ci) dominate the vertices in G(Ci)\(C f) Ci).
In case (i) the only other vertices are those in Ci f3 C; however, they are dominated by
any vertex in X (C fq Ci). In case (ii) X dominates the vertices in C 1 C. I"]

LEMMA 4. IfGENERATE (C, { Ci }, S) does not return "failure," then the set pro-
duced by GENERATE (C, { Ci }, S) dominates G(C)\S.

Proof From condition (iii) ofGENERATE, Vthe output ofthe procedure dominates
C\S. Since each of the S(G(Ci), (C fq Ci)\Ti) dominates G(Ci)\C the lemma is
proved.

THEOREM 1. The DS(G(R), ) calculated by the algorithm is a minimum domi-
nating set ofG.

TABLE

C 3,4,5 C {4,5,6

S DS(G(C), S) IS(G(C), S) S DS(G(C), S) S(G(C), S)

{3} {3} {6} {6}
{3} {3} {3} {4} {4,8} {6}
{4} {4,1} {3} {5} {5,8} {6}
{5} {5,1} {2} {6} {6} {6}
{3,4} {3,4} {3} {4,5} {4,5,8} {8}
{3,5} {3,5} {2} {4,6} {4,6} {6}
{4,5} {4,5,1} {2} {5,6} {5,6} {6}
{3,4,5} {3,4,5} {2} {4,5,6} {4,5,6} {8}
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TABLE 2

C {4,5,9}

S DS(G(C), S) S(G(C), S)

5 {4,1,8} {4,1,8}
{4} {4,1,8} {4,1,8}
{5} {5,1,8} {4,1,8}
{9} {9,2,8} {2,6}
{4,5} {4,5,1,8} {4,1,8}
{4,9} {4,9,1,8} {3,8}
{5,9} {5,9,1,8} {2,8}
{4,5,9} {4,5,9,1,8} {3,6}

Proof To prove this it is sufficient to show that the DS and J0S sets determined by
the algorithm do in fact satisfy their definitions. This is done by induction and follows
the order of calculation of the algorithm.

If C is a leaf, then it is clear that the algorithm is correct. We now assume that C is
not a leaf and that the DS and DS sets have been calculated correctly for all Ci, the
children of C.

Part 1. DS(G(C), S). Throughout the proof we let D denote the DS set computed
by the algorithm. The proof proceeds by induction on sI, For the base case S C and
the only applicable clause is (a). In other words, we wish to show that D C LJ=
{DS(G(Ci), C f3 Ci)} is a minimum dominating set of G(C) which contains C. It is
obvious that D is a dominating set of G(C) and that C

_
D; we now establish the

minimum cardinality ofD. Assume this is not true and there exists X s.t. C
___
X
_
G(C);

X is a dominating set of G(C) and [XI < IDI. Since X f3 (C f3 Ci) , Lemma 3
states that X f’) G(Ci) dominates G(C), and thus X f’l G(Ci) is a possible candidate for
DS(G(Ci), C fq Ci),tfor all i. To show that IxI >-- IDI we first observe from Lemma
that (X fq G(Ci)) fq (X N G(Cj.)) C, < i,j < l, 4: j. Thus vertices in X\C must belong
to some G(Ci)\C and, from Lemma 2, cannot dominate any vertex in G(C)\C, j 4 i.
In other words [(X fq G(Ci))\C] ("1 [(X N G(Cj.))\C] , =< i, j _-< l, 4: j, thereby
showing the independence of the (X f"l G(Ci))\C, 1, l. Thus

[XI IC[ + I(xfq G(C/))\CI.
i=1

From the minimality assumption of IDS(G(Cg), C f"l C)I and the fact that X fq G(C/) is

TABLE 3

C {5,10,14} C {5,9,14}

S DS(G(C), S) IS(G(C), S) S DS(G(C), S) tS(G(C), S)

5 {10} {10} 14,2,8} {14,2,8}
{5} {5,10} {10} {5} {5,10,1,8} 14,2,8}
{10} {10} {10} {9} {9,10,2,8} {2,6,10}
{14} {14} {10} {14} {14,2,8} {14,2,8}
{5,10} {5,10} {10} {5,9} {5,9,10,1,8} {2,8,10}
{5,14} {5,14} {10} {5,14} {5,14,1,8} {14,2,8}
{10,14} {10,14} {10} {9,14} {9,14,2,8} {2,6,10}
{5,10,14} {5,10,14} {10} {5,9,14} {5,9,14,1,8} {2,8,10}
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FIG. 3

G(Ci)

a possible candidate for DS(G(Ci), C fq Ci), we conclude that IxI [DI contradicting
IXl<lDI,

We now assume that DS(G(C), S) is a minimum dominating set ofG(S) containing
S, for all S 2c such that SI > h and show that the algorithm computes a legitimate
DS(G(C), S) for IS] h. This proof involves 2 cases.

Case 1. S 4 C, sI >-- 1. It is clear that regardless of the choice taken by the MIN
operator, the set D contains S and is a dominating set. To show it is of minimum car-
dinality we assume to the contrary that there exists X such that X is a dominating set of
G(C), S

_
X and Ixl <

If there exist z X fq (C\S), then X is a dominating set of G(C) containing S tO
{z} contradicting the fact that IDI <= MINxc\s {IDS(G(C), StO {x})[} and the inductive
assumption that all of these dominating sets are of minimum cardinality.

Thus we may assume that X f’l (C \S) ; in other words, X f-) C S. If IS[ >
or S f) C/4: then by Lemma 3(i) X fq G(Cg) is a dominating set of G(C/). In these
cases X f) G(Ci) is a possible candidate for DS(G(Ci), S f) Ci). If IS[ and S

(i.e., S {xi.} and clause (b) is chosen), then by Lemma 3(ii) X fq G(C/) is a possible
candidate for DS(G(Cg), C f) Ci). A similar argument to that for the base case shows
that [(X fq G(Ci))\S] f) [(X fq G(Cj))\S] , <= i, j <= l, 4: j, thereby establishing
the independence of the (X f) G(Cg))\S, 1, l. This shows that

Ixl--IsI / Z I(XCG(Ci))\sI.
i=1

As in the base case, the minimality assumptions of the DS(G(Ci), S f"l Ci) and the
S(G(Ci), C f"l Ci) imply that Ixl >-- ID[ contradicting Ixl < IDI.

Case 2. S . Using Lemma 4, it is clear that regardless of the clause chosen, D
is a dominating set of G(C). To show that it is ofminimum cardinality we again assume
that there exists a smaller such set X. If z X f-I C then X is a dominating set of G(C)
containing {z}, contradicting the fact that IDI --< MINxc {[DS(G(C), {x})l} and the
inductive assumption that all of these dominating sets are of minimum cardinality.

Thus we may assume that X fq C . From Lemma 3(iii)we know that X f"l G(Ci)
dominates G(Ci)\(C f3 C). Since X 71 C , [X 71 G(C)] f’l [X f’l G(C)]
4: j and IX[ = IX fq G(Ci)I. By the inductive assumption, IX

[fiS(G(C), C fq C)[. From (i) in procedure GENERATE, [fiS(G(Ci), C Ci)l
[fiS(G(Ci), (C Ci)\ Vi)[ for all V

_
C fq Ci and thus

Ivl_-< [fiS(G(fi), (CfqCi)\Vi)l , I;S(G(Ci), CCIfi)[
i=1 i=1

thereby showing that Ixl >= [vI IDI, contradicting IXl < IDI.
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Part 2. )S(G(C, S). We now show that the/S sets are determined correctly. As
in Part we assume that the/S sets have been calculated correctly for all Ci, the children
of C. We may also assume that DS(G(C), ) has been accurately determined. We let/
denote the set produced by the algorithm. From Lemma 4 it is clear that regardless of
the clause used, D is a dominating set of G(C)\S. We now show it is of minimum
cardinality by assuming the existence of a smaller such set . If fq C 4: then not
only is a candidate for :S(G(C), S) but is also a candidate for DS(G(C), ) since
dominates S. Since DS(G(C), ) is of minimum cardinality by assumption, we must
assume that f3 C . The rest of the proof follows exactly the proof at the end of
Part 1, Case 2. [--1

2.5. Analysis. Let us first consider the time complexity of a call to a deterministic
implementation ofprocedure GENERATE. There are IC\SI different assignments ofthe
vertices in C\S to the children of C. For each ofthe at most lk / assignments 0(12 / 1)
work is performed to check for success. Altogether a call to GENERATE is performed
in 0(l / 2 + ) time in the worst case.

At each node of the clique tree O(2 / 1) DS(G(C), S) and IS(G(C), S) sets are
computed. Each of these computations will require a call to procedure GENERATE or
searches (each requiting time O(2g / 1)) for a DS(G(Ci), X) or IDS(G(Ci), X). Therefore
0(l / 222 / 2) time is spent at each node ofthe clique tree. Since there are O(n) maximum
cliques in a k-tree and thus O(n) nodes in the clique tree of a k-tree, the algorithm finds
all required DSand/S sets in O(n / 322c + 2) time. Thus ifk is fixed, we have a polynomial
time algorithm for the domination problem on k-trees. It should be noted that the ex-
ponent ofn, namely, k + 3, can be reduced to k + 2 by means ofa careful implementation.

Furthermore, it is important to note that the same algorithm may be modified to
give a polynomial time algorithm for the dominating set problem on chordal graphs
where the clique size is bounded by a constant.

3. k-trees; k unbounded. In this section we establish the NP-completeness of the h-
dominating set problem on k-trees for arbitrary k. h-domination on general graphs was
proved NP-complete using a reduction from the h-vertex cover problem [5]. We also use
this problem to establish NP-completeness on k-trees with unbounded k. In particular,
we show that the h-vertex cover problem for an arbitrary graph G may be polynomially
reduced to the h-dominating set problem for G’ where G’ is an n-tree constructed from
G and n IGI. Thus we have the following theorem.

THEOREM 2. The h-dominating set problem on k-trees with arbitrary k is NP-
complete.

Proof We construct G’ from G as follows. Each vertex Vi of G is represented by a
vertex V in a central complete subgraph C of G’. Each edge eij of G is represented by
n- vertices V’ V’ij 1, o2, , Von_ 1. Vertex V. is made adjacent to each vertex of C.
Vertex V2 is made adjacent to V.I and a subset $2 of n vertices of C that includes

V01_l and a subset St ofV and V). Vertex Vz is made adjacent to VI, Vj.2,
St-1 of size n + that includes the vertices V and Vj-. Finally, V,_ is made
adjacent to V’91, Vj2, V9-2 and V and Vj. Note that IV’I n + (n 1)IEI. It
is clear that G’ can be constructed from G in polynomial time. Figure 4 shows an example
of the construction of G’ from G. We claim that G has an h-vertex cover if and only if
G’ has an h-dominating set.

Each vertex cover for G corresponds to a dominating set for G’. Since the central
part of G’ is complete, all vertices of G’ that represent vertices of G are dominated by
vertices in G’ that correspond to the vertex cover in G. Every edge of G is incident to a
vertex in the cover for G; therefore by our construction each vertex in G’ that represents
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FIG. 4. The construction ofG’from G.

an edge in G is dominated by a vertex in G’ that corresponds to a vertex in the vertex
cover for G.

Given a dominating set for G’, we can assume without loss of generality that it
contains only vertices in the central complete subgraph. If the dominating set contained
a vertex Vijl, then Vot can be replaced by either V or V and the set will still be dominating.
Since all the vertices in G’ that correspond to edges in G are adjacent to a vertex in the
dominating set, the vertices in G corresponding to the vertices in the dominating set
for G’ will form a vertex cover for G. That G’ is an n-tree is evident from the con-
struction. U]
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THE NULL SPACE PROBLEM II. ALGORITHMS*
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Abstract. The null space problem is that of finding a sparsest basis for the null space (null basis) of an
underdetermined matrix. This problem was shown to be NP-hard in Coleman and Pothen (this Journal, 7
(1986), pp. 527-537). In this paper we develop heuristic algorithms to find sparse null bases. A basis is computed
by columns, i.e., by finding a null vector linearly independent of those previously obtained. The algorithms to
compute null vectors have two phases. In the first combinatorial phase, a minimal dependent set of columns
is identified by finding a matching in the bipartite graph of the matrix. In the second numerical phase, nonzero
coefficients in the null vector are computed from this dependent set.

We have designed two algorithms: the first computes a fundamental basis (one with an embedded identity
matrix), and the other, a triangular basis (one with an upper triangular matrix). We describe implementations
of our algorithms and provide computational results on several large sparse constraint matrices from linear
programs. Both algorithms find null bases which are quite sparse, have low running times, and require small
intermediate storage. The triangular algorithm finds sparser bases at the expense of greater running times. We
believe that this algorithm is an attractive candidate for large sparse null basis computations.

Key words, null basis, null space, sparse matrix, bipartite graph, matching, linear programming, nonlinear
programming
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1. Introduction. Currently successive quadratic programming is the most popular
method to solve constrained nonlinear optimization problems. The quadratic program-
ming subproblems are often solved by numerically stable null space algorithms. Thus
designing efficient null space algorithms for large scale optimization problems is an area
ofintense research effort at present. One concern is that these algorithms require a sparse
representation of the null space of the constraint matrix.

Let A be a n matrix of rank t. The Null Space Problem (NSP) (Pothen (1984),
Coleman and Pothen (1986a)) is to find a basis N, with the fewest nonzeros, for the null
space ofA. For brevity, a basis for the null space will be called a null basis, and a column
of a null basis will be called a null vector.

Two representations for the null basis N have been used so far in optimization
algorithms. Wolfe (1962) proposed permuting the columns ofA to obtain a non-
singular matrix M such that A (MU), so that

(1.1) N=

where B =- -M-1U, and In-t is the (n t)-dimensional identity matrix. We will call
such a basis afundamental null basis. An explicit representation ofN is one in which the
nonzeros in Nare stored. In practice, Nis represented implicitly by storing the LU factors
ofM, and a matrix-vector product such as Np is computed by solving a system ofequations
involving M. In the second representation, an LQ factorization ofA is computed, and
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the last n columns ofQ form an orthogonal null basis for A. This scheme is impractical
for large scale problems since Q is likely to be quite dense.

A context in which an explicit representation of the null basis is required concerns
the optimization ofa nonlinear function subject to linear constraints. A null space method
demands the matrix NrHN, where H is the current Hessian or an approximation to it.
If a subroutine to compute the gradient of the objective function is available, then it is
possible to obtain a good approximation to HNby n t extra gradient evaluations (Gill,
Murray and Wright (1981)), provided N is explicit. If N is explicit, and HN is sparse,
then, in general, many fewer gradient evaluations will be needed ifa sparse finite difference
scheme is used (Coleman and Mor6 (1983), (1984)).

A second context arises from the recent work ofGoldfarb and Mehrotra (1985) and
Shanno and Marsten (1985) which extends Karmarkar’s algorithm for linear program-
ming. The crucial computational step in these works is the solution of large sparse linear
least squares problems of the form

DNw b,

where D is a diagonal matrix, and N is a null basis of the constraint matrix. Both groups
suggest solving the linear systems using pre-conditioned conjugate gradients; however, a
host of pre-conditioning strategies is lost if N is not explicit. For example, diagonal,
incomplete Cholesky, and chordal (Coleman (1986)) pre-conditioners, all require an
explicit null basis N. (Thapa (1984) discusses a variety of pre-conditioners available for
optimization problems: most require explicit matrices.)

Hence, for the rest of this paper, we restrict ourselves to the study of sparse explicit
representations of null bases.

Previous work by others. Recently much work has been done on computing sparse
null bases. The "turnback" method for computing a null basis with a profile structure
for equilibrium matrices in structural analysis was proposed by Topcu (1979). Kaneko,
Lawo and Thierauf (1982) interpreted this algorithm from a matrix factorization point
ofview. Berry, Heath, Kaneko, Lawo, Plemmons and Ward (1985) refined this algorithm,
implemented it using profile data structures, and tested it on several structural problems.
Berry and Plemmons (1985) have implemented this algorithm on a HEP multiprocessor.

The turnback algorithm computes a QR factorization of A to identify a set of
(n t) start columns. These are columns which are identified as linearly dependent in
the factorization. Hence there is a null vector containing a start column and columns
numbered lower than it in the matrix. Each null vector is computed by an algorithm
which maintains a set of active columns, initially containing only a start column. Lower
numbered columns are added to the active set, one by one, and a QR factorization of
the active set is maintained. When the active set becomes dependent, the columns cor-
respond to the nonzero components of a null vector. Ifthe dependence involves the start
column, the null vector is accepted. If not, the dependent column is rejected from the
active set, and the process continued.

Null bases obtained by turnback are not fundamental; they have an embedded
upper triangular matrix Un- ofdimension (n t) with nonzero diagonal elements. Thus

(. N= g_,

and we call such bases triangular null bases.
Gilbert and Heath (1987) have implemented several algorithms to compute sparse

null bases. One of these is the turnback algorithm using general sparse data structures
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from Sparspak (George and Liu (1981)). Another is a matching based algorithm that
computes triangular bases; we discuss this algorithm in 4 of this paper.

Previous work by the authors. NSP was formulated in Coleman and Pothen (1986a).
We briefly summarize definitions and major results from that paper that will be use-
ful here.

A null vector ofA can be obtained from a linearly dependent set of columns. We
call such a set a dependent set. The coefficients of the linear combination correspond to
the values of the nonzero components of the null vector. A minimal dependent set of
columns ofA is a circuit. We proved that only null vectors that correspond to circuits
could be columns in a sparsest null basis.

Sparsest null bases were characterized by a greedy algorithm that augmented a partial
basis by a sparsest null vector independent ofthose previously chosen. Despite this result,
finding a sparsest null basis is computationally an intractable problem since it is
NP-hard. Computing a sparsest fundamental null basis is also NP-hard.

We addressed the question if sparsest null bases could be characterized to have some
particular zero-nonzero structure (structure). It is known that a sparsest null basis may
not be fundamental. We showed that a set of k vectors is linearly independent for all
possible numeric values ofits nonzeros ifand only if it has an embedded upper triangular
matrix of dimension k. Yet we do not know if we can always restrict a sparsest basis to
be triangular. Nevertheless, restriction of the structures to fundamental and triangular
bases makes it easy to ensure linear independence of the null vectors.

The relation between a triangular and a fundamental basis is an interesting one.
Since a triangular null basis has the structure in (1.2), ifA is partitioned to conform to
N as A (MS), then we have B -M-SUn_ t. Hence

N=
In-

Un- t.

Thus a triangular basis is obtained from a fundamental basis by postmultiplying with an
upper triangular matrix. From matrix algebra alone, it is hard to see that triangular bases
can be sparser than fundamental bases. The results in this paper show that judiciously
constructed, they are sparser.

Outline of this paper. In this paper we report on the design and implementation of
algorithms to compute fundamental and triangular null bases. A null basis is computed
by repeatedly executing an algorithm to compute a null vector. Since sparsest null bases
are characterized by the greedy algorithm, a heuristic strategy of computing the basis by
repeatedly finding sparse null vectors is justified.

The algorithm to compute a null vector has two phases: in the first combinatorial
phase, we identify the nonzero positions in the null vector. The nonzeros in each null
vector corresponds to columns of A in a circuit. In a second numeric phase, numeric
values of the nonzeros are computed.

In 2 we design a circuit algorithm that finds a dependent set from a maximum
matching ofA. If the matrix satisfies a nondegeneracy assumption called the weak Haar
property, then this dependent set is a circuit. We also show that any circuit ofA can be
found from an appropriate matching. The matching theory needed to understand this
paper is introduced as needed in this section.

We use the circuit algorithm to find a fundamental null basis in 3. All circuits in
a fundamental basis are computed from one fixed matching in the matrix. We report on
an implementation and on our computational results.
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Section 4 describes the triangular algorithm to compute triangular null bases. Here
a modified circuit algorithm which chooses columns to add to a start column such that
a sparse circuit is obtained is used to find circuits. The algorithm is guided in its choice
of columns by a matching which is constructed simultaneously. Thus each circuit is
obtained from a separate matching.

Ensuring the correctness of the triangular algorithm is a subtle issue that involves
some matching theory; we prove that ifa complete matching is maintained in the nonstart
columns in the matrix, correctness can be assured. This "outer" matching is distinct
from the matching from which a circuit is obtained.

In 5 an implementation of the triangular algorithm is described and our results
are discussed. We compare our results with the results of Gilbert and Heath (1987).

In 6 we list some results on sparse orthogonal null bases we have obtained in
Coleman and Pothen (1986b), summarize our work, and make some additional remarks.

By convention a term is in slanted font when it is being defined. We also denote
the set operations A U b}, A\ b}, and A U {b}\ { c} by A + b, A b, and A + b c,
respectively.

2. A circuit algorithm. A sparse null vector is computed in two phases. In the first
phase, a circuit is identified from a matching in the matrix. In the second phase, the
nonzero coefficients of a null vector are computed by solving a system of equations. We
proceed to introduce the matching theory needed to design a circuit algorithm.

The bipartite graph G(A) of the matrix A has a row vertex corresponding to each
row ofA, and a column vertex corresponding to each column ofA. An edge joins a row
vertex to a column vertex if and only if the corresponding matrix element is nonzero.
The structure of a matrix and its bipartite graph are shown in Fig. 2.1. The symbols "",
and "(R)" denote nonzeros; the rest are zeros.

A matching in A is a set of nonzeros ofA such that no two elements in the set are
chosen from the same column or the same row. A matching ofA corresponds in G(A)
to a set of edges no two of which are incident on a common vertex. A matching in the
matrix of Fig. 2.1 is shown by circled nonzero elements; in the bipartite graph the edges
in the matching are drawn with thick lines. A vertex is matched if it is an endpoint of
an edge in a matching. A vertex that is not matched is unmatched. The matching /’ in
the figure has maximum cardinality, and hence is a maximum matching ofA. The match-

a b

l/x x

2 x 0

3 0 0

c d f
0 (R) 0 O
(R) x 0 x

0 0 (R) x

FIG. 2.1. The structure ofa matrix, its bipartite graph, and a matching.
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ing number, m(A), is the cardinality of a maximum matching ofA. A matching in which
all the rows are matched is a complete (row-perfect) matching in A. A matching in which
all rows and columns are matched is a perfect matching.

There exist several polynomial time algorithms to find maximum matchings
in bipartite graphs. Let z denote the number of nonzeros in A. The theoretically
fastest known algorithm is due to Hopcroft and Karp (1973), and has time complex-
ity O(t/2z). Duff (1981) prefers an O(tr) algorithm which he finds is faster in prac-
tice. Good discussions of matching algorithms may be found in Papadimitriou and
Steiglitz (1982), and Lawler (1976).

The following two propositions are well known; Bondy and Murty (1976) have a
proof of the first. The matrix A has the Hall Property (HP) if every subset of its rows has
nonzeros in at least as many columns.

PROPOSITION 2.1 (Philip Hall). A has a complete matching ifand only if it has the
Hall property.

PROPOSITION 2.2. The matching number of a matrix is greater than or equal to
its rank.

From Proposition 2.2, a matrix with rank has a complete matching. A stronger
condition on A is the Strong Hall Property (SHP). The matrix A has the Strong Hall
property if every subset of 0 < k < n rows has nonzeros in at least k + columns. (Thus
when < n, every set of k =< rows has nonzeros in k + columns, and when n,
every set of k < n rows has nonzeros in k + columns.) SHP is the same property
as irreducibility. The terms HP and SHP are due to Coleman, Edenbrandt and Gil-
bert (1986).

A complete matching ofA partitions the columns ofA into two sets: M, the set
of matched columns, and U, the set of unmatched columns. In Fig. 2.1, M {c, d, e}
and U {a, f b}. We now show that for a column u e U, we can construct a circuit of
A containing u by an "alternating path algorithm."

A path in a graph is a sequence of distinct vertices v, vk, where (vi-1, vi) is
an edge of the graph, for < =< k. An l-alternating path is a path whose edges are
alternately chosen from the matching /’ and outside ’. In Fig. 2.1 the sequence of
edges (b, 1), (1, d), (d, 2), (2, c) is an [-alternating path in A. We say that c and d are
reachable from b by /’-alternating paths, and indicate this by b -- c and b - d.

An augmenting path is an alternating path which begins and ends with unmatched
vertices. By making matched edges along an augmenting path unmatched, and vice versa,
the size of the matching can be increased by one.

For u e U, the following algorithm constructs a dependent set n(u) containing u;
this is a circuit if A has the Weak Haar Property (WHP). A matrix has the weak Haar
property if every set of columns C satisfies rank (C) re(C). This assumption ensures
that n(u) will be a circuit for all "general" numeric values of the columns of A. For a
particular set ofnumeric values ofthe nonzeros ofA, numerical cancellations may occur,
in which case the set n(u) will contain a circuit. (The definitions of HP, SHP and WHP
are tabulated in Table for easy reference.)

TABLE
Summary ofproperties.

Hall Property (HP)
Strong Hall Property (SHP)
Weak Haar Property (WHP)

every subset of k rows has nonzeros in at least k columns
every subset of k rows has nonzeros in at least k + columns
every subset of columns C has m(C) rank (C)
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THE CIRCUIT ALGORITHM. Given a matrix A with WHP, a complete matching
and an unmatched column u U, this algorithm finds a circuit n(u).

Follow all d/g-alternating paths from u, adding columns visited to n(u).
Thusn(u)=u+ {v M" u v}.

From Fig. 2.1 it is easy to see that n(a) {a, d, c}, n(b) {b, d, c}, and n(f
{f, c, e}. The set n(u) can be constructed in O() time by a depth first search.

THEOREM 2.3. The set ofcolumns n(u) is a circuit ifA has WHP.
Proof Let Cbe the set ofcolumns in the dependent set n(u), and let C have nonzeros

only in the row set R. For ease of notation, denote by B the submatrix ARC.
We first show that B has SHP. Consider any subset S of k rows of B. S is matched

in /g to k columns, all of which are in C. If the unmatched column u has a nonzero in
any of the rows in S, then S has nonzeros in at least k + columns.

Suppose that u has no nonzero in S. Since rows in S are reachable from u by
’-alternating paths, there must exist a column, matched to a row outside S, with a
nonzero in S. Again, S has nonzeros in at least k + columns.

Let b be any column in B. Since B has SHP, B b has HP. By Proposition 2.1,
B b has a complete matching of size R I. Since A has WHP, the rank of B b is
[R 1, and so the columns in B b are independent. Since B is dependent, it follows that
n (u) is a circuit, ff]

Let t denote the submatrix of columns in C- u and rows in R, and let g denote
the components of u corresponding to rows in R. The coefficients of the null vector can
be computed by solving

and then choosing

xi
n(u)i

0

if corresponds to a column in (,
if corresponds to u,
otherwise.

Suppose that does not have WHP. Since it has a perfect matching by construction,
it is rank deficient. Hence it may not be possible to express ff as a linear combination of
columns in t. In this case, the coefficient of u in the null vector is zero, and we say that
the dependence in n(u) does not involve u. However, it is possible to choose a column m
which has a nonzero coefficient in the null vector. Thus a null vector n(m) with a nonzero
component corresponding to m is obtained.

COROLLARY 2.4. If n(u) does not have WHP, it contains a circuit which can be
identified by a numericfactorization. D

We now prove that the converse of Theorem 2.3 is true.
THEOREM 2.5. Every circuit of a matrix A with WHP can be constructed by the

circuit algorithmfrom some maximum matching l ofA.
Proof Let C be the set of columns in a circuit, and let R and B be as in the proof

of Theorem 2.3. Denote [CI by c, and distinguish any one column of B as u. We claim
B u has HP.

Suppose not. Then R has a subset of k rows adjacent to fewer than k columns, for
some k. The columns and rows of the submatrix B can be permuted to the structure in
Fig. 2.2. The submatrix B then contains a dependent set ofcolumns of size c k, violating
the minimality of C. Hence B u has HP, and by Proposition 2.1, it has a complete
matching ’. Partition A as shown in Fig. 2.3.
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u <k >c-k

c-k-1

FIG. 2.2. The submatrix B.

R

R 0 0

FIG. 2.3. A partition ofA.

In any matching of A, the row set/ can match only to the column set . Let ///2
be a maximum matching of the submatrix Abe. The required maximum matching is
/’ U ./’2. I-!

3. Fundamental null bases. We now develop an algorithm to compute fundamental
null bases using the circuit algorithm.

THE FUNDAMENTAL ALGORITHM.
1. [initialize] Let N be the empty set;
2. [match]

Find a complete matching /ofA;
partition the columns: A (MU);

3. [construct basis]
for each u e U --construct n(u) by the circuit algorithm;

solve for the coefficients in n(u);
Augment the null basis N with the computed null vector;
rof

When A has WHP, by Theorem 2.3, each set n(u) is a circuit. Further, since an
unmatched column u is contained only in the circuit n(u) by construction, N is a fun-
damental null basis. Thus the algorithm is correct in this case.

Step 3 ofthe fundamental algorithm can be modified to reduce its complexity. With
the partition A (MU), the fundamental basis has the structure in equation (1.1), where
B -M-U. Thus when M has full rank, the coefficients of each null vector n(u) can
be obtained by solving a system ofthe form Mx -u. Hence we do not need to identify
columns in n(u) by following alternating paths. Also, the (n t) matrix factorizations
can be replaced by one.
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This observation also shows that when A does not have WHP, the algorithm can
fail to compute all the (n t) linearly independent null vectors in a basis. Corresponding
to each fundamental basis, there is an associated partition of the columns of A into
M and U. Since B satisfies the equation MB -U, when M does not have full rank,
it may not be possible to express a column u as a linear combination of the columns
in M.

Thus when A does not have WHP, a fundamental basis can be computed only when
M has full rank. Hence we choose M by a matching, but ensure that M has full rank
when we factor it to compute the null vectors. Ifit is rank-deficient, we reject the dependent
columns in M from the matching, and find a new maximum matching. This strategy
will ensure correctness; and will always succeed when A has full row rank.

For some of the problems reported here, the submatrix M chosen by a matching
was indeed rank deficient. The number of dependent columns was almost always equal
to one or two out of a few hundred columns; the largest we observed was five.

Details of implementation. Since computing a sparsest fundamental null basis is
NP-hard, heuristic strategies have to be employed to find sparse bases. Our strategy is to
assign costs to the columns ofA, and to choose a column of minimum cost to match to
a row.

The cost of a column c is the number of nonzeros in it. To justify this, observe that
for a matrix with WHP, the number of nonzero rows in a circuit is one smaller than its
number of columns. Thus a sparse circuit has few nonzero rows. Hence the cost of a
column c indicates that any circuit containing c must have .at least this number of ad-
ditional matched columns in it. The cost of a matching is the sum of the costs of the
matched columns. Ties were broken in favor of lower numbered columns.

Our weighted maximum matching routine is derived from MC21A, Duff’s algorithm
for finding a maximum matching in a matrix (Duff (1977)). A maximum matching is
obtained by matching the rows one by one. At one step of the matching algorithm, we
search for a column to match to an unmatched row. From the given row, a depth first
search is performed through alternating paths to visit every unmatched column that
could be reached by such a path. The cheapest of these columns is chosen.

The solution of the linear systems to compute the coefficients of the null vector is
accomplished by using the LUSOL package of Gill, Murray, Saunders and Wright (1986).
This package is presently a part ofMINOS (Murtagh and Saunders (1983)). The LUSOL
routines draw on the work of Reid (1976), (1982) on sparse LU factorizations ofunsym-
metric matrices. Gaussian elimination with row and column pivoting is performed such
that M LU, where the matrix PLP is lower triangular, PUQ is upper triangular, and
P, Q are permutation matrices. Markowitz’s criterion is used to select the pivot element,
subject to a bound on the size of elements in L for numerical stability. Two triangular
systems are solved to compute the null vector from the factors; we call this a solve.
Parameters in LUSOL were set at their default values.

The matching algorithm has complexity O(tz); Duff (198 l) reports an O(t) + O(r)
experimental behavior. Since the dimension ofM is t, the cost of factoring it in step 3
could be O(t3), and the (n t) solves could cost O((n t)t2) operations. However,
since M is sparse, a more realistic cost should be about O(t2) for the factorization and
O((n t)t) for the solves.

Storage requirements of the algorithm are dominated by the storage required for A
and the null basis N. The matrix A is stored in Sparspak column oriented data structures
(George and Liu (1981)). Nonzeros and row indices are stored in column major order.
For the use ofmatching routines, column indices ofthe nonzeros are stored in row major
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order. These require a double precision array of length r, two integer arrays of length r,
and integer arrays of length n + and t + 1. Let r(M) denote the number of nonzeros
in M; this is smaller than r. LUSOL needs the submatrix M stored as an element list
with parallel integer arrays for row and column indices. The factorization is stored in
the data structure for M, for which a minimum length of r(M) + 4t is recommended.
The null basis N is stored in Sparspak column oriented data structures of length equal
to the number of nonzeros in the basis.

Results. We implemented the fundamental algorithm in FORTRAN 77; our ex-
perimental code, BASIS, is structured and modular, and we believe it represents a careful
and efficient implementation. The program was run on a VAX 11/780 (with floating
point coprocessor) under Berkeley 4.2 Unix at Penn State’s Computer Science Depart-
ment. The f77 compiler was used to compile the code.

Constraint matrices from linear programming problems were used for tests, and are
shown in Table 2. The first, murty, was taken from Murty (1983), and all the others were
supplied to us by Dr. Michael Saunders. The nonzero matrix elements were stored in
double precision. Our results are tabulated in Table 3. The algorithm found bases com-
parable in sparsity to the input matrices for all problems except brandy, for which there
was a four fold increase in density. This seems to be caused by the restriction to funda-
mental bases, as will be seen in the next section.

The total time (seconds) reported includes the time needed to find a maximum
matching, compute the LU factors of M, and solve for the null vectors. The matchings
were found quite fast, and the relatively larger times for the problems brandy, capri and
etamacro were caused by dependence in Mwhich necessitated finding a second matching.
This step can be speeded up if the current matching is updated instead of finding a new
matching as we have done.

Both murty and israel had embedded identity matrices of dimension t; thus these
null bases were anomalously easy to find. The times reported for these problems should
therefore be considered low.

The time for the factorization phase was surprisingly low. This is due to the high
sparsity in M as a result of the column selection strategy in the matching algorithm, and
the efficient method for computing sparse factors via LUSOL. Solving for the coefficients
accounted for most of the time needed by the algorithm; solving for each null vector
took less than a tenth of a second, but the large number of null vectors caused the large

TABLE 2
Test problems.

Problem

murty
afiro
adlittle
share2b
share b
beaconfd
israel
brandy
e226
capri
bandm
stair
etamacro

Rows Cols Nonzeros Density (%)

12 30 56 15.6
27 51 102 7.4
56 138 424 5.5
96 162 777 5.0
117 253 1179 4.0
173 295 3408 6.7
174 316 2443 4.4
193 303 2202 3.8
223 472 2768 2.6
271 482 1896 1.5
305 472 2494 1.7
356 614 4013 1.8
400 816 2537 0.8
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TABLE 3
Fundamental null bases.

Problem

murty
afiro
adlittle
share2b
share b
beaconfd
israel
brandy
e226
capri
bandm
stair
etamacro

Null basis

Rows Cols Nonzeros Density (%)

Time (seconds)

30 18 62 11.5
51 24 112 9.2
138 82 500 4.4
162 66 736 6.9
253 136 2264 6.6
295 122 1789 5.0
316 142 2411 5.4
303 110 4758 14.3
472 249 3449 2.9
482 211 3478 3.4
472 167 2306 2.9
614 258 5378 3.4
816 416 3929 1.2

Total Match Factor Solve

0.6 .02 .07 0.5
0.9 .05 .08 0.8
3.5 .07 0.2 3.2
4.6 0.1 1.0 4.0
13.7 0.7 1.7 11.3
13.9 0.7 1.1 11.9
12.1 .02 0.4 11.6
22.8 1.8 2.3 18.6
20.3 0.3 0.6 19.2
27.6 4.5 2.5 20.3
19.5 0.7 0.1 17.4
35.7 1.2 1.2 33.2
39.1 2.8 2.5 33.8

time requirement. We conclude also that the numerical phase ofthe algorithm dominates
the combinatorial phase in computational time required.

The numerical quality of each null vector was checked by computing the residual
ofthe system of equations used to find a null vector. In all cases, this was below machine
precision. Condition numbers were estimated for constraint matrices and null bases of
the first eight problems in Table 2 by the LINPACK condition estimator. The estimates
for the null bases were lower than the estimates for the constraint matrices, except for
share b; here the null basis had a condition estimate of approximately 106, about ten
times that of the constraint matrix.

4. The triangular algorithm. We now describe the triangular algorithm that com-
putes a triangular null basis by matching. The diagonal elements of the triangular basis
correspond to a set ofn start columns in A. The algorithm computes a circuit containing
each start column. Linear independence of the set of circuits follows from the structure
of N.

Throughout this section we do not assume that A has WHP; hence the set n(u)
found from a matching will not necessarily be a circuit, but only a dependent set. The
corresponding null vector may not have a nonzero coefficient corresponding to u. By a
null vector n(u) we mean a null vector with a nonzero component corresponding to u.
In the description ofthe triangular algorithm, the remedial actions necessary in the absence
ofWHP are included.

THE TRIANGULAR ALGORITHM. Given a complete matching in a matrix A, and
a partition into matched columnsMand unmatched columns U, this algorithm computes
a triangular null basis N. The set S is the set of columns which have already been used
as start columns.

S’=
while U 4: S do

Choose a column u U- S;
Construct the dependent set n(u) from columns in A S;
Solve for the corresponding null vector;
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if dependence involves u
then { the null vector is n(u)}

S := S + u; N:= N+ n(u);
else { u has a zero coefficient in the null vector }

find a column m involved in the dependence;
Let n(m) be the associated null vector;
S:= S + m; N:= N+ n(m);
if m e M then {update the matching ’}

let r be the row matched to m;
/’ := .//t (r, m);
Augment /’ by matching r
to a column in A S;
Let v be the newly matched
column;
M:=M-m+v; U: U+
m v;

od

Description of the algorithm. Let S {s, si_ 1 be a set of start columns for
which null vectors {n(s), n(si-1)} have been computed. Columns in S will not be
used in any of the null vectors to be computed in the future. The triangular algorithm
maintains the invariant that A S has a complete matching . (This matching may
change in the course of the algorithm.) The matching ’ partitions the columns of A
into a set M of matched columns and a set U of unmatched columns, and S

_
U.

There is a great deal of freedom in how a dependent set n(u) is constructed in this
algorithm. As in the fundamental algorithm, we could employ the circuit algorithm
to find n(u) from the matching /. Or, we could find n(u) from another matching in
A S, with a view toward obtaining a sparse null vector. Indeed, we choose to do
the latter.

Later in this section, we present a modified circuit algorithm that, given u, forms
n(u) by choosing columns in A S by simultaneously constructing a matching in n(u).
This matching is different from the complete matching ///. Thus for each start column
u, a different matching in A S is constructed. This permits more intelligent choices in
the column selection strategy to achieve sparsity. It is still essential to maintain a complete
matching //in A S to ensure the correctness of the triangular algorithm.

Initially the complete matching ’ partitions the columns into M and U, and S is
empty. For a column u U- S, a dependent set n(u) is constructed by a matching
algorithm from the columns in A S. The corresponding null vector is computed as
described in 2, by a numeric factorization. If u is involved in the dependence, then N
is augmented with the vector n (u), and u is added to the set S. Otherwise, we can identify
a column m with a nonzero coefficient in the null vector, and we obtain a null vector
n(m). The column m is added to the set S, and N is augmented with the vector n(m).

Ifm M, then the row r matched to m in ’ has to be matched to another column
in A S to maintain the invariant. This is accomplished by augmenting ’ (r, m) to
a complete matching, and updating the sets M and U.

It is easily seen that a triangular basis is obtained if the null vectors are arranged in
the reverse order in which they are computed.

The modified circuit algorithm. We describe the algorithm used to find the dependent
set n(u). The modified circuit algorithm is a variant of an algorithm proposed by Gilbert
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and Heath (1986), based on the matching theory developed in this paper. First, we describe
our version.

THE MODIFIED CIRCUIT ALGORITHM. Given a column u, this algorithm finds a
dependent set n(u). Here S is the set of start columns for which null vectors have been
computed by the triangular algorithm, C is the set of active columns, and R is the set of
active rows.

c:= (.);
R {rows in which u has nonzeros};
while there is an unmatched row r R do

Find an augmenting path from an unmatched active row r to an
inactive column c A S;
Augment by adding r and c to the matching;
c:=c+ {c};
R R + {inactive rows in which c has nonzeros};
od

This algorithm identifies an active submatrix formed from a set R of active rows
and a set C ofactive columns such that ARc is dependent. Initially, the only active column
is the column u, and the active rows are the rows in which u has nonzeros. A queue of
active rows is maintained by the algorithm. At each step, a column is chosen to match
to a row in the queue. The column is added to the set of active columns, and inactive
rows in which the column has nonzeros are made active and added to the queue. At
termination the active rows are perfectly matched to the active columns (excluding u).
If n(u) has WHP, by Theorem 2.3, the active columns form a circuit.

Assume that in case of failure to find a column c to match to a row, the modified
circuit algorithm terminates. We can prove that this will not happen; i.e., the modified
circuit algorithm will not terminate without finding a dependent set n(u).

THEOREM 4.1. Let A S have a complete matching /1 which partitions A into M
and U, with S c U. Thenfor a column u U- S, the modified circuit algorithm willfind
a dependent set n(u) containing columnsfrom A S.

Proof Ifthe algorithm succeeds in finding a column to match, the size ofC increases
by one in each iteration of the while loop. If it fails, the algorithm terminates. In either
case, termination is assured.

If all rows in R are matched at termination, then they are matched to columns in
C- u, and from Theorem 2.3, the columns in C form a dependent set. Hence assume
that the algorithm terminates with a matching // which matches columns in C u to
a subset of rows in R. Let Ru

_
R denote the set of unmatched rows which cannot be

matched by finding augmenting paths.
Let -///2 denote the edges in the complete matching /’ incident on the rows in R.

By Theorem 4.1 of Lawler (1976, Chap. 5) (also Gale and Hoffman (1982)), it is possible
to find a matching /’3 from /’ and 2 in which all rows in R and all columns in
C- u are matched. Thus it is possible to augment the matching / by matching rows
in Ru, and this is a contradiction, fq

Correctness of the triangular algorithm. We establish the correctness of triangular
algorithm next. In view ofTheorem 4. l, we need prove only that it is possible to maintain
the invariant ofthe algorithm, after a start column is chosen and a null vector is computed.

THEOREM 4.2. Let <-

_
n t, and S {s si- } be a set ofstart columns

for which null vectors n(s), n(si- l) have been computed. Let A S have a complete
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matching l. There exists a column S - A S from which the triangular algorithm
computes a null vector n(si) from the columns in A S, such that A (S t3 si) has a
complete matching.

Proof The modified circuit algorithm finds a dependent set n(u) from any column
u which is unmatched in /’. If the dependence involves u, then si := u, and the result
is true. Otherwise, let m be a column in n(u) involved in the dependence. Now si m,
and n(m) is the null vector obtained.

LetMdenote the columns matched in ’, and U the unmatched columns. Denote
S t.J si by . To maintain the invariant, there are two cases to consider.

Case 1. m U S. Then M remains a completely matched set of columns in

Case 2. m M. In the matching found by the modified circuit algorithm, the set
of columns n(u) u is perfectly matched to the set of rows in which n(u) has nonzeros.
Call this set of rows R. (See Fig. 4.1.) Then from the proof of Theorem 2.5, the set of
columns n(u) m can be perfectly matched to R. Since n(u) m

_
A , it is possible

to match all rows in R to columns in the latter set.
Let/ denote the rest ofthe rows ofA. Then columns in n(u) have zeros in the rows

in/, and hence a row in/ cannot, in any matching, match to any of these columns.
Thus columns matched in /’ to rows in/ are disjoint from columns in n(u) m. It
follows that all rows in this set can be matched to columns in A . Hence A has
a complete matching.

Let r be the row matched in /’ to m. It follows from the correctness ofthe maximum
matching algorithm that / (r, m) can be augmented to a complete matching by
matching r to a column in A

Gilbert and Heath use a version of the modified circuit algorithm as a component
in their matching algorithm (GHM) to find triangular bases. The major difference is that
they maintain a QR factorization ofthe active submatrix as each column is being added.
This helps them terminate the algorithm when a numerical dependence is detected, even
when all active rows have not been matched.

We find a dependent set by matching methods alone, and then solve for the coef-
ficients in the null vector by a sparse LU factorization of the submatrix ARc. There are
two advantages to such a choice. Since all the columns and rows in the dependent set
are known, the row and column ordering strategies of a sparse matrix factorization can
be used to keep the LU factors sparse. More important, a sparse matrix storage scheme
can be used to store the nonzeros in the factors, thus keeping intermediate storage
needed low.

tt

FIG. 4.1. Proofof Theorem 4.2: Case 2.
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The triangular algorithm differs from GHM also in the strategy to select start columns.
They use an initial QR factorization ofA to identify a set of dependent columns, which
is designated as the set of start columns. For each start column, they computed a null
vector containing it, and any dependences not involving the start column were rejected
to ensure that a basis was computed.

5. Computing triangular bases.
Implementation details. The initial matching d///in the triangular algorithm is chosen

by the column weighting strategy in 3. The column u is chosen to be a column with
most nonzeros in U- S, since once this null vector is computed, u will not be used
again. The column m is chosen to be a column in U S rather than in M, if possible,
since this saves the O(z) operations needed to update the matching. The column v is
chosen to be a column with fewest nonzeros in U- S that can augment the matching.

In the modified circuit algorithm, the column c is chosen to be an inactive column
of minimum cost. Here, the cost of a column c is the number of nonzeros it has in the
inactive rows. Our heuristic justification is that this number of additional unmatched
rows are added to a circuit when c is matched to an active row. In case of ties, two
different tie breaking strategies were tried: columns with fewer total nonzeros were favored
in one, and in the other, columns with most total nonzeros. The first strategy worked
better for almost all problems.

Each null vector is computed by the triangular algorithm from a perfect matching
in a submatrix ofA. Each submatrix can have rows and t + columns, and hence the
matching could cost O(t-). The associated factorization could cost O(t3). The actual cost
for each null vector should be lower since the number of rows in each submatrix should
be small due to sparsity. Storage requirements for the algorithm are similar to that ofthe
fundamental algorithm.

Results. An implementation of our algorithm in FORTRAN 77 forms the second
part of BASIS. We present our results (computed under the same conditions as for fun-
damental null bases) in Table 4.

The triangular null bases we obtained are consistently sparser than fundamental
bases. The increase in sparsity is most spectacular for brandy where the triangular basis
has about halfthe density ofthe latter. In all cases, the densities ofthe constraint matrices
and triangular null bases are comparable.

The time reported is the time (in seconds) needed to find a basis, given the matrix
stored in Sparspak data structures and an initial complete matching. The triangular
algorithm needs about two to five times the time needed by the fundamental algorithm.
This is caused primarily by the (n t) matrix factorizations needed to compute the null
vectors. The size of most of the matrices to be factored is quite small since the null
vectors are sparse. Also, the LUSOL routines compute the sparse factorization efficiently.
This explains why the increased time requirement is not greater.

The residuals in the system ofequations from which null vectors are computed were
always below machine precision. Condition numbers were estimated as before for
the first eight problems in Table 2. These were all small, except for share lb and brandy
(cond (N) 106 for both); for the former the ratio cond (N)/cond (A) was about ten,
and for the latter about one hundred.

Comparison with the Gilbert-Heath algorithms. We have also run the triangular
algorithm on seven test problems shown in Table 5 from Gilbert and Heath (1987). Four
of these are equilibrium matrices from structural optimization, and three, lp l, lp2 and
lp3 are obtained from linear programs. The bases for the structural problems have a
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TABLE 4
Triangular null bases.

Problem

murty
afiro
adlittle
share2b
share b
beaconfd
israel
brandy
e226
capri
bandm
stair
etamacro

Null basis

Rows Cols Nonzeros Density (%)

30 18 62 11.5
51 24 108 8.8
138 82 486 4.3
162 66 686 6.4
253 136 1425 4.1
295 122 1581 4.4
316 142 2118 4.7
303 110 2535 7.6
472 249 2742 2.3
482 211 2850 2.8
472 167 1941 2.5
614 258 5094 3.2
816 416 3563 1.0

Time (seconds)

Total

0.4
0.8
3.6
5.0

19.8
70.4
34.4
91.8
57.4
50.3
26.4
59.9
59.5

natural profile structure arising from the locality of the interconnections in the physical
structure, while the linear programs do not.

In Table 6, we compare the results from the triangular algorithm with results from
the Gilbert and Heath matching algorithm (GHM) and turnback algorithm (GHT). Their
code was executed on a reasonably similar setup to ours--a VAX 11/780 running the
same operating system and on the same compiler. However, we need to be cautious
about attaching too much significance to small differences in running times, since the
algorithms are not being compared on the same machine.

The storage reported is the intermediate storage required to obtain a null vector.
Two values are given for GHM and GHT. The dense storage reported is the maximum
dense matrix storage needed for the active submatrix. The profile storage reported is the
maximum storage that would be needed if a profile scheme is used to store the active
submatrix. The running times pertain to an implementation that uses dense storage. The
times (in seconds) in the Gilbert and Heath algorithms exclude the time needed for
column pre-ordering and the initial QR factorization.

For the triangular algorithm, the storage reported is the maximum number of non-
zeros in the L and U factors of the dependent set. We have not included the storage
required by the integer arrays needed for column and row indices of nonzeros. This is
quite small, since eight bytes are needed to store the nonzeros as double precision numbers,
and only two bytes are needed to keep an integer.

Problem

frame2d
Ipl
frame3d
wheel
wrench
lp2
lp3

TABLE 5
Test problemsfrom Gilbert and Heath (1987).

Rows Cols Nonzeros Density (%)

27 45 93 7.7
57 97 465 8.4
72 144 304 2.9
96 120 420 3.6
112 216 490 2.0
118 225 1182 4.5
171 320 906 1.7
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Problem

frame2d

lpl

frame3d

wheel

wrench

lp2

lp3

TABLE 6
Results on problemsfrom Gilbert and Heath (1987).

Gilbert and Heath

Algorithm Nonzeros Time

matching 76 0.63
turnback 76 2.30

matching 367 10.50
turnback 391 28.02

matching 317 2.95
turnback 452 66.12

matching 488 10.45
turnback 503 17.32

matching 518 26.98
turnback 544 58.38

matching 1363 103.68
turnback 1531 773.15

matching 1101 60.80
turnback 1518 288.87

Storage

Dense Profile

72 25
288 27

1680 271
2550 597

168 41
2064 104

756 273
1560 326

3782 266
5112 451

8160 1784
13570 8717

3540 697
10506 849

Triangular Algorithm

Nonzeros Time Storage

79 0.63 16

351 15.3 136

310 3.6 35

518 5.5 103

588 31.8 139

1379 39.1 680

1210 78.9 169

The storage reported is the intermediate storage required to compute a null vector. For the Gilbert and
Heath algorithms, the storage is the maximum size of the storage needed for the QR factors of the active
submatrix. The dense storage refers to a dense matrix storage scheme, and the profile storage, to a profile matrix
storage scheme. The reported times in GHM and GHT refer to the dense scheme. For the triangular algorithm,
the storage is the maximum number of nonzeros in the sparse L and U factors of the dependent set.

Conclusions. The following conclusions may be drawn. Within the context ofstruc-
tural analysis problems, the use ofturnback with profile storage scheme isjustified. Because
of the profile structure inherent in these null bases, the intermediate storage required is
not prohibitive.

The two matching algorithms, GHM and the triangular algorithm, require smaller
running times and less intermediate storage than turnback. The differences are greater
for the linear programs, but this observation is true even for the structural problems. For
instance, on lp2, GHT requires about twenty times the running time of the triangular
algorithm, and more than twelve times the intermediate storage of the latter. We can
conclude that a matching algorithm should be preferred over turnback for computing
null bases of general sparse matrices.

Comparisons between GHM and the triangular algorithm are more difficult to make
with the available data. Use of a profile scheme is essential to keep the intermediate
storage from being prohibitive in GHM. However, the running times reported by Gilbert
and Heath are for the dense storage scheme.

Both the algorithms compute fairly sparse null bases. The intermediate storage re-
quired by the GHM profile algorithm is of the same order as the storage required by the
triangular algorithm. It is likely that the GHM profile algorithm will be a practical al-
gorithm to compute sparse null bases.

We believe our results show clearly that the triangular algorithm is an attractive
algorithm for large sparse null basis computations because of its low running times, small
storage requirements, and the high sparsity achieved in the null bases.
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6. Conclusions.
Sparse orthogonal null bases. In this section, we summarize some of our work on

orthogonal null bases that is not included here.
We have shown that the circuit algorithm can be used to compute orthogonal null

bases. By making use ofthe Dulmage-Mendelsohn decomposition ofthe square matched
submatrix, we have also provided some theoretical evidence that such bases are unlikely
to be sparse.

The computation of sparse orthogonal bases is further complicated by the fact that
a greedy strategy may backfire; Pothen (1984) gives a counterexample to show that not
choosing a sparsest null vector at a step can lead to a sparser orthogonal basis. In the
nonorthogonal situation, a sparsest basis is always obtained by a greedy strategy.

We have designed algorithms to compute sparsest orthogonal bases for two special
cases: a row vector of n elements, and a n dense matrix. For the vector, the sparsest
basis has nllog n/nonzeros, and for the matrix nt/log n/tJ nonzeros. These bases are
computed by a recursive divide and conquer strategy. Proving that these bases are sparsest
involves the solution of an interesting recurrence

f(n)= min f(k)+ f(n-k)+n,
l_k_n-I

with f(1) l, and f(2) 4. The reader can find the details in Pothen (1984) and Cole-
man and Pothen (1986b).

This algorithm has close connections with an algorithm to compute the orthog-
onal factorization on a distributed memory multiprocessor (Pothen, Jha and
Vemulapati (1987)).

Summary. We have shown that matchings can be used to identify dependent sets
of columns in a matrix, and thereby nonzeros in a null vector. These dependent sets are
formed by choosing a start column and adding columns to it, one by one. Matchings
help us in making good choices for columns to add so that a sparse null vector is obtained.
This is accomplished by weighting columns and choosing a column ofminimum weight
to match to a row.

The resulting algorithms to compute null vectors have two phases: a combinatorial
phase, in which dependent sets are identified, and a numeric phase, in which the coef-
ficients of the null vector are computed. The time required for the second phase clearly
dominates that of the first.

We have also focused attention on the structures of the null bases we construct. To
ensure linear independence of the computed null vectors, the null bases are restricted to
be triangular or fundamental.

To compute a fundamental basis, we need to ensure that the matched submatrix
has full row rank. Only one sparse LU factorization of the matched submatrix and
(n t) solves are needed to compute the basis. However, since all the null vectors are
computed from a fixed initial matching, it is difficult to assign weights "globally" to
columns in an intelligent way.

For each null vector in a triangular basis, we need to find a perfect matching in a
submatrix, compute its LU factors, and perform a solve. In this case, a more intelligent
dynamic column weighting strategy (of the modified circuit algorithm) is possible to
ensure sparsity in each null vector.

Our computational results in Tables 3 and 4 demonstrate that both the fundamental
and triangular algorithms succeed in computing sparse null bases, and require low running
times and small intermediate storage. The triangular algorithm finds sparser bases at the
expense of greater running times.
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In Table 6, we compare the triangular algorithm with a turnback algorithm. The
former identifies columns in a dependent set combinatorially, while the latter uses an
orthogonal factorization. Consequently, the running times ofthe former are substantially
lower. The triangular algorithm chooses columns to add to a dependent set by means of
a combinatorial criterion to keep the set sparse, while turnback uses a numbering of the
columns. Hence the triangular algorithm finds sparser bases. Finally, the triangular al-
gorithm can use the column and row ordering schemes of a sparse LU factorization
routine to keep intermediate storage low. The turnback algorithm cannot do so, since
the columns in a dependent set are unknown before the completion of the orthogonal
factorization.

For structural analysis problems with a natural profile structure in the bases, use of
the turnback algorithm is justified. But for general sparse matrices, our results show that
a combinatorial phase is essential to keep running times and storage low.

The conditioning ofthe null bases seems to depend on the conditions ofthe constraint
matrices. When the latter were well-conditioned, the null bases were well-conditioned
also, and there was less than a ten fold increase in estimated condition numbers. For one
of the badly conditioned problems, the condition number increased a hundred fold.
Developing algorithms that can control the conditioning ofthe null bases is an important
open problem.

Additional remarks. Throughout this paper, we have assumed A has full row rank.
The triangular algorithm can be modified to work in the rank deficient situation also.
This can be done by rejecting unmatched rows in a maximum matching, since these are
structurally dependent rows. The algorithm can then proceed until all unmatched columns
have been used to compute null vectors. Then an LU factorization ofM, the completely
matched submatrix, can be used to identify the rest of the dependent columns.

Both the triangular and fundamental algorithms compute null vectors in a dependent
set by computing LU factorizations; the LUSOL routines that do this have to decide
when a column should be declared dependent in the factorization. This is a rather difficult
numerical problem. Thus computing null bases is not immune from the difficulties as-
sociated with numerical rank determination.

The model of a circuit used by our algorithms is a submatrix with a complete
matching which has one nonzero column more than its number of nonzero rows. This
is appropriate when the matrix elements in A are "reasonably" random; hence, most
circuits satisfy the weak Haar property.

When A is the vertex-edge incidence matrix ofa directed graph, a circuit corresponds
to a cycle in the graph, and a basis for the cycle space forms a null basis of A. A cycle
has an equal number of nonzero columns and rows of the vertex-edge incidence matrix,
unlike the circuits in this paper. Our algorithms will work correctly in this situation;
however, sparser cycle bases could probably be obtained by a model that exploits this
additional "structure".

Like vertex-edge incidence matrices ofgraphs, equilibrium matrices from structural
analysis have additional structure. Most circuits have the number ofnonzero rows greater
than or equal to the number of nonzero columns. By considering "equilibrium graphs,"
bipartite graphs of equilibrium matrices, it is possible to exploit the structure in these
problems, and to model circuits more accurately (Pothen (1986)). This approach yields
a new algorithm to compute null bases for equilibrium matrices. This equilibrium graph
algorithm succeeds in finding sparser bases faster than the triangular algorithm. In some
cases even sparsest null bases can be characterized.
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Computing sparse cycle bases is important in solving nonlinear programs with net-
work constraints (Dembo (1983)). Little is known about computing sparsest cycle bases.
Deo, Prabhu and Krishnamoorthy (1982) show that it is NP-complete to find sparsest
fundamental cycle bases, and have designed heuristic algorithms (with implementations
in Pascal) to find sparse fundamental bases.

Acknowledgments. Our thanks to John Gilbert and Mike Heath for sharing their
experiences in designing their null basis code which helped us with our implementation;
to Mike Saunders for sending the LUSOL package and the lp test problems to us and
for being available with advice; and to the referees for their valuable suggestions to
our paper.

Note added in proof. An O(tt 3) algorithm has been designed to find the sparsest
cycle basis of a graph by J. D. Horton (1987).
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EMBEDDINGS OF ULTRAMETRIC SPACES IN
FINITE DIMENSIONAL STRUCTURES*

MICHAEL ASCHBACHERf, PIERRE BALDI, ERIC B. BAUM AND RICHARD M. WILSON

Abstract. Motivated by recent advances in theoretical physics and combinatorial optimization, we study
the problem of embedding ultrametric spaces into finite dimensional structures: finite sets, Euclidean spaces
n, Euclidean sphere Sn, and n-dimensional hypercube with Hamming distance. We give conditions and con-
structions of embeddings and show a general upper bound of n + on the cardinality of the ultrametric set.
We also give an upper bound on the cardinality of quasi-ultrametric sets.

1.1. Introduction.
DEFINITION 1.1. Let (X, d) be a rnetric space; that is, X is a set and d:X

X-- + is a distance function. The distance d is said to be ultrametric or non-Archimedean
if it satisfies:

(1) d(x, z) <= max (d(x, y), d(y, z)).

Equivalently, every triangle is isosceles with the third side shorter or equal to the
other two. Condition (1) implies immediately that for any two balls of radius R:

(2) B(x,R)f"IB(y,R)4:J implies B(x,R)=B(y,R).

An important class of ultrametric spaces is obtained from non-Archimedean val-
uations over fields. For instance the p-adic valuation Ip over the p-adic field Qp satisfies
Ix + ylp <= max ([xlp, [y[p) and the corresponding distance d(x, y) Ix ylp is ultrametric.

Discrete ultrametric spaces are known to have a hierarchical tree-like organization
and have been used for instance in taxonomy [4]. Recent advances in theoretical physics
and combinatorial optimization seem to be based on the discovery of some underlying
non-Archimedean structure. In the replica symmetry breaking model for the Sherrington-
Kirkpatrick spin glass the geometry of the space of equilibrium states has been charac-
terized by a hierarchic ultrametric structure [6]. A model for ultrametric information
storage has been proposed in [8]. In [5] computer evidence is presented ofan ultrametric
organization of the 2-opt tours and the 3-opt tours in the travelling salesman problem.
Similar ultrametric organization has been discussed in relation to graph coloring problems
[3]. In all these cases bounds on the size of ultrametric structures can yield valuable
information. In the case of the spin glass, a polynomial bound will have important con-
sequences for the physical entropy. In the information storage models, capacity is crucial
to practical applications and to biological modelling. In the optimization context, a poly-
nomial bound on the number of X-optima would be very surprising and might lead to
algorithms yielding the shortest tour in polynomial time with probability 1. These ap-
plications are discussed in greater detail in [1 ].
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We have thus been motivated to ask the following two questions: Let (E, de) and
(X, dx) be two metric spaces. Assume (X, dx) is ultrametric. Then:

(1) Can we embed X in E; i.e., can we find a subset Y ofE isometric to (X, dx) for
the distance induced by de on Y, (Y, dely) (X, dx)?

(2) For a given E what is the maximal size ofX for which such an embedding is
possible?

We have studied these problems for the following metric spaces:
(a) Subsets of an n-elements set with the distance

(3) d(X, Y)= max (IXI,

(b) Hypercube of dimension n, i.e., n-dimensional vectors of coordinates (0, 1) or
(1, 1) with the Hamming distance dh

(c) E Nn with the Euclidean distance.
In 2 we prove preliminary results concerning a class of matrices. In 3 and 4 we

prove the following basic theorem.
THEOREM 1.1. For cases (a), (b), and (c), Ix --< n + 1, and this bound is attained.
In 5 we introduce trees. In 6 we examine the general embedding problem. In

7 we extend Theorem 1.1 to the case when almost every triangle satisfies equation (1).
This extension is crucial to practical applications.

1.2. A class of matrices. Given a finite family of real square matrices and
X 6 with X # Aij for all A , define B B(, X) to be the square matrix with
blocks A on the main diagonal of B and each entry of B not in such a block equal
to X. The blocks A will be termed the maximal blocks of B(, X). Evidently if
1[ > < I’[ and B(, ) B(’, X’), then X ’ and ’. That is, the maximal
blocks ofB(, X) are uniquely determined, as is the parameter . Write (B) and X(B)
for these invariants.

Let J be the intersection of all sets zff of square real matrices such that:

(B 1) Each by real matrix is in .
(B2) If

___
zff and X [ with X # Aij for all A and all entries Aij of A, then

B(, X) zff.

The matrices in will be termed hierarchic.
Define the depth of a by matrix to be 0, and, proceeding recursively, if B

with [’(B)[ > 1, define the depth d(B) ofB to be

d(B)= + max {d(A): ’(B)}.
Given B , define the set Blk (B) of blocks of B as follows:

If B is by then Blk (B) {B }. If d(B) > 0 define

BIk(B)={B}LJ(A,,I,.J BIk(A)).
Partially order Blk (B) by A =< C ifA Blk (C).

Define a matrix B to be ultrametric if B is hierarchic and X(A) < X(C) for all
A, C Blk (B) with A < C. Define B to be dual ultrametric if-B is ultrametric.

LEMMA 2.1. Let B be a nonzero ultrametric maxtrix with all Bij >= O. Then
det (B) 4=0.
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Proof Recall that a real symmetric square matrix A is positive semidefinite if all
eigenvalues ofA are nonnegative reals and A is positive definite if all eigenvalues ofA
are positive reals. We use the following well-known elementary fact:

(2.1.1) Let A, C be positive semidefinite and D positive definite. Then A + C is
positive semidefinite and A + D is positive definite.

Let X X(B) and n the size of B. Let J be the n by n matrix all of whose entries are
1. Then B ,J + A, where A is a dual ultrametric matrix with (A) 0 and 0 4:
A >= 0. Observe J is positive semidefinite. Moreover if B is of depth 0, then as B 4: 0,
B XJ X is positive definite. Hence, proceeding by induction on the depth of B, B is
the sum of positive semidefinite matrices with a positive definite diagonal matrix. We
conclude from (2.1.1) that B is positive definite. In particular det (B) 4: 0.

LEMMA 2.2. Let B be a nonzero hierarchic matrix ofsize N. Then
(1) The rank ofB is at least N/2.
(2) IfN >= 4 and ,(B 4: O, then B has rank at least N/2 + 1.
Proof We perform certain row and column operations on B. Let o(B)=

(B(1), B(n)) and let Nk be the size ofB(k). Set m N. Let Bbe the matrix obtained
by subtracting the first row of B from all other rows. Observe B(k) remains hierarchic
and (B(k)) 4:0 for k > 1. Hence by induction on N,

(2.2.1) rank (B(k)) >- Nk/2 + ifN >= 4.

It is easy to see that

(2.2.2) rank (B(k) >= 1, 1, 2 for N 1, 2, 3, respectively. In particular in this
case rank (B(k)) >= N/2.

Similarly (2.2.1) and (2.2.2) hold if k 1. Next subtract the first row of B(k) from
the remaining rows of B(k), for each k > 1. Denote the resulting matrix by 2B. Define
m to be the size of the block B(1) and write 2D for the row vector (2Bil 2Bim of
2B. Let v B(1) be the first row of B(1) and X(m) the row vector of length m all of
whose entries are ,. Observe that :ZD 0 if > m and is not the first row ofsome block,
while 2D k(m) 1) whenever is the first row of a block -B(k) with k > 1. Observe
also that the entry in the upper fight-hand corner of 2B(k) is ,(B(k)) , a 4: 0. Thus
ifNk 1, we can add suitable multiples ofcolumn through aB(k) to the first m columns
of 2B to insure that 3D 0, where 3B is the image of -B under these column operations.

In particular suppose 3Bi, I is a set of row vectors of 3B and ]i1 ai(3Bi) 0 is
a linear dependence. Let I(k) consist ofthose indices in I indexing rows in B(k). Assume
for each k with N > 1, the first row r ofB(k) is not in L Then from the structure of 3B,
i’l(k) ai(3Bi) 0 for each k. Order the rows ofB(k) so that the last N rows contain
a basis of the row space of B(k) if B(k) is singular. Thus:

(2.2.3) rank (B) >= (Z# rank (B(k))) e, where e is the number of k such that
Nk > and B(k) is nonsingular.

Assume N ->- 4. We conclude from (2.2.1)-(2.2.3) that rank (B) >= N/2 and either rank
(B) >= N/2 + or N 2 and rank (3B(k)) for all but at most one ko for which
Nk or 3. Of course we may assume the latter and choose our ordering so that R
(3B I) is linearly independent of orderMwith M >= N/2, N 2 for some < j, and
with not in L To complete the proof, we may assume ,(B) , 4: 0, and it remains to
show 3B is independent of R. Let r be the projection of the row space on its last
N- m coordinates. Then 3B has all entries , and is in the space spanned by Ir. This is
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not the case as the projection of3B(j) on the two columns through B(j) does not contain
(3‘, 3‘) since rank (3B(j)) 1.

3. Ultrametricity. Recall that an ultrametric space is a pair (S, d) where S is a
nonempty set and d is a non-Archimedian distance function on S. Define a function
d:S S --) to be dual ultrametric if and only if for all r, s, S, d(s, s) > d(s, r) >=
min {d(s, t), d(r, t)} >_- 0. Finally define d:S S --). to be trimetric if d- diag (d)
is ultrametric and d(x, x) 4: d(x, y) for all distinct x, y S, where diag (d) d(x, y) if
y x and 0 otherwise.

Let (S, d) be an ultrametric or trimetric space and define

For a e S define
3‘(S) max {d(a,b):a,bSand a4:b}.

A(a)= {sS:d(a,s)<3‘(S) or s= a}.
Call A(a) the neighborhood of a.

LEMMA 3.1. The set { A(a) a S } ofneighborhoods is a partition ofS such that
A(a) A(b)for all b A(a).

Proof Let a S and suppose that b 6 S A(a). Let c A(a). Claim A(a) A(c).
We may suppose that c4: a. Then d(a, b)= 3‘ > d(a, c), so as S is ultrametric,
d(b, c) 3,. Hence S- A(a)

_
S- A(c). By symmetry, S- A(a) S- A(c), so indeed

A(a) A(c).
Next if s S then either s A(a) or s S A(a). In the first case S A(s)

S- A(a) is nonempty by paragraph one. In the second, a S- A(s), which is then
nonempty. So in any event S :/: A(s). Hence by paragraph one, A(s)= A(t) for each

A(s). Thus the lemma is established.
Define the depth dep (S) of (S, d) recursively as follows: If lSI let dep (S) 0.

Otherwise dep (S) + max {dep (A(a)) a S}.
Let (Si =< =< m) be the set of neighborhoods A(a), a S, as in Lemma 3.1. Order

S so that the members of Si precede those of Sj for < j, and proceeding recursively, so
that each S and its subneighborhoods are ordered subject to the same constraint. The
distance matrix of (S, d) is the square matrix B B(S) whose rows and columns are
indexed by S and with nst d(s, t) for each s, 6 S. Observe the following lemma.

LEMMA 3.2. If(S, d) is trimetric or ultrametric then its distance matrix B(S) is a
hierarchic matrix with 3‘(S) 3‘(B(S)). If(S, d) is dual ultrametric then B(S) is a dual
ultrametric matrix.

Proof The proof is immediate from Lemma 3.1 and the ordering of S.
LEMMA 3.3. Let V be the space of n-tuples with O, entries, and d the standard

inner product on V; that is d(u, v) is the number ofcommon nonzero entries in u, v V.
Let n > and S V.

(1) If(S, d) is trimetric then IS[ --< 2(n 1).
(2) If(S, d) is dual ultrametric then IS[ =< n.
Proof Let N [SI and A the N by n matrix whose row vectors are the vectors in

S. Observe that ifA denotes the transpose ofA, then AA B(S).
Embed V in n-dimensional Euclidean space n and regard A as a linear map from

n into u. Then the subspace U of " generated by S has dimension at least
dim (UA7") rank (B(S)). So n >_- rank (B(S)). Hence Lemmas 2.1 and 2.2 complete
the proof.

LEMMA 3.4. Let S be a set ofnonempty subsets ofafinite set X oforder n > 1. For
s, S, let d(s, t) Is f) 1. Then
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(1) If(S, d) is trimetric then sI 2(n 1).
(2) If(S, d) is dual ultrametric then SI <= n.
Proof This is equivalent to the proof of Lemma 3.3 since V is isometric with the

set of all subsets ofX via the map which takes a vector in V to its support.
Notice that the upper bounds in Lemmas 3.3 and 3.4 are attained. In Lemma 3.4(2)

take S to be the set of subsets ofX of order 1. In Lemma 3.4(1) let Xbe the set of vectors
in an m-dimensional vector space Wover the field of order 2 and let S be the set ofcosets
of all hyperplanes of W. Then n 2 and SI 2(2 1). In this latter example S is of
depth 2 with distances 2m- l, 2 2, and 0.

Lemma 3.4(2) follows from a result of Ryser [9] when the depth of S is 1. Indeed
our proof was suggested by that of Ryser.

LEMMA 3.5. Let V be the space of n-tuples with O, entries and d the Hamming
metric on V; that is d(u, v) is the number ofnonzero entries in u and v not common to u
and v. Then SI <= n + for each ultrametric subset (S, d) of V.

Proof This is a special case ofLemma 4.1 in the next section, but the proof in this
special case is a littler easier, and thus perhaps worth giving.

Let N sI and let A be the N by n matrix whose rows are indexed by S and with
Asj. or when s S has or 0 as its jth entry. Observe that AAT 2D nJ, where
J is the N by N matrix with all its entries and D nJ B(S). Moreover D is dual
ultrametric with D >= 0. Now arguing as in Lemma 3.3, the subspace U ofn generated
by S has dimension at least rank (D) 1, as its image in N is spanned by the translates
of the row vectors of 2D by the vector (n, n). Hence Lemma 2.1 completes
the proof.

4. Euclidean space. In this section V is n-dimensional Euclidean space over . For
u, v e V let (u, v) lu v[. We prove the following.

LEMMA 4.1. Let S be an ultrametric subs_pace of V. Then IS[ <- n + 1. Indeed
translating to get 0 S, S {0 } is linearly independent.

Assume S is an ultrametric subset of V of order N. Let X X(S). For s e S, define
S(s) S- A(s). Thus S(s) is the set of points in S on the sphere of distance from s,
and A(s) is the set of points of S in the interior of that sphere.

As translation preserves the collection of ultrametric subsets of V, we may indeed
take 0 e S. We first prove the following.

LEMMA 4.2. S(0) is linearly independent.
Proof Let A be the matrix of row vectors of S(0). Then AA XJ B(S(O))/2.

Notice AAr is dual ultrametric. This is because B(S(O)) is ultrametric and each entry on
the main diagonal ofAA is greater than each entry off the main diagonal. Indeed each
entry on the main diagonal is while entries off the main diagonal are of the form
(s, t) < X as s 4: and ]sl Itl X.

As AAr is dual ultrametric, rank (AAr) N by Lemma 2.1. Thus AT is a surjective
map from the subspace of V spanned by S(0) onto EN so as that space is of dimension
d =< N, it follows that d Nand S(0) is linearly independent. So Lemma 4.2 is established.

LEMMA 4.3. A(0) {0} is linearly independent.
Proof Let a S(0). Then 4(0)

_
S(a), so {s a s A(0)} is linearly independent

by Lemma 4.2. Hence A(a) has a linearly independent subset of order IX(a)l 1, so as
0 e A(0), the lemma follows.

Let A(0) {x0, Xm } with xk (xkl, "", Xn) and x0 0. Appealing to Lemma
4.3 and replacing S by an image under some suitable orthogonal transformation of En,
we may assume that xj 0 for j > k and x ek 4: 0. Let r be the projection of V
onto the subspace V of V consisting of those vectors with 0 in the first k coordinates.
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LEMMA 4.4. (1) There exist ri , <= <= m, such that for all s (s, sn) 6

S(O), s ri.
(2) S(O)rm is a linearly independent subset of Vm.
Proof We prove the analogous statements for k < m by induction on k. For

k 0 this is Lemma 4.1. Assume the result for k- 1. Then for s S(0), , Isl-. S2i IS Xk[ (Si Xki)2. So 0 (x 2XkiSi) D 2eksk, where D e +
Zi<k (x,i- 2xkiri). Thus (1) of Lemma 4.4 holds for k with r D/2e. Moreover
IS’It’k[-- k

_
k r2 )kk, and for s :/: S(0), Is- trl Is tl, so S(0)r is on the

sphere of distance ), from 0 in V and S(0)r is ultrametric in V. Therefore (2) of
Lemma 4.4 holds by Lemma 4.1.

Notice that Lemma 4.4 completes the proof of Lemma 4.1 and that Lemmas 3.4,
3.5, and 4.1 complete the proof of Theorem 1.1 in cases (a), (b) and (c), respectively.
Also as a simple consequence we have the following theorem.

THEOREM 4.5. The maximal ultrametric set that can be embedded in the Euclidean
sphere S has size n + 2.

Proof The sphere S is trivially embedded in the Euclidean space / 1. Therefore
an upper bound of n + 2 holds. On the other hand, the (n + 1)-dimensional hypercube
can be embedded in S with the Euclidean distance via some trivial scaling. Ultrametric
sets on the hypercube with Hamming distance are still ultrametric in :n with Euclidean
distance. Therefore the value n + 2 is attained.

5. Trees. We shall first consider the tree representation for ultrametric spaces. Let
T (F, E) be a rooted tree with vertices V, edges E, and root a, a e V. We will define
the leaves of T to be the monovalent vertices other than the root. Let X {Xl, , xk }
be the set of leaves of T. Let w:E - 1+ be a weight function defining the length of each
edge. Let dr be the corresponding metric on the tree. Assume that:

There exists h > 0 such that dr(a, xj) h for all j, _-< j _-< k.

h is called the height of the tree. More generally for every vertex v define the height h(v)
of v to be the length of a minimal path which connects v to a leaf. Because of (5.1), h(v)
is well defined.

Define a metric space (X, dx) by letting the distance between two leaves be the
height of their first predecessor. Again (5.1) renders dx well defined. It is easy to check
that (X, dx) is an ultrametric space. Moreover it can easily be shown by arguments like
those of 2 that every finite ultrametric space can be represented by such a tree.

The leaves can be partitioned into sets: B Bt of nearest neighbors. We shall
denote by bi the cardinality of Bi and di the common distance of the leaves in Bi to their
first predecessor. From now on any finite ultrametric space (X, dx) will be an ultrametric
tree with the previous conventions and with an ultrametric positive 0-diagonal distance
matrix D.

We need to derive a few general matrix equations. Cases (a) and (b) with the
(1, -1) conventions yield the most simple expressions and this will suffice.

Case (a). Let Y Y be subsets of an n-elements set with distance:

d(Yi, Yj)= max (I Y,I, Y.I)-IYi Yjl.

Let A be the k n incidence matrix and M be the k k matrix defined by: mo
max (I Yi [, Y I). Then

(5.2) AAt M- D.
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In the special case where all the subsets have the same cardinality v, (5.2) yields

(5.3) AAt vJ- D.

Case (b). Let X1, Xk be k n-dimensional vectors of coordinates (1, -1) with
the Hamming distance dh. Let B be the matrix having Xi as its th row. Then

(5.4) BBt=nJ-2D.

In these cases our two initial questions become the following: IfD is a positive 0-diagonal
ultrametric matrix under which conditions can we solve equations (5.2) and (5.4)? What
is the maximal value for k if n is fixed? Notice that the tree for which the upper bound
n + of 3 is attained has a very poor structure. One might wonder if much tighter
upper bounds could be obtained for classes of trees with a richer branching structure.
We shall prove now that this is not the case and examine the general embedding problem:
Given a fixed ultrametric tree T can we embed it in one of the metric spaces of type (a),
(b) or (c)?

6. General embeddings. We first discuss Case (a).
THEOREM 6.1. Let Tbe an ultrametric tree with k leaves andD be the corresponding

k by k matrix ofdistances. Assume D has integer entries. Then we can always embed T
in an n-set for n large enough. More precisely: We can find an n-set and k ofits subsets
with fixed cardinality v such that the equation vJ- D AA is satisfied. Moreover, ifh
denotes the height ofthe tree, then v h and

l-I

n h+ ., (hi- 1)di+ . dii+
i=1 i=1

where dii + d(xi, xj) for xi Bi and x.i Bi + 1.

Proof Trivially it is necessary for the distance matrix D of T to have integer coef-
ficients and since the weights are differences of distances they too are integers. Suppose
now we are given a tree of height h such that all the weights w(e) are integers. We shall
construct recursively the n-set and its k h-element subsets by assigning to each vertex v
of T a certain subset f(v).

Let (an) be a list of variables. Let P1 Pk be any ordering ofthe k unique directed
paths joining the root a to the leaves xi, <= <= k. Order the vertices of Tlexicographically
considering first the ordering of the paths and then the order within each path.

Step 1. f(vl)= f(a) .
Step m. Assume that f(vi) has been defined for =< rn so that f(vi)

_
f(vj) if =< j

and vi and vj are on a common path. Let U’ f(vi) {a0, al, ag(m)}. There exists
a unique p < m with vp joined to Vm. Let w denote the weight of the corresponding edge.
Then we set:

f(1)m) f(l)p)l.-J ag(m)+ 1, ag(m)+

For any leaf X we have If(xi)[ h since we start with f(a) and we add w(e) new
elements for any edge e belonging to the directed path between a and xi. Let Yi
f(xi)i 1, k. Then by construction:

max (I Y/l, YI)-IYi YI-- d(xi,xj)
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which is the height of the common predecessor of X and xj. Therefore YI, Yk are
k h-elements subsets ofan n-set: t3/= lf(xi) I..Jve vf(1)) representing the given ultrametric
tree T. Moreover by construction: [t3xBif(x)[ h + (bi- 1)di. Therefore deleting all
but one leaf from each block and proceeding by induction on k, we get:

l-I

n h+ , (bi- 1)di-t- dii+ I.
i=1 i=1

We next consider Case (b).
We are given an ultrametric tree T and we are looking for an embedding into some

n-dimensional hypercube. As in Case (a) it is easy to see that all the weights need to be
integers. The same holds for h. But additional conditions are necessary as shown by the
following simple lemma 11 ].

LEMMA 6.2. Every triangle on the hypercube with Hamming distance dh has an
even perimeter.

As a consequence, for every ultrametric isosceles triangle on the hypercube the third
side cannot have odd length. It is easy to show by induction that a necessary condition
for the existence ofan embedding is that the tree Thas one ofthe following two exclusive
properties:

(i) All the weights are even integers.
(ii) The root a has only two adjacent vertices vl and v2, w(c, vl) and w(c, v2) are

odd, and all the other edges have even weights.
Such a tree will be called hylercubic. We can now state the following theorem.
THEOREM 6.3. Let T be an ultrametric hypercubic tree with k leaves and distance

matrix D. Then we can always embed T in an n-dimensional hypercubefor n sufficiently
large. More precisely: We can find k n-dimensional vectors Xl, Xk of coordinates
(1, -1) such that the equation BBT nJ- 2D is satisfied. Moreover, if all edges have
even length we can choose the k vectors in one ofthe hyperplanes

X -- +_(n- h)
i=1

ifthefirst two edges el and e2 have odd lengths 2a + and 2b + then we can choose
the vectors corresponding to el to be in one ofthe hyperplanes"

xi +(n- 2cl)
i=1

and those corresponding to e2 in one ofthe hyperplanes"

, xi +(n- 2c2)
i=1

with the same sign in both equations, where cl, c2 are two integers satisfying:

and

Cl +c2=h

(h-2a- 1)
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and

Proof. For convenience we shall use (0, 1) coordinates rather than (1, -1). The
weight of a vector will be the cardinality of its nonzero coordinates. If all row vectors in
a matrix M have same weight w, we shall write w(M) w: the weight of the matrix M.
Proceeding recursively by height we shall now construct our embedding by attaching
progressively to each vertex v of the tree a matrix M(v) of weight h(v)/2 (except for the
leaves xi, where w(M(xi)) 1). Notice that we assume that all edges except perhaps the
last two have even length. The matrix M(a) will provide the final embedding. The number
of rows of M(v) will be equal to the number of leaves attached to v.

We start by defining M(xi)---1 for every leaf Xi. Obviously, w(M(xi))= 1.
Suppose we are looking now at a vertex v to which no matrix has been assigned. If
{ Ul, ut } { u V: h(u) <- h(v) and (u, v) E } and if M(ui) has been defined for

=< =< then we shall define a matrix M(v) for the vertex v through a process called
amalgamation. We shall denote: M(v) [M(u), M(u)]. We then iterate amalgam-
ation as many times as necessary until M(a) is obtained. The rows ofM(cO will represent
the final vectors on the hypercube.

Definition of amalgamation. Assume we have the following situation:

M1 M(u)
Ul
Mt M(u)

Assume that Mi is rti X mi and w(Mi) h//2, 1, and that ni is the number of
leaves attached to ui. Since hi <= h(v) we can define an integer X; by

hi h(v)
for i= l.-’’+ Xi--’-’--

Then define M [M, Mr] by:

J1 0 0 M 0 0 I0 J2 0 0 Me 0
0 0
0 0 Jt 0 0 Mt

where J; is the n; k matrix all of whose entries are 1. M has the following properties:
(1) w(M) w(Mi) + hi hi/2 + h(v)/2 hi/2 h(v)/2.
(2) M is n m where n { ni and m (mi + ,i) and n is the number of

leaves attached to v.
(3) The Hamming distance between any two rows and j of 214 belonging to two

different blocks is given by:

do.= w(Mi) + ki + w(Mj) + kj-" h(v)

which is exactly the ultrametric distance between the corresponding two leaves.
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If the last two edges have odd length we define the amalgamation for the corre-
sponding two matrices in a similar way:

M
hi

1 -- k2 a + b + and hi + 2a + h2 + 2b + 1. If all edges are even we have from
property w(M(a)) h/2. Therefore ifwe are using a 1, 1) representation the vectors
lie in the hyperplane:

__lX= n-- =h-n

or its mirror image. If the last two edges el, e2 have odd lengths then the vectors are
separated into two groups of constant weight

h h2w -+ and W2 - -[- k2.

Since X + k2 a + b + we have wl + w2 h and

h-2a- h-2b-
W W2 >2 2

Finally using properties (1), (2) and (3), it is easy to show that the matrix M(a) yields
the required embeddings.

Let us now consider regular trees and compute the corresponding dimension n of
the hypercube.

THEOREM 6.4. Let T be a tree such that every vertex with the exception ofthe leaves
has afixed number ofsuccessors u. Assume that all edges have a constant even length 2l.
Let h 2ml. Then T can be embedded in an n-dimensional hypercube with:

n= ul u-i

Proof Consider the amalgamation step:

niX mj

-’

ni- X mi- ni- X mi-

We have ni uni- + ul and/71 ul. Therefore solving this recurrence relation, we get:

m

(m)n= , lui=ul
U

i= u-1
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COgOLAgY 6.5. Let n befixed. Then we can embed in the hypercube Hn an ultra-
metric tree with constant even valence u (with the exception ofthe leaves) and edges of
constant even length 2l corresponding to an ultrametric set ofsize at least k"

(n+l)(u- 1)
k>= +-.

U21 U

Proof If n bll(bl m 1)/(k 1) then the size is k u’. Therefore the worst case
corresponds to n ul((km + 1)/(k 1)) for which the size is still k um. Solving
for k we get the bound of the theorem. Asymptotically this indicates that hypercubic
trees with a rich branching structure can be embedded into the hypercube, the bound
on the size being still of the form O(n).

Finally we consider Case (c).
We are now given a tree T and want to embed it in Nn. Surprisingly enough it is

not true that every finite metric space can be embedded in n for n large enough and
with the Euclidean distance.

One obvious reason is that for any three points which are not collinear, the triangle
inequality must be strict. This does not yield a sufficient condition of embeddability
since counterexamples can be found by slightly perturbing cases where the triangle in-
equality is not strict.

Ifthe finite metric space is ultrametric then the triangle inequality is obviously strict
for any three distinct points.

We can now prove the following theorem.
THEOREM 6.6. Everyfinite ultrametric space with rational matrix distance D can

be embedded into the Euclidean space n, for n large enough. Moreover, the points can
be chosen in one ofthe hyperplanes ofequation

E Xi-- +(n- h).
i-1

Proof The idea is to use scaling on the given distances, obtain a new set that can
be embedded into a hypercube and then go back to n. Since D is assumed to have
rational entries we can find a constant c such that the matrix cD has integer entries which
are also multiples of 4. Construct a new matrix D’ with entries d,j defined by:

Notice that by construction d}, is even. Moreover, it is easy to check that the matrix D’
defines an ultrametric space. Therefore using Theorem 6.3 the corresponding set can be
embedded into an n-dimensional hypercube with Hamming distance for n large enough.
For points on the hypercube with 1, -1 coordinates the Hamming distance and the
Euclidean distance are related by: de 2fd-. Therefore the previous construction yields,
in fact, an embedding in Nn with distance matrix cD. To obtain the final embedding we
now need only to rescale by a factor of 1/c. Because of Theorem 6.3 the points can be

The referee has pointed out that there is a necessary and sufficient condition for a finite metric space to
be embeddable into Euclidean space n, namely that the square of the distance be of negative type. That is, if
xl, Xn are the points, and k, kn are arbitrary reals with k + + k 0, then Z ,i,jd(xi, xj) --<
0 holds. This characterization goes back to Cayley, but was first stated in this form by Schonberg in the 1930s.
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chosen in one of the hyperplanes:

xi ___(n- h).
i=1

We can now extend this to show that every ultrametric space with n + or fewer
points can be embedded in En.

THEOREM 6.7. LetX be afinite ultrametric space ofcardinality m with real distance
matrix D. Then X can be embedded into 7m-1.

Proof Let us denote by D(x,..., x) the bordered symmetric determinant of
order k + 1:

0
0 (d12)2 (dl,)z

(d12)2 0 (d2k)2

(d) (d_) 0

The following theorem by Menger can be found in [2]:
A necessary and sufficient condition that a semimetric space X may be congruently

embedded in the Euclidean n-dimensional space En is:
(1) For each positive integer k, 2 =< k =< n + 1, and each set of k points xl, , xk

ofX, sgn D(xl, xk) (-1) or 0.
(2) Each set of n + 2 points ofX has a vanishing bordered symmetric determinant.
Recall that if d is ultrametric so is d2. Also note that if n m 1, condition (2) is

trivially satisfied.
Assume now for contradiction that we can find k points x, , Xk ofX violating

condition (1). The corresponding bordered determinant therefore has sign (-1)k/ I.
Yet we can slightly perturb the ultrametric matrix of distances between the points
xl, Xk SO that the newly obtained matrix is still ultrametric and has rational entries.
Therefore, by Theorem 6.6 and Menger’s result the corresponding bordered determinant
can not have sign (-1)g+ . Since the rational approximation of the do. and hence of the
d, can be made with arbitrary precision, a contradiction arises by continuity.

7. Quasi-ultrametric structures. For practical applications one must study structures
that are quasiultrametric in some sense. There are two natural cases: First where every
triangle violates the ultrametric constraint by only a small amount; and second where
almost every triangle satisfies the constraint exactly, but a small subset is allowed to
violate ultrametricity. We introduce two definitions and state corresponding results.

DEFINITION 7.1. Let (E, d) be a metric space and X a subset with the induced
metric. (X, d) is e-ultrametric if and only if there exists an ultrametric subspace (Y, d)
of (E, d) such that for all xl, xz, x3 e X there exists Yl, Yz, Y3 Y with yi B(xi, e).

In reference [8], V-ultrametric structures on the hypercube are considered.
Using Stirling’s formula it is easy to see that B(x, fn)l is exponential and therefore
fn-ultrametric structures may be exponential in size. The same should hold for anyf(n)-
ultrametric structure on the hypercube wheref(n) is an increasing unbounded function
ofn.

In many of the applications, one considers a sequence ((Xn, d), Y,), where the
(Xn, d) are metric spaces and the Yn are finite subspaces which have the property that in
the limit as n -- , almost every triangle in Y, satisfies the ultrametric condition (1)
under the induced metric. For example, in the case of infinite range spin glasses, (X,, d)



576 ASCHBACHER, BALDI, BAUM AND WILSON

is n under the Euclidean metric and Yn is a set of n-vectors, the "thermodynamic equi-
librium states." Describing the set Yn is fundamental to understanding the physics ofthe
model. It has been shown, in the "R.S.B." model (a model believed to accurately reflect
the physics), that in the limit of large n, the probability that any triangle among the Y,
will satisfy the ultrametric constraint is one [6]. An important question is whether one
can bound k Ynlby some polynomial in n. Such a bound will follow from Theorem
1.1 (for the Cases (a), (b) and (c)) if we can find a constant m and subspaces
U, Y such that (Un, d) are ultrametric and IUn [m kn, for then (n + 1) > [Un [m kn.
This motivates the following discussion.

Let (A, d) be a finite metric space of cardinality k. Let T(A) be the set of triangles
in A and T’(A) be the subset of those triangles violating condition (1). T(A)I (3k).
Similarly consider (A, d), a sequence of finite metric spaces of cardinality k, for arbitrarily
large integers k.

DEFINITION 7.2. (Ak, d) is almost ultrametric iff

lim T’(Ak)---I 0.
k [T(Ak)I

(A, d) is q-almost ultrametric if

’T’(A)’<=(k) k-q3
fr q>= 0"

We will assume in the following theorem that (A, d) is taken from one of Cases (a),
(b), or (c), with A n-dimensional.

THEOREM 7.3. If(A, d) is q-almost ultrametric, then IAI -< ((3V/2)n)2/q.

Proof This is a corollary of a theorem of J. Spencer 10] which states that the
smallest set of triangles on k vertices such that there is no independent set of size
contains at least

triangles. (An depemlem set is defined as a set of vertices containing no triangles.) Thus
A contains an independent set S of size r, so long as

(k)k-q, 4k33 27 (r- 1)2

which will be true for r < (2/3f)kq/- + 1. Thus there is an independent set of size
(2/3f)kq/- + 1, and Theorem 1.1 establishes the bound on k.

Acknowledgment. We would like to thank L. E. Baum for a critical reading of the
manuscript.
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THE EXPONENT SET OF PRIMITIVE,
NEARLY REDUCIBLE MATRICES*
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Abstract. In [l] and [2], R. A. Brualdi and J. A. Ross studied the exponent set of a particular class of
primitive matrices--primitive, nearly reducible matrices. They obtained an upper bound on the exponent and
constructed some matrices with small exponents. Ross [2] suggested considering the problem of determining
the quantity e(n)mthe least integer e(n) >- 6 such that no n n primitive, nearly reducible matrix has exponent
e(n). In this paper we give a nontrivial lower bound e(n) >= (//2 2n + 10)/9 + by showing that every integer
k with 6 -< k -< (//2 2n + 10)/9 is an exponent of some n n primitive, nearly reducible matrix. This also
extends the result ([2, 3]) that every integer k with 6 -< k -< n + is the exponent of some n //primitive,
nearly reducible matrix.

Key words, exponent, primitive nearly reducible matrix, minimally strong directed graph
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1. Introduction. In this paper we investigate the properties of the exponent set of
a particular class of primitive matricesnprimitive, nearly reducible matrices. The ter-
minologies and notation used in this paper will basically follow those in and [2]. The
definitions ofirreducible matrices, nearly reducible matrices, primitive matrices and their
exponents 3,(A) as well as the definitions of strong digraphs, ministrong (minimally
strong) digraphs, primitive digraphs and their exponents 3,(D) are as usual and can be
found, for example, in [1] or [2]. For any n n nonnegative matrix A, we define its as-
sociated digraph D(A)= (F, E) to be the digraph with V= { 1, 2,---, n} and E
{(i, j)laij > 0}. Clearly D(A) depends only on the zero-nonzero pattern of A. It is well
known that under this correspondence of matrices and digraphs, we have the following:
A irreducible D(A) strong, A nearly reducible D(A) ministrong, A primitive
D(A) primitive and in this case A and D(A) have the same exponent 3,(A) 3,(D(A)). So
the exponent set of n n primitive, nearly reducible matrices (denoted by NEn) is just
the exponent set of primitive, ministrong digraphs with n vertices and we may use the
(more intuitive) graph theoretical language to formulate and prove our results.

First we recall that a digraph D is primitive if there exists an integer k > 0 such that
for all ordered pairs of vertices i, j V(D) (not necessarily distinct), there exists a walk
from to j with length k in D, and the least such k is called the exponent of D, denoted
by 3,(D). The following theorem is a characterization of primitive digraphs.

THEOREM A ([5, pp. 49-50]). A digraph D is primitive if and only ifD is strong
and g.c.d(r, rx) where L(D) {rl, rx} is the set ofdistinct lengths ofthe
elementary cycles olD and g.c.d means "the greatest common divisor."

Next we give some more definitions.
DEFINITION 1.1. Let D be a primitive digraph, i, j V(D). Then the (local) exponent

from to j, denoted by 3,(i, j), is the least integer 3’ such that there exists a walk of length
m from to j for all integers rn >_- 3".

From Definition 1.1 it is easy to see that 3"(D) maxi,j vw) 3"(i, j).
DEFINITION 1.2. Let D be a primitive digraph with the cycle length set L(D)

{r, rx}. For i, j V(D), the relative distance diw)(i, j) from to j is defined to be
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partially supported by the Science Foundation of Academia Sinica.
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the length of the shortest walk from to j that meets at least one cycle of each length ri
for/= 1,2,...,X.

Let al, ak be a set of distinct positive integers with g.c.d(al, -.-, ak) 1. The
Frobenius number cb(a,..., ak) is defined to be the least integer such that every
integer m >- b can be expressed in the form m Zlal + + zkag where Zl, "-’, Zk
are nonnegative integers. A result due to Schur shows that (al, -’-, a) is finite if
g.c.d(al, a) 1. In the case k 2, we have b(al, a2) (al 1)(a2 1).

The following basic upper bound for "r(i, j) will be used in the proof of our main
results.

THEOREM B ([4]). Let D be a digraph, and let L(D) {r, rx} denote the cycle
length set ofD. Then 3,(i, j) <= d.(D)(i, j) + 4(r, rx)for all i, j V(D).

2. Some basic prolerties. Let NEn {m e /lm "r(D) for some primitive, mini-
strong digraphs with n vertices}. In this section, we investigate some basic properties of
ministrong digraphs and the exponent set NEn.

Let D be a strong digraph. A vertex x is called an antinode ofD if both the indegree
d-(x) and the outdegree d/(x) are equal to 1. A path r (x0, x, x) with k >= 2 is
called a branch of D if xl, xk_ are antinodes of D but x0 and x are not and
D\{Xl, Xk-1} is strong.

LEMMA 2.1. SupposeD V, E) is a ministrong digraph which is not an elementary
cycle. H is a maximal proper strong induced subdigraph ofD (maximal with respect to
the inclusion ofvertex sets). Then the arc set E(D)\E(H)forms a branch ofD.

Proof. It will suffice to prove that E(D)\E(H) is a path P of length >= 2 with two
end vertices in V(H) and all the interial vertices in V(D)\ V(H). Since H is a proper
induced subdigraph, V(H) V(D). Take v V(D)\V(H) such that there exists u V(H)
with (u, v) E(D), and take a path Q from v to a vertex w V(H) which is the nearest
vertex in V(H) from v. Then P uv + Q is a path of length >= 2 with two end vertices
u, w in V(H) and all the interial vertices in V(D)\ V(H). Now H’ H + P is a strong
subdigraph ofD, and since every strong subdigraph ofa ministrong digraph is an induced
subdigraph, H’ is a strong induced subdigraph ofD. By the maximality ofH and the fact
that v(n’)l > V(H)I, it follows that V(H’) V(D) and H’ is the subdigraph induced
by V(D); thus H’ D and E(D)\E(H) E(P) forms a branch of D.

As a corollary of Lemma 2.1, we get the following well-known result.
COROLLARY. Every ministrong digraph D contains an antinode.
Proof. If D is not an elementary cycle, we use Lemma 2.1. If D is an elementary

cycle, every vertex ofD is an antinode.
Using the antinode of a ministrong digraph D, we can construct a new ministrong

digraph/ with one more vertex which is in some sense similar to D.
LEMMA 2.2. Let D (V, E) be a ministrong digraph, v an antinode ofD with

(u, v) E and (v, U2) - E. Define (17", ) to be a new digraph with I7" V(3 {}
and . E (_J {(u, ), (, u2)}. Then D is also ministrong.

Proof It is clear that/ is strong. To show/ is ministrong, take e (x, y) /. If e
is incident with v or , then/\{e} is not strong since both v and are antinodes of/.
If e is not incident with v and , then e E and there is no path from x to y in D\ e}
since D is ministrong. It follows that there will be no path from x to y in/\ e) because
any path from x to y in/\(e} using vertex (hence using arcs (u, ) and (, u2)) can
be replaced by a path using (u, v) and (v, u2) which avoids . So in any case/\{e} is
not strong and D is a ministrong digraph.

Now we can prove the following lemma which shows that the exponent set NEn is
"ascending."

LEMMA 2.3. NE
_
NE2

_
NE NE+

_
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Proof. We will prove this lemma in matrix version as we did in [4]. Suppose
.4 >_- 0 is an n n nonnegative, nearly reducible matrix and without loss of generality,
we may assume that the last row (and the last column) of.4 corresponds to an antinode
of the associated digraph D(.4). Let be the unique (n 4- 1) (n 4- l) matrix satisfying
the following two conditions:

(1) The upper left n n principal submatrix of is .4;
(2) The last two rows of are equal and the last two columns of are equal.

Then the associated digraph of is D() D(.4) where D(.4) is the digraph as defined

in Lemma 2.2. Now D(.4) is ministrong since D(.4) is, so is nearly reducible. By using

the same proof as in [3], we see that k and .4k have the same zero-nonzero pattern;
hence the primitivity of .4 implies the primitivity of and in this case they have the
same exponent. This proves that NEn

_
NEn +1 and completes the proof of Lemma 2.3.

From Lemma 2.3 we see that in order to show that m ,y(D) for some primitive,
ministrong digraph D with n vertices, it will suffice to show that m "y(D’) for some
primitive, ministrong digraph D’ with no more than n vertices. In most cases this will
enable us to simplify the construction of digraphs.

3. Some exponent sets in NE,. In this section we will construct several families of
primitive, ministrong digraphs. By computing their exponents we can get several subsets
of the exponent set NE. Then in 4 we will combine these subsets by suitably choosing
the parameters in each subset and show that their union covers the desired portion of
the exponent set NE. The digraphs constructed here are required to possess the following
features:

(l) They will have some special structures so that the exact values oftheir exponents
can be computed.

(2) The values of their exponents should "match" (in some sense) each other.
(3) They should be ministrong.
(4) The number of vertices of the digraphs should be less than or equal to n.
The first family of digraphs are constructed in the following lemma.
LEMMA 3.1. Let r > rE > > rx >= 2 be integers with g.c.d(rl, rx) and

let 4 ck(r, rx) be the Frobenius number of rl, rx. Let t, n be integers such
that <= <- rx and r + + rx <= n + t( 1). Then ck + 2r NEn.

Proof Let D be the digraph in Fig. 3.1 consisting of a path P vv2 vt of
length t- and other , paths P, ..., Px from vt to v such that P, P1, "’", Px are
pairwise internally vertex disjoint and the length of Pi is ri- t + for 1, 2, X.
Clearly D is strong with the cycle length set L(D)= {r, rx}, so the hypothesis
g.c.d(r, rx) implies the primitivity of D. Also the hypothesis -< t -< rx
implies that D is ministrong and the condition r + + rx =< n + ( 1)t means that
the number of vertices ofD is m r + + rx ( 1)t -< n. Now we want to show
that 3’(D) + 2rl 1. Let u, v be vertices on P such that (vt, u) and (v, v) are
arcs of P, and look at 3’(u, v). From the structure of D we see that there is only one
elementary path from u to v (with length r 1) and the length of any walk from u
to v has the form r + ar + + axrx, where a, a_, , ax are nonnegative
integers and al 0 a2 ax 0. It follows that 3’(u, v) + 2r 1. On
the other hand, for any x, y V(D), let z be the vertex on P which is nearest from x,
then d(x, z) <= rl t. But z (as a vertex of P) belongs to every cycle, so d(z, y) <= r
and thus dz,w)(x, y) <= d(x, z) + d(z, y) =< r t + r 2r 1, so 3’(x, y) =<
dt(o)(x, y) + 4 =< 4 + 2r t- 1. Now

3’(D) maxx,, vw) 3’(x, y) 3’(u, v) 4 + 2r t- 1,

and we obtain that 4 + 2rl e NEm NE,. This proves Lemma 3.1.
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P1

I)1

1)t

FIG. 3.1

COROLLARY 3.1. Let r, rE be integers with r > r2 >= 2, g.c.d(r, r2) 1, and let
b b(r, r2). Suppose that r + rE <= n + l, then k NEn for all ch + 2r r2 <- k <-

4 + 2r 2.
Proof Take ) 2 and l, 2, rE as in Lemma 3.1.
COROLLARY 3.2. Let a, b be integers with a > b >= 2, g.c.d(a, b) and ch

b(a, b). If2a + 2 <- n, then 4 + 2a + b NEn.
Proof Take) 3, r a+ b, r2 a, r3 bandt b- as in Lemma 3.1.

Notice that a + b is already a nonnegative integral linear combination of a and b, so
th(a / b, a, b) 4(a, b). Also

n-2
a <-_ r + rE + ra 2a + 2b <= n + 2(b -1) n + t() ).

2

The hypothesis of Lemma 3.1 is satisfied and the result follows.
LEMMA 3.2. Let a, b be integers with a >_- b >_- 1, g.c.d(a, b) and cb

4(a, b). Let t, n be integers such that <= <- a and 2a + b <- n + + 1, then

ok+ 3a-t- eNE,.

Proof Let D be the digraph constructed in Fig. 3.2 in which there are two cycles
C, C2 oflength a with a common path P 1) vt and another cycle C3 UlU2 UbU
of length b such that V(C) f) V(C3) and V(C2) 71 V(C3) { Ul }. D contains rn
2a + b _-< n vertices. Clearly D is strong and since t _-< a and b >_- 2, D is
ministrong. D is also primitive by the hypothesis g.c.d(a, b) 1. Now we compute the
exponent 3’(D). Let u, v V(C) such that both (1)t, u) and (v, v) are arcs ofC and look
at 7(u, 1)). From the structure ofD we see that there is only one elementary path from
u to 1) (with length a 1) and the length of any walk from u to 1) has the form l
a + ha or l a + 2a + pa + qb where h, p, q are nonnegative integers.
From this fact it follows that 7(u, 1)) + 3a t 1. On the other hand, for any
x, y V(D), we have dztz)(x, y) <= d(x, Ul) + d(Ul, y) since u is both on a cycle of length
a and on a cycle of length b. Now

d(u, Ul) d(u, 1)t) 4;- d(1)t, ul) a + d(1)t, ul) >-_ a >= b- 1,

so d(x, Ul) -< d(u, u) for x e V(CI), d(x, Ul) =< a =< d(u, Ul) for x V(C2) and
d(x, u) <= b <= d(u, u) for x 6- V(C3). Thus d(x, Ul) =< d(u, ut) for all x 6_ V(D).
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FIG. 3.2

Similarly,
d(Ul ) d(u v) + d(v ) d(u v) + a >= a >= b-

and it can also be checked that d(u, y) <-_ d(u, v) for y V(C), V(C), V(C3), respectively.
So

dz(z)(x, y) <= d(x, Ul) + d(Ul y) <= d(u, Ul) + d(u v)

a + d(vt, Ul) + a + d(Ul, v) 2a- 2 + d(vt, Vl) 3a- t-

and "r(x, y) <= dzw)(x, y) + 4(a, b) -< 4 + 3a t- for all x, y V(D). It follows that

3’(D) max "r(i,j) "(u, v) ck + 3a t- NEm
_
NE.

i,j V(D)

This completes the proof of Lemma 3.2.
COROLLARY 3.3. Let a, b be integers with a >= b 1, a, b >_- 2, g.c.d(a, b) and

p 4(a, b). If2a + b <= n + 2, then k NEfor all 4 + 2a <- k <= dp + 3a 2.
Proof Take 1, 2, a as in Lemma 3.2.
Next we construct a new primitive, ministrong digraph and compute its exponent.
LEMMA 3.3. Let r, r be integers with r 2 >= r >= 2, g.c.d(r, r) 1, and

p dp(r, r). Ifr + r + 3 <- n, then p + 2r NEn.
Proof We construct a digraph D with m r + r + 3 _-< n vertices consisting of a

cycle C vv Vr+rV of length r + r_ and three paths vXVr+3, VryV, Vr-ZV of
length 2, where the vertices x, y, z are distinct and none are on the cycle C (see Fig. 3.3).
Clearly D is strong. To show that D is ministrong we notice that every arc except e
(v, v) either goes into a vertex of indegree or comes out of a vertex of outdegree 1,
so D\{e} is not strong if e :/: (v, v). For e (v, v), it can be directly checked that
D\{e} is also not strong, so D is ministrong. The cycle length set of D is L(D)
{r + r, r, r} and so D is primitive. The Frobenius number b(r + r_, r, r)
b(r, r) b since r + r. is already a nonnegative integral linear combination of r and
r. Now we compute the exponent 3’(D). From the structure of D we see that there is
a unique elementary path (of length r 1) from Vr+ to Vr / r and the length of any
walk from Vr+ to Vr + r is equal to r + ar + br_, where a, b are nonnegative
integers and a 0 b 0, so the local exponent "(Vr+, Vr + r) + 2r 1. On
the other hand, for any u, v L(D), dzw)(u, v) <= d(u, v) + d(v, v) since the vertex v
is both on a cycle of length r and on a cycle of length r. Now d(u, v) <-_ r for all
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)r2 + 3

t)r2+ 2

FIG. 3.3

u V(D) (noting that d(vr, v) <- d(vr, Vr-) + 2 <= r2 + <= r) and d(v, v) <= r
for all v V(D) (noting that d(v, Vr: / 2) r2 + =< r 1), so dLt,)(u, V) <-- 2r and

3’(u, v) <= dtw)(u, v) + 4 <- 4 + 2r
for all u, v V(D). It now follows that

,(D) max "y(i, j) "(Vr,_ / Vr / r) Ch + 2r NEm
_
NE

i,j V(D)

and this completes the proof of Lemma 3.3.
By suitable choice of the parameters in the above lemmas and corollaries and com-

bining the exponents, we get the following.
THEOREM 3.1. Let r, r2 be integers with r > r2 >= 2, g.c.d(r, r2) and 4

(r, r2). If2r + r2 <= n, then k NE,for all cb + 2r r2 <-- k <-_ 4 + 3r 2.
Proof We divide the proof into the following two cases:
Case 1. r-< r- 2. ThenkeNEnforallb +2r- r2=< k=< /2r- by

Corollary 3.1 and Lemma 3.3, and k NE, for all + 2r =< k _-< + 3r 2 by taking
a rl, b r2 as in Corollary 3.3.

Case 2. r2 r 1. As in Case 1, k NE, for all + 2r r2 =< k -_< + 2r 2
and for all + 2r -_< k -<_ + 3r 2. To show that b + 2r e NE,, we take a

r2 r 1, b r as in Corollary 3.3 to get k NEn for all

+2r-2=<k=<+3r-5.
This tells us that+2r- eNE, ifr>=4. Ifr 3, r2=2, then+2r- 7.
However, n >= 2r + r2 8, so 7 e NE8

_
NEn as well.

Combining Cases and 2, we obtain Theorem 3.1.

4. The lower bound e(n) >= (n2 2n + 10)/9 + 1. In this section we prove our
main result. That is, for n >= 8, every integer between 6 and (n2 2n + 10)/9 is the
exponent of some primitive, ministrong digraph with n vertices.

LEMMA 4.1. If n, x are integers with 3 =< x -< (n + 1)/3, then k NE, for all
(x- 1) + 2 <= k <- x2 4f- 1.

Proof Take r x, r2 x as in Theorem 3.1 to get k NE, for all

ch(x,x- 1)+x+ <-k<=4(x,x 1)+ 3x-2

whereb(x,x- 1)+x+ =(x- 1)2+2andb(x,x- 1)+3x-2=x2.Takea=x,
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b x as in Corollary 3.2 to get O(x, x 1) + 3x x2 -- e NEn. This proves
Lemma 4.1.

THEOREM 4.1. Ifn >= 8 and k is any integer with 6 <= k <= ([(n + 1)/3])2 + 1, then
k NEn.

Proof. For x 3, 4, ..., [(n + 1)/3], let Ix {k 7+l(x 1)2 + 2 =< k =< x- + }.
Then Ix

_
NEn by Lemma 4.1, so I3 t_J I4 U U Ip

_
NE, where p [(n + 1)/3]. We

note that Ix-1 t_J Ix is a set of consecutive integers since (x 1)2 + (the upper bound
of Ix-l) and (x 1)2 + 2 (the lower bound of Ix) are consecutive integers, so I3 tA
I4 t_J t.J Ip is also a set of consecutive integers which contains all the integers between
6 and p2 + ([(n + 1)/3])2 + 1. This proves Theorem 4.1.

For the sake of simplicity, we note that

[n+ 1] >n-13=--- and (In+ 1])23- + >_- (n-l)23+ n2-2n+109
so that we get the lower bound e(n) >- (//2 2n + 10)/9 + 1, where e(n) is the least
integer >_- 6 such that no n n primitive, nearly reducible matrix has exponent e(n).
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Abstract. We consider the problem ofwhen two variables in a linear programming model can be considered
to be substitutes (self-interfering) or complements (self-reinforcing). Several definitions proposed in the economic
and mathematical literature are investigated in the context of linear programming models. The concept of
determinacy is used to formalize and classify these definitions. Determinacy is studied for a class of network
flow models, where graph-theoretic characterizations of substitutes and complements are given.
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1. Introduction. The study of substitutes and complements is part of the larger
study ofqualitative statics and complementarity in economics, and has had a long history
[Go], [H], [HA], [L1], [L2], [L3], [S1], [$2]. Recently, the topic has been of interest in
the mathematical literature, particularly with regard to the problem of signsolvability of
a system of linear equations [J], [JLR], [KL], [KLM], [La], [M], [MQ], [My], JR]. The
problem addressed in this paper is: When can a pair of variables be substitutes or com-
plements in the sense of having consistently "like"/"competitive"/"self-interfering" or
"opposite"/"symbiotic"/"self-reinforcing" behavior in a linear programming model? This
topic has been discussed for general economic models as indicated above, and also for
network models [Shl], [Sh2], [GP], [GV] in significantly different ways. The intent of
this paper is to study the concepts of substitutes and complements in the context of
structural properties of a constrained linear model, and to relate these concepts to eco-
nomic properties of the model. The model we consider is linear programming model

max u(x)= crx
P(c, b): Ax b

x>=O

where A is an m n rank m matrix, c R and b Rm. This corresponds to the economic
model where a linear utility function u on n commodities is maximized over a linearly
constrained commodity region. It can also be used to model the case where u is concave
and piecewise linear (see, for example [Mu, 1.2], and so covers a very rich class of
economic models. We assume that P(c, b) admits some optimal solution x* with associated
objective function value u*. The study of comparative statics in economics involves
testing the sensitivity ofx* and u* to changes in various parameters associated with the
system P(c, b). Closely associated with this is the notion ofcomplementarity between two
variables x and xj in the model, which generally speaking describes a qualitative, or sign
consistent, relationship between the resulting changes in xi and xj. Samuelson [S provides
an excellent discussion of the myriad independent and conflicting notions of comple-
mentarity given in the economic literature. All ofthese notions, however, seem to exhibit
at least one ofthe following three properties: two variables i and x are called substitutes
(complements, independent, respectively) if they:
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(a) tend to replace (enhance, have no effect on) each other in the model;
(b) have like (opposite, no mutual) effect on other variables in the model;
(c) have cumulative effect on the objective function value u* which is less than

(greater than, the same as) that of the individual variables.
The purpose ofthis paper is to make these notions precise, and to show how they manifest
themselves in the model P(c, b). In the process we use the notion of determinacy, which
was first introduced by Greenberg [Gr] and later studied in [P] and [PK]. We show how
several classical definitions can be formalized in terms of determinacy, and investigate
the relationships between these concepts. Finally, we consider substitutes and complements
in the context of a class of network flow models, where we give an interesting graph
theoretic characterization of these terms.

2. Definitions and preliminary results. Let P(c, b) be as given in the Introduction.
A basis for P(c, b) is a nonsingular m m submatrix B of A. Corresponding to each
basis is the following equivalent presentation of P(c, b):

max u(x) ?XN+ d

x+AXN b

x>=O

where xs (xs,, x) are the basic variables corresponding to the columns of B,
XN are the nonbasic variables corresponding to the remaining matrix N ofcolumns ofA,

CN- csB-N, cB-b, and A B-N. When there is no confusion, we will
often denote bases by their basic variables. The extended tableau associated with B is
the n n matrix

I

whose rows and columns will be indexed by the index of the coesponding vaable.
For pair x and x of variables, we call x and x B-row substitutes (complements,

independent) ifd d N 0 (0, =0) for k 1, n, and B-column substitutes (com-
plements, independent) if dki dkj 0 (0, =0) for k 1, n. The variables x and
xj are B-row (B-column) determinate if they are B-row (B-column) substitutes, comple-
ments, or independent. When (1) is considered to deteine a dependency of the basic
variables x on changes in the nonbasic variables XN as specified by A, it becomes clear
how propeies (a) and (b) ven in are reflected in the "row" and "column" definitions,
respectively, ven above. Notice by the construction ofA that if xi xs is basic and x
is nonbasic, then x and xg are B-row substitutes (complements, independent) ifand only
if they are B-column substitutes (complements, independent) if and only if aj is non-
negative (nonpositive, zero). Nonbasic variables are always B-row independent and basic
variables are always B-column independent; and so the column and row definitions of
substitutes and complements are consistent with respect to any basis.

Complete B-deteinacy, that is, where all variables are either B-substitutes or B-
complements, has an interesting characterization using a result of Greenberg, Lundgren
and Maybee [GLM, Lemma ]. A matrix M is signed if there is a subset of rows and
columns ofM which when negated (in any order) results in a matrix M’ all of whose
entries are nonnegative. The result in [GLM], when restated in the context of B-deter-
minacy yields the following result:

PROPOSiTiON 2.1. For any basis B ofP(c, b) and associated matrix A defined by
(1), thefollowing statements are equivalent"
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(i) each pair ofvariables in P(c, b) are B-row determinate;
(ii) each pair of variables in P(c, b) are B-column determinate (in the same sense

as (i));
(iii) A is signed. []

We now extend the concepts of determinacy to a larger region of model activity.
Let J be any collection ofbases for P(c, b). The collection 3 can be chosen to represent
various types of model behavior; three important collections of bases, which will be used
extensively in the paper, are given below (referring to (1)):
0 collection of a//bases;

collection ofprimalfeasible bases, i.e., bases for which b >= 0;
J2 collection of dualfeasible bases, that is, bases for which =< 0.

Notice that the set J is independent of the choice of c and represents the set of optimal
bases for P(3’, b) as "r ranges over all values ofRn; 2 is independent of b and represents
the set ofoptimal bases for P(c, [3) as/3 ranges over all values ofRm; and 0 is independent
ofboth b and c and represents the set of optimal bases for P(3’,/3) as 3’ and/3 range over
all values of R n and Rm, respectively. For any basis collection, two variables xi and xj
are called -row substitutes (etc.) if they are B-row substitutes (etc.) for all B J, and
-row (column) determinate if they are either B-row (column) substitutes for all B J
or B-row (column) complements for all B J. Note that two variables are independentm
in any ofthe senses given abovemifand only ifthey are both substitutes and complements;
we will consequently just deal with substitutes and complements in most of the results
of this paper. To differentiate from the independent case, we will sometimes call two
variables strict substitutes (complements) if they are substitutes (complements) and not
independent.

We end the section by giving two important general results. The first result concerns
determinacy between collections of bases. The proof is clear.

PROPOSITION 2.2. Let and t’ be two collections ofbases for P(c, b) with 1’ a
subset of 3. Then any two variables which are 3-determinate are i’-determinate. In
particular, any two variables which are lo-determinate are l-determinatefor all collec-
tions 1 ofbases.

J0-determinacy was studied extensively in [P], and we make significant use of that
material by using Proposition 2.2.

The next result establishes the fundamental duality between row and column de-
terminacy. Consider the dual linear program to P(c, b)

min v bTy

D(c, b): ATy_ z c

z>=0.

The variable zj thus has an economic interpretation as the negative marginal utility (or
marginal cost) ofthe variable x. Using the linear programming complementarity between
P(c, b) and D(c, b), we have that the primal and dual feasible bases for D(c, b) are of the
form (y, zN), where xN is the set of nonbasic variables in some basis B for P(c, b). The
bases of D(c, b) can be further classified by their primal or dual feasibility as follows:

primal feasible bases for D(c, b)

(y, ZN) such that B 2;

dual feasible bases for D(c, b)

(y, zu) such that B6 1.
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In [P, Cor. 2.6], the equivalence between 0-row(column) determinacy in P(c, b)
and 3o-column (row) determinacy in D(c, b) was established. We restate this result for
substitutes and complements in the context of primal and dual feasible bases.

PROPOSITION 2.3. Two variables Z and zj in D(c, b) are -row (-row,
{-column, -column) substitutes (complements, independent) in D(c, b) ifand only
if the corresponding variables xi and xj are 32-column (l-column, 2-row, l-row)
complements (substitutes, independent) in P(c, b).

3. Determinacy and related eoneelts. In this section the various forms of deter-
minacy are put in the context of economic and geometric properties of P(c, b). In order
to state the results in their strongest form it will often be necessary to make a nondegener-
acy assumption on P(c, b) the precise form of which depends on the collection of
bases being considered. Referring to (1) these assumptions are:

(N 1) b > 0 for all B

(N2) ?< 0 for all B

Note that P(c, b) can always be made to satisfy (N 1) or (N2) by perturbing slightly b or
c, respectively. The first result of the section concerns the qualitative structure of the
feasible region for P(c, b), and the sensitivity of the optimal solution under parameter-
ization ofcosts. It also relates to work ofGranot and Veinott [GV] which will be discussed
in more detail later. We assume that the feasible region of P(c, b) is bounded; although
the concepts given here can be extended to the unbounded case, they become so cum-
bersome as to lose their intuitive appeal. An edge of P(c, b) is defined to be an edge of
the feasible region taken as a polytope (see [Mu, 3.6]). Note that edges have affine
dimension one, so that relative changes between variables on an edge can be uniquely
determined. For 3’ R", define the two functions x*(3") and z*(3’) as follows:

x*(3’) (x’(3’), ,Xn*(’y)) the optimal solution to the linear program P(3’, b),

u*(3’) 3"x*(’r)= the optimal objective function value for P(/,b).

Let 2" be the set of values of 3’ for which x*(3’) is uniquely defined so that f* is an open
set whose complement is of measure zero. Note that u*(’r) is defined for all , R ", and
is continuous. The function x?(3’) is said to be nonincreasing (nondecreasing) in 3" if for
every ’tl, ,)2 ( ’, with 1 < ,y2 and 1 and ,y2 differing only on the jth component we
have

X (,,y2) ()X (,, l).

The function u*(3,) is said to be submodular (supermodular) in 3’g and 3’ if for every 3,,
3’2 R" with ,1 -< ,y2 and -r and "t’2 differing only in the ith and jth components, we
have

U*(’1) -[- U*("y2) () U*(" "YI, ’]/,""" "[- U*(" ,.y/2, "It’),’-" ).

Sub(super)modularity of u* corresponds to property (c) of substitutes (complements)
given in the first section. It says in essence that the cumulative effect on u* of increasing
both the ith and jth component is less than or equal to (greater than or equal to) the
sum effects of increasing each component individually, or equivalently, that an increase
in either of the components can only decrease (increase) the marginal effect on u* of
increasing the other component. Thus it is the analogue in a nondifferentiable setting of
the second partial derivative of u* with respect to xg and xj being everywhere nonpositive
(nonnegative). We now have the following result:
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THEOREM 3.1. Suppose P(c, b) satisfies nondegeneracy condition (N 1) and has a
boundedfeasible region. Then for variables xi and xj in P(c, b), thefollowing statements
are equivalent:

(i) xi and xj are $11-row substitutes (complements);
(ii) Axi/Ax is nonpositive (nonnegative) over all edges ofP(c, b)for which x is not

constant;
(iii) x.*, (3") is nonincreasing (nondecreasing) in
(iv) u*(3,) is submodular (supermodular) in 3’i and
Proof We will prove all equivalences for the case of substitutes, the case for com-

plements being symmetric.
(i) (ii): From the nondegeneracy assumptions on P(c, b) and standard results in

linear programming theory ([Mu, 3.6]) it follows that each edge of P(c, b) can be
described by giving a basis B e 31 and column k, and then defining the edge resulting
from a simplex pivot on the tableau defined by (1) in column k. The resulting edge is of
the form

e {x- X.k" 0 =< X -< r/rk}

where Xo is the basic solution corresponding to basis B, k is the kth column of
and the pivot occurred on element rk. It follows that if xj is not constant on e then
Axi/Ax dik/dik, which is nonpositive if xi and x are -row substitutes.

(ii) (iii): Let 3"0, 3"t e r. with 3’0 -< 3"t, 3"0 and 3"t differing only on thejth coordinate,
and let x x*(3"), x x*(3"t). By perturbing 3"0 and 3"t slightly, we can assume that a
path of basic feasible solutions x, x 1, x x exists satisfying xk X*(3"k), k O,
--, r, with 3"k (3"?, 3" + ak, "’’, "yOn) fl*, 0 al < < ar-- 3"- 3"jO. and

such that consecutive xk are joined by an edge of P(c, b). Consider one such edge
(xk, xk + 1). Since 3" is increasing between 3"k and 3"k + 1, it must be that xj is also increasing
between 3"k and 3"k+ 1. It follows that if Axi/Ax is nonpositive along the associated edge,
then x/k + =< x/k. Thus x}(3") x,. _-< x x’ (3"t) and (iii) follows.

(iii) (iv): Let 3"1, 3"2R with 3"1 3"2 and 3"1 and 3"2 differing only on
the ith and jth coordinates. For 3" ao <= a <= at 3"2, define the two n-vectors
and 2(a) such that for p 1, 2, P(a) agrees with 3"P except on the ith coordinate,
where it has the value a. Then l(ao) 3"1, 5,1(at) (... 3"/2, 3"), ...), 2(ao)
(..., 3"], 3", .--), and 2(a/) 3"2. Further, for all ao <= a <= at, 5’1(a) <- 2(a)
and l(a) and 2(a) differ only on the jth coordinate. Let xpq be an optimal solution to
P(q/’(a,), b) for p 0, and q 0, t. By varying a parametrically from ao to at we obtain
two paths of optimal pointsone from x1 to x It via l(a) and the other from x2 to x
via 2(a)with pivots occurring in one or the other of these paths only at specified
parameter values a l, ar with ao -< a < at- <-- ar at. Thus for k 1, -",
r, x*(,l(a)) and x*(z(a)) are both constant over the range ak < a < ak. By perturbing
the objective functions slightly (and appealing to the continuity of u*) we can assume
that l(a) and 2(a) are both in ft* in the range ak-I < a < ak. Therefore (iii) applies
and so x? (l(a)) >-_ x? (2(a)). But now for any pair ak-I < a < < ak we have

u*(2(t)) u*(()) (t )x?(())
<- ( )x?(()) u*(’(t)) u*((a))

and so by the continuity of u*,
, 2U ( (.))- U*(-(_ ,)) < U*(())- U*(’(_ )).
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By summing these inequalities over k 1, r we get

u*()- u*(. , /, -.., ), ...)= u*((,))- u*((0))
_-< u*((a))- u*((co))

u*(. ,I, ,,"" ")- u*()
and (iv) follows.

(iv) (i): Let B with the associated tableau, and let and j be two rows of. Ifxi and xj are both nonbasic, then dik’djk 0 for all k. Otherwise assume by symmetry
that xg xa is basic, and let k be any column index. If either ik or jk equals zero then
dik’dgk 0. Otherwise we have that k is a nonbasic column, with dgk a-qk 4 0 4 dik. We
take first the case where a-qk > 0. Define the n-vector 3

, by

a--qp- 1, p-N- {k},

"1.ol
a-q,- e/2, p k,

1, p=j,

0 otherwise

with e a small positive scalar. Then

k
-’d=(-1,... ,-e/Z,... ,-1)

and so ,1 6 ft* with B the basis corresponding to x*(3,1). Define 3,12 by

[.y) + e/q,, p j,
,)l,

2

3, otherwise
so that

.y .y2., (_ + eKq,/Kqk, e.12, ,-- + ,qn/qk).

With e small enough, this plus the boundedness of P(c, b) insures ,,12 , with optimal
basis B’ for p(,yl2, b) satisfying B’ B’U {k} {/} for some basic index l Bs. Now
choose di > 0 sufficiently small so that for r 1, 2 the n-vector 3,zr defined

,{2pr_._ { r-JI- 5’ p i,

,r otherwise
is also in ft* with

X*(l,2r) X*(,ylr).

Then 3
, =< ,22 and ,1 and ,22 differ only on coordinates and j. Thus by (iv) we have

/g,(.yl 1)
__

b/,(.y22) _<_ b/,(.y21) -F//,(.y 12),
that is,

b/*(’22) --/X *(’y 12) X(12)
__< u*(3,2) u*(-) x?(,)

implying x? (.y2) x’ (.yll) =< 0.
But

XT ("1(12) X (,/, 11) _(6s/sk)dik
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where the pivot occurred on element dsg. The nondegeneracy assumption insures that
bs/dg > 0, and so dig >= 0 and thus dik ajk >= O. The case when aqg < 0 is handled
similarly, choosing e and 6 less than zero and swapping the roles of 3

, and 3"22. By doing
this for all B e 3, and all columns k it follows that x and xj are 3-row substitutes.
This completes the proof of the theorem.

A slightly weaker version of Theorem 3.1 applies when we drop the boundedness
and degeneracy conditions on P(c, b). Then the edges of P(c, b) include extreme rays,
and the functions x*(3’) and u*(3") are defined only over 3" for which P(3’, b) is a bounded
linear program. The following corollary is now straightforward.

COROLLARY 3.2. Without the conditions on P(c, b) given in Theorem 3.1, we still
have (i) (ii) (iii) (iv).

The next result of this section concerns the sensitivity of the optimal solution of
P(c, b) under parameterization ofthe variables, and is a direct generalization ofwork by
Gale and Politif [GP] and Shapley [Shl ], [Sh2]. Here we presume that P(c, b) satisfies
nondegeneracy assumption (N2), and that P(c, b) is feasible for all/3 e R (or equivalently,
that the dual program D(c, b) has a bounded feasible region). For a R n consider the
linear program obtained by parameterizing variable values through setting lower bounds

a on x, j 1, n"

max u cx

P’(a): Ax b

x>-_a.

The assumptions on P(c, b) insures that P’(a) has a unique optimal solution for all a,
which we shall denote x**(a), with associated objective function denoted u**(a). We
can now state a similar result to that of Theorem 3.1 for x** and u **. For variable xi in
P(c, b) denote by 3 the set of all bases in 2 for which xi is basic.

THEOREM 3.3. Suppose P(c, b) satisfies nondegeneracy condition (N2) and theprop-
erty that P(c, ) isfeasiblefor all R m. Then

(i) x?*(a) is nonincreasing (nondecreasing) in a if and only if xi and x are
2-column substitutes (complements);

(ii) u**(a) is submodular (supermodular) in ai and a ifand only ifxi and x are
32-column substitutes (complements).
Further, (ii) implies (i).

Proof. Again, we prove the equivalences for the case of substitutes, the case for
complements being symmetric.

(i) (): Let a, a R be given with a _-< a and a and a differing only on the
jth coordinate. For 0 =< 3" _-< a a define (3") (a, aj

. + 3’, an), so that
(0) a and (aJ a) at. By varying 3" from 0 to a a we obtain a sequence
0 3"0 =< 3’1 --< --< 3"r a a such that x**((3")) has the same basis Bp 2 for
3"p < 3" < 3"p / , and dual simplex pivots occur at each 3"i, 1, , r- 1. We can there-
fore concentrate on the change in x?*(&(3")) for 3"p =< 3" _-< 3"p / . If either xi is nonbasic
or x is basic with respect to Bp, then x?*((3")) is constant in the interval 3"p _-< 3" _-< 3"p/

and we are done. Otherwise we have Ax**((3"))/A3" --a-q, where B. Therefore,
if xi and x are BP-column substitutes then -aqj < 0, and so x ((3")) is nonincreas-
ing in the interval 3"p =< 3" _-< 3"p /. By performing this over each interval, we get that
X*(a0) < X*(ott) and the implication follows.

(i) (): Let B be an element of 3/. Then xi is basic in B. If xj is also basic in B,
then xi and x are B-column independent. Otherwise define a (a, aN) with au 0
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and as B-b e, where e is the vector of ones. Then P’(a) can be written

max cTx’ + cTa
Ax’ Be

x’>=O

where x’ x a. The basic feasible solution (x, Xv) for this program associated with
B has x e > 0, and since B 2 then B is the optimal basis for P’(a). Now let a’ be
obtained from a by increasing the jth coordinate by a small amount e. Then x?*(a’)
X?*(a) dqje, where Ba. Since x?*(a) is nonincreasing in O/j we must have dj ->- 0,
and thus xg and xj are B-column substitutes. This completes the proof of (i).

(ii): Here we can simply look at the dual program, and apply Proposition 2.3 and
Theorem 3.1. The dual program to P’(a) (in maximization form) is

max v -bry+ aTz
D’(a): Ay z= c

z-> O
with the optimal value v*(a) equal to -u**(a). The submodularity of u**(a) is then
equivalent to the supermodularity ofv*(a). Now the conditions on P(c, b) in the theorem
are precisely those necessary for the conditions of Theorem 3.1 to hold for D’(a). Thus
we have v*(a) supermodular in ai and a ifand only ifzi and z. are 90 -row complements.
But by Proposition 2.3 this is true if and only ifxi and xj are 92-column substitutes, and
the equivalence follows.

That (ii) implies (i) follows immediately from Proposition 2.2 and the fact that
/ is a subset of 2, and this completes the proof of the theorem. V1

Ifthe restrictions on P(c, b) in Theorem 3.3 are dropped, we still obtain a weakened
version, by restricting the domain ofx** and u** to values ofa for which P’(a) is feasible.
Similar to Corollary 3.2 we have

COROLLARY 3.4. Without the restrictions on P(c, b) given in Theorem 3.3, the "’if’"
portions of(i) and (ii) still hold. if]

Several comments are in order. First, if nondegeneracy condition (N 1) is also present
for P(c, b), then Theorem 3.3 continues to apply when the domains of x** and u** are
restricted to nonnegative values of a. Thus we may treat the inequalities x >= a as a
restriction ofthe feasible region ofP(c, b)(see Theorem 3.5). Second, note that statement
(ii) in Theorem 3.3 strictly implies statement (i). This can be seen by considering the
following linear program:

max u= x3-x4-x5- 3x6

x -x3 +xs+ x6

x2 -x4+xs- x6

Xl, ,X60.

This program satisfies the conditions of Theorem 3.3. Further, x5 and x6 are 9025- and
906-column independent since they are nonbasic in every basis of 90, and so x*(a) is
constant in 0/6 and vice versa. But x5 and x6 are not 90z-determinate (take basis (x, x))
and so u**(a) is neither supermodular nor submodular in a5 and a6. As a final note,
Example 4.8 in the final section will show that the conditions of Theorems 3.1 and 3.3
are not equivalent, that is, 9-row substitutes (complements) are not necessarily 2-
column substitutes (complements).



SUBSTITUTES AND COMPLEMENTS 593

We end the section by showing how the concepts ofdeterminacy relate to the results
ofGranot and Veinott [GV, Thm. 17 and Cor. 19] on substitutes and complements. The
results here are simplified somewhat to avoid added notation, although most ofthe more
general results in that paper also apply in this context. Let P(c, b) have a bounded feasible
region. Consider the following optimization problem:

max u f(x, 0
j--1

Pf(t): Ax= b

where each f:R2
__
R tO {- } is concave and lower semicontinuous in tj and super-

modular in xj and t (with the obvious extensions whenf(x, 0 -). As was done for
Theorem 3.1, define xf(t) to be the optimal solution, and uf(t) the optimal objective
function value, for Pf(t). Note that uf is defined for all e R n and xf(t) is defined over
subset f of Rno It turns out that the analogous result for Theorem 3.1 involves
determinacy. From Proposition 2.2 it follows that 30-determinacy implies 031- and
determinacy, and so the result which follows will imply the conditions of Theorems 3.1
and 3.3 and their corollaries. Further, in [P, Thm. 2.12] it was proved that N0-row
determinacy and #30-column determinacy are equivalent (in the same sense). Thus we
will drop the "row" and "column" labels in the following discussion.

THEOREM 3.5. Let P(c, b) have a boundedfeasible region with at least one strictly
positive solution, and let xi and x be two variables in P(c, b). Then the following are
equivalent:

(i) xi and xj are 3o-substitutes (complements);
(ii) xfi(t) is nonincreasing (nondecreasing) in tj for every f, ..., f as defined

for Pf(t);
(iii) uf(t) is submodular (supermodular) in ti and tfor everyf, f as defined

for Pf(t).
Proof The proofs (i) (ii) and (i) (iii) are straightforward extensions of those

of Theorem 10, Theorem 17 and Corollary 19 in [GV] (with the terms "submodular"
("supermodular") in place of"superadditive" ("subadditive") since that paper considers
the minimization problem). The key property ofxg and x needed for those proofs is that
for each element y of the null space ofA whose support is minimal, yg y is nonpositive
in the case of substitutes and nonnegative in the case of complements. Let C be the
support ofsuch a y. Ify. is not in C, then Yi Y 0. Otherwise let Acbe the corresponding
set of columns of A. Since y has minimal support then removing the jth column from
Ac results in an independent set of columns which can be extended to a basis B e
not containing the jth column. But now if we consider the tableau associated with B
with q Bi then we have Yi dqj yj and so Yi Yj -dqj is nonpositive if xi and xj
are B-substitutes and nonnegative ifx and x are B-complements. The remainder of the
proof is exactly as that of the theorems in [GV].

For the proofs (ii) (i) and (iii) (ii), choose B #3o. Let/3 be any element of
R and let x > 0 be feasible to P(c, b) as specified by the theorem. Define a (an, aN)
with aN xON and a x eB-13, where e > 0 is chosen small enough so that a is
nonnegative. Then the system

Ax b,

x>=a
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is equivalent to the system

x’>=0

with x’ (x a)/e. Now for any 3’ 6 Rn define the functionsJ, j 1, n, by

x t . x+ _ x + t
where 15_(y) -oo if y =< 0 and 0 otherwise. Then f, f satisfy the conditions for
Pf(t), and the optimal solution for Pf(t) will be equivalent to that for P(3’ + t, ) up to
translation by c and positive scalar multiple 1/e. What we have, therefore, is the situation
in Theorem 3.1, with (iii) and (iv) of that theorem implied by (ii) and (iii), respectively,
of the present theorem. It follows that x and xj are 3-row substitutes (complements)
for associated with P(c, ), and so by ranging/3 over all vectors in Rm we have that
xi and xj are 30-substitutes (complements). This proves the theorem.

4. Determinacy in a class of network models. Complementarity in network models
has been the subject of considerable study [GP], [GV], [Shl ], [Sh2]. Here we consider
-row determinacy--and hence any of the equivalent properties of Theorem 3. min
the context of a particular class of network models, and give graph-theoretic character-
izations of the associated properties. Define a transshipment matrix to be an rn n
(0, +__ 1) matrix A with exactly one + 1, exactly one -1, or exactly one + and one -1
in each column; and a transshipment model as any system P(c, b) with A a transshipment
matrix. Transshipment models occur in numerous network related problems, most no-
tably transportation and network flow problems. Associated with any transshipment
matrix A is a directed network G(A) (V, E) whose node set V corresponds to the rows
of A together with an additional source node r, and whose arc set E corresponds to
columns ofA, where, for k 1, n, the arc associated with xk is

(lJi, l)j) if aik and ajk + 1,

e (r, vj) if aj + and at 0 for 4 j,

(vi, r) if aik and ark 0 for 4 i.

A transshipment matrixA has two interesting properties which relate to the previous
two sections:

(1) Leontief propertymeach column ofA contains at most one positive element;
(2) Totally unimodular property--every square submatrix of A has determinant

+ 1, 1, or 0.
The Leontief property allows us to consider simultaneously a large class of models

P(c, b) associated with the matrix A. This can be done by using the following standard
result in Leontief theory (see [KWW, Thm. 2.3.4].

LEMMA 4.1. For any m n rank m Leontiefmatrix A and any set B ofcolumns of
A, thefollowing are equivalent:

(i) for somefixed positive b, there is an XB >= 0 such that b BXB;
(ii) for every positive b there is an x >= 0 such that b Bx. q

From Lemma 4.1 we have the following result, whose proof is immediate.
THEOREM 4.2. LetA be an rn n rank rn Leontiefmatrix, andP(c, b) the associated

linearprogram where b is a positive vector. Then P(c, b) will always satisfy nondegeneracy
assumption (N 1), and the basis collection 1 is independent ofthe particular values ofc
or (positive) b. []
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The remainder of the section will be spent characterizing 31-row determinacy for
any--and hence allnof the transshipment models P(c, b) with b > 0. We will refer to
these as reachability models. The collection 1 in a reachability model has a useful
characterization in terms of properties of the graph G(A). Define a spanning tree in a
graph G to be set T of arcs of G for which there is a unique (undirected) path I’(T, v)
from the root node r to every node v of G. The tree T is called an r-rooted spanning
arborescence, or simply r-tree, if the path I’(T, v) is always directed from r to v. Equiv-
alently, T is an r-tree if T is a spanning tree and there is at least one arc, and hence
exactly one arc, of T pointing into every node of V\{r}. For any subset S of nodes
containing r, we define an r-tree on S to be an r-tree on the subnetwork generated by S.
The next result follows from standard network theory.

THEOREM 4.3. Let P(c, b) be a reachability model and B a set of columns of the
associated matrix A. Then B is in 11 if and only if the arc set T corresponding to B
forms an r-tree in G(A).

From Theorem 4.3 it follows that the collection 3 of a reachability model is non-
empty if and only if G is r-connected, that is, there exists a directed path from r to every
node of G. Henceforth, we will consider only r-connected graphs. The second property
ofA, that of being totally unimodular, provides a useful property to have when studying
activity with respect to a particular basis B. Its proof is in [P, Prop. 3.1 ].

PROPOSITION 4.4. Let P(c, b) have A be totally unimodular, and let B be any basis
for P(c, b). Then every two variables are either B-substitutes or B-complements.

From this we have the following corollary.
COROLLARY 4.5. For any system P(c, b) with A totally unimodular and any collection

1 ofbases, two variables xi and x are B-substitutes (B-complements) in either sense if
and only if there is no basis B in 1 for which xi and xj are strict B-complements (B-
substitutes). They are independent ifand only ifthere is no B in 3 for which xi and xj
are either strict B-substitutes or strict B-complements.

We now consider a particular basis B, with corresponding r-tree T in G(A), and
identify the values of the matrix A. This was done in [P, Lemma 3.4] for the basis
collection 0, but we restate it here in the special case when B is in l. To find the
value a-q with Bq, we add the corresponding edge e (u, v) to the r-tree Tn, forming
a uniquefundamental circuit C(T, e). This circuit is in turn partitioned into two parts,
namely,

CI(T, ek) I’(Tn, v) f’) C(Tn, ek),

C2(T, ek) r(T, u)fq C(T, ek)t3 {e}.

From Lemma 3.4 in [P], we obtain the value of a-q as

+ if ei C(Tn, e),

a- if ei C2(Z, e/),

0 if ei C(Tn, elc).

This results in the following lemma.
LEMMA 4.6. Let P(c, b) be a reachability model, B a basis in 3, and andj distinct

indices.
(i) If andj are both nonbasic then xi and xj are B-row independent;

(ii) if is basic andj is nonbasic, then xi and xj are strict B-row substitutes ifand
only ifel C(Tn, e) and strict B-row complements ifand only ifei C2( TB, e);
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(iii) if andj are both basic, then xi and x are strict B-row substitutes ifand only
if there is an arc e such that ei and e are different parts of C(T, e), and strict B-row
complements ifand only ifthere is an arc e such that e and ej are on the same part of
C(TB, ek). IS]

Corollary 4.5 and Lemma 4.6 allow us to obtain a graph-theoretic characteri-
zation for row substitutes and complements in the model P(c, b). Define an r-lasso L
I’ tO Cl tO C2 to consist of directed paths I’, Cl, and C2, node disjoint except for nodes
u and t, such that I’ goes from r to u and Cl and C2 each go from u to t (see Fig. 1). We
allow u to equal r, in which case I’ is empty, and to equal u, in which case one of Cl
and C2 is empty. The node t is called the endpoint of the lasso, and the final arcs on Cl
and C2 are called end arcs of the lasso. It follows that there is a unique path from r to
any node of L except the endpoint, and that removal of either end arc of L creates an
r-tree on the nodes of L. Two arcs ei and ej are said to be on the same (opposite) side
of L if they lie on the same (opposite) Ci. We can now give the characterization for
3l-row substitutes and complements.

THEOREM 4.7. Let P(c, b) be a reachability system, and let xi and xj be two variables.
Then xi and x are 31-row substitutes (complements) ifand only ifthere is no r-lasso in
G(A) with ei and e on the same (opposite) sides.

Proof We prove the theorem for substitutes, the argument for complements being
symmetric. By Corollary 4.5, x and x./are 31-row substitutes if and only if there is no
basis B 6 l for which xi and x are strict B-row complements. Suppose such a basis
exists, and apply Lemma 4.6. Then at least one of xi and xj must be basic. If exactly one
of and j are basic, say is basic and j is nonbasic, then xi and xj are strict B-row
complements if and only if ei C2(TB, ej). Letting ej (u, v), we have that the set L
I’(Tn, u) LJ I’(T, v) to {e} is an r-lasso in G(A), and ei and e are on the same side of L.

t

C

u

FIG. 1. An r-lasso.
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If and j are both basic, then xi and xj are strict B-row complements if and only if there
is an arc ek such that ei and ej are on the same side of C(Ts, ek). Letting ek (U, V), we
have that the set L I’(Ts, u) U I’(Ts, v) t.J {ek} is an r-lasso in G(A), and ei and e are
again on the same side of L.

Conversely, suppose that ei and ej are on the same side of an r-lasso L in G(A).
Then by removing an arc e from the endpoint of L (with e ei or ej if either is an end
arc), we obtain an r-tree on the nodes of L. This tree can easily be extended to an r-tree
for the entire network for which either e e C2(Tn, ei) (if e ei), ei - C2(Tn, ej) (if e ej),
or ei and ej are on the same side of C(Tn, e) (if ei

Example 4.8. At this point we give an illustration that the various forms of deter-
minacy are not equivalent. Consider the reachability system shown in Fig. 2. Define the
vector c by c5 -1 and cj 1, j 4: 5. Then P(c, b) satisfies nondegeneracy conditions
(N 1) and (N2) and has a bounded feasible region. By Theorem 4.7 xl and x5 are l-row
substitutes, since they occur in only one r-lasso for which they are on opposite sides.
However, for the optimal basis B (x2, x3, x4, x6, x8}--an element of both 3 and
2we have that e5 e CI(T, e2) and e e C2(T, e2) so that x and x5 are strict B-column
complements. Thus they are not 3- or 32-column substitutes. They are, in fact, l-
and -column complements, and ofcourse 0-indeterminate. Thus one must be specific
as to which ofthe types ofdeterminacy is meant when referring to variables as substitutes
or complements.

Using Theorem 4.7, we can derive a characterization for complete 3-row deter-
minacy in a reachability model whose feasible region is bounded, or equivalently, where
G(A) is acyclic. It is analogous to that found for 30-determinacy in [P, Thm. 3.7], the
seminal result appearing in [D]. Define an r-rooted Wheatstone bridge on ei and ej to be
a subnetwork of the form I" U W as shown in Fig. 3, where I" is a directed path from r
to a node w of Wwhich is otherwise disjoint from W. Each path is directed as indicated
by the arrows. The nodes t and tz may also lie on the path from e to v3, in which case
t t2, and the node w must be on one of the three directed paths from u to el, v2, or
t/v3, with the path from w to u directed toward u.

FIG. 2
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ei W

FIG. 3. An r-rooted Wheatstone bridge.

THEOREM 4.9. Let P(c, b) be a reachability model with G(A) acyclic, and xi and xj
two variables. The xi and xj are 31-row determinate if and only if there is no r-rooted
Wheatstone bridge on ei and e contained in G(A).

Proof Suppose first that there exists an r-rooted Wheatstone bridge I" tO W on ei
and ej. We will take the case when the node w lies on the path from u to ei, the other
cases being similar. Identifying by [x, y] the path in I’ tO W with endpoints x and y, we
obtain the two r-rooted lassos

L1 [r, w] tO [w,/’/3] tO [/’/3,/)2] tO [/)2,/)3] tO [/)3,/1] tO [W, U] tO [U, t]
and

L2 [r, w] tO [w, u3] to [u3, t2] to [w, u] tO [u, Vz] tO [v2, v3] tO [v3, t_]

for which ei and ej are on the same side in L and opposite sides in L2. Therefore by
Theorem 4.7 xi and x are indeterminate.

For the converse suppose that xi and xj are indeterminate, so that by Theorem 4.7
there exists two r-rooted lassos Lk I’k tO C], tO C, with endpoints tk, k 1, 2 so that ei
and ej are in the same C] and in opposite Ct2, l 1, 2. Further choose L and L2 so that
the number of arcs in L to L2 is minimized. Relabel ei, ej, and the Ct so that ei is in
C, ej is in C, and ei and e are in C I, with ei before e. We can consider the Lk to be
closed walks, that is, circuits with possibly repeated arcs, and so when we speak of "tra-
versing" Lk, it will be as if it were a circuit. Then L and L2 can be partitioned into four
parts as follows: For L, define L to be that portion ofL between r and t which does
not contain ei and ej, and define L2, t3, and L4 to be the portions of L between r
and ei, between ei and e, and between e and t, respectively. For L2, define L_ and L23
to be the portions of L2 between r and ei and between ei and t_, respectively, and define
L2_ and L24 to be the portions ofL2 between r and e and between e and t2, respectively.
(See Fig. 4.)

CASE 1. Since G(A) is acyclic, L2 can intersect L only on L to Lz. Let u be the
farthest node traversing L to L2 from ei at which this occurs, and note that u is on
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El4

ei
Ii ej

L22

FIG. 4

L since r is on L U L_ and L2. Then that portion of LI U L2 between ei and ul
must be part of L, since otherwise it could be replaced by the corresponding portion
ofL to form lasso L’ with the same properties ofL and whose union with L has fewer
arcs, a contradiction. In particular, then, we now have L_ L2.

CASE 2. Traverse L2 from r to the farthest node u2 at which L2 intersects
L tO L, and let v be the next node at which Le meets L (u2 and v must be distinct,
since L2 begins on LI U L and ends on Z13). Suppose that I)2 is on L. As in Case
that portion of LI between u and v can be replaced by the corresponding portion of
L, a contradiction. Thus v2 must be on L3 since it cannot be on LI, L L, or

L4 (since G(A) is acyclic).
CASE 3. Traverse L23 U L24 from ei until the farthest node u3 at which L23 U L24

intersects L3, and let 1) be the next node at which L23 U L24 again meets L (as in Case
2, u3 and/)3 must be distinct). Suppose/)3 is on L3. Since G(A) is acyclic,/)3 must also
be on L23. Again that portion of L3 between u3 and I) can be replaced by the corre-
sponding portion of L23, a contradiction. Thus 1) must be on L U LI4 since it cannot
be on L2 L.

Cases 1-3 establish
(1) LI2 L2;
(2) L22 coincides with L tO L2 from r to the point u2 and its next intersection

with L occurs at the point v2 L3; and
(3) L23 tO L24 coincides with L3 from e to the point u3, and its next intersection

with L occurs at the point v3 L U L4.
(See Fig. 5.) The final parts ofL and L2 to consider are the subpaths P ofL tO L4 and
Q of L23 U L24 lying between 1)3 and ej, and the subpaths R of L22 and S of L3 lying
between v2 and ej. From the statements above it follows that P and S intersect L2 only
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um LzmU Lz4
P

ei

El  IULI4
ei

S

FIG. 5

on Q and R, and Q and R intersect L1 only on P and S. We claim that P Q and
R S, since if v3 is on L24 then P and S can be replaced by Q and R, if v3 is on L23 then
Q and R can be replaced by P and S, in each case forming lassos L’ andL having smaller
union than LI and L2, a contradiction.

The situation is now as shown in Fig. 6, with either tl t2 on 1" tO 1’2 tO 1"3 or t
on 1’, and t2 on 1"2, and 1"2 ending on 1"4 tO 1"5 tO 1"6. This forms an r-rooted Wheatstone
bridge as given in Fig. 3, with u u and w u2 on the path from u to v2 if 1"2 ends at
1"4, u u2 and w u on the path from u to ei if 1"2 ends at 1"5, and u u2 and w u
on the path from u to I) if 1"2 ends at 1"6. The theorem follows. [3

U5

e ej

\ r\

FIG. 6
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The restriction that G(A) be acyclic is essential to Theorem 4.9. There exists patho-
logical nonacyclic networks for which two variables are not determinate, but for which
no easily characterizable Wheatstone-type subgraph seems to exist. The problem ofchar-
acterizing determinate pairs of variables in a general reachability model is therefore still
an open problem.

The final result concerns determinacy in a special class of reachability models. A
transshipment matrix A is called a transportation matrix ifthe rows ofA can be partitioned
into subsets U and V so that

(1) if a column ofA has a single nonzero entry, then this entry occurs in a row of
U if it is + 1, and in a row of V if it is 1;

(2) if a column ofA has two nonzero entries, then the -1 entry occurs in a row of
U and the + entry occurs in a row of V;

(3) for each row ofA there is column ofA with a + entry in row i.
Assumption (3) insures that G(A) is r-connected. Associated with an extended transpor-
tation matrix is a bipartite network G’(A), consisting of G(A) with node r and its adjacent
arcs removed, that all arcs are members of U V. The variables whose columns contain
only + are called supply variables, those whose columns contain only -1 are called
demand variables, and those whose columns contain both a + and a -1 are called
transportation variables. Supply variables will be denoted by s(u), demand variables by
d(v), and transportation variables by t(u, v), where u, v, or (u, v) is the node or arc
associated with that variable. Since multiple copies of a variable are clearly substitutes
with each other and identical in their relationship to the other variables, we assume that
there is only one copy of each variable. Further, if there is any node having exactly one
adjacent arc of G(A), then the associated variable will be independent of all other variables
and will have no effect on determinacy in the system. We therefore assume all such
variables (and associated nodes) are removed.

Determinacy has been characterized for transportation models over the basis system
30 in Theorem 3.9 of [P]. It turns out that for the system 3 there is also an easy
characterization of determinacy.

THEOREM 4.10. Let P(c, b) be a reachability model associated with a transportation
matrix. Then every pair ofvariables is 31-row determinate. In particular, in terms ofthe
associated bipartite network G’(A) we have:

t( ,v)

t.l W d(v)

FIG. 7. r-lassos in the transportation model.
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(i) variables s(u) and s(w) are strict substitutes ifu and w are adjacent to the same
node, and independent otherwise;

(ii) variables d(u) and d(z) are independent;
(iii) variables s(u) andd(v) are strict complements if(u, v) is an arc, and independent

otherwise;
(iv) variables s(u) and t(w, v) are strict complements if u w, strict substitutes if

u 4: w and (u, v) is an arc, and independent otherwise;
(v) variables d(v) and t(w, z) are strict complements if v z, and independent

otherwise;
(vi) variables t(u, v) and t(w, z) are strict substitutes if v z, and independent

otherwise.
Proof. Using Theorem 4.7, we look at all r-lassos in G(A), and note that there are

only two classes ofr-lassos, which are shown in Fig. 7. By checking the position ofsupply,
demand, and transportation variables on these r-lassos, and noting that there are no
nodes of V which have only one adjacent arc, it follows that the only cases when two
variables are strict B-row substitutes or strict B-complements are those given by the
theorem.
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ON THE COVERING RADIUS PROBLEM FOR CODES I.
BOUNDS ON NORMALIZED COVERING RADIUS*

KAREN E. KILBY- AND N. J. A. SLOANE

Abstract. In this two-part paper we introduce the notion of a stable code and give a new upper bound on
the normalized covering radius ofa code. The main results are that, for fixed k and large n, the minimal covering
radius t[n, k] is realized by a normal code in which all but one of the columns have multiplicity l; hence
tin + 2, k] t[n, k] + for sufficiently large n. We also show that codes with n _-< 14, k -< 5 or dmin 5 are
normal, and we determine the covering radius of all proper codes of dimension k _-< 5. Examples of abnormal
nonlinear codes are given. In Part we investigate the general theory of normalized covering radius, while in
Part II [this Journal, 8 (1987), pp. 619-627] we study codes of dimension k -< 5, and normal and abnor-
mal codes.

Key words, binary codes, covering radius
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1. Introduction. Let C be an [n, k] binary linear code. The coveting radius R (also
denoted by CR(C)) is given by

R max min d(x, c),
xF cC

where F {0, } and d( is Hamming distance. Let t[n, k] denote the smallest R for
any [n, k] code. Two central problems in this subject are to determine t[n, k] and to
construct codes with R t[n, k] (see 1]-[3], [9], 10] for further background information).

Before describing the new results, we define the normalized coveting radius, which
as we shall see is easier to work with than the coveting radius itself. Let C have generator
matrix G. In general, G may contain repeated columns. We assume throughout, however,
that no column of G is zero. Let a be the number of distinct columns occurring in G,
and let mi, ma be their multiplicities, with m + + ma n. Then

R>--i=
and, following [10], we define the normalized covering radius o of C to be

(1) o=R- []
i=1

a nonnegative integer. Then

[] n no. of odd mi(2) R= i:l q-/9 -- 2 +P"

Summary of results. A stable code ( 3) has the property that p does not increase
when any number of pairs of identical columns of any length are adjoined to it. Many
small codes are stable ( 6 ofPart II), so this often provides a quick method for determining
the coveting radius. The contracted code t ( 3) is spanned by the rows of the matrix
formed by taking one copy of each column of G that has odd multiplicity, where G is
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a generator matrix for C. If C is stable, o(C) o(C). As an illustration, consider the
code C withgeneratormatfix

111 000 00 00 11
000 111 00 00 11
000 000 11 00 11
000 000 00 11 11

(with multiplicities 3, 3, 2, 2, 2), encountered in the proof of Theorem 27 of [2]. The
contracted code ( has generator matrix ( 0), and is stable with p 0, so C has coveting
radius 0 + [mi/2] 5. Stable codes are normal (see Theorem 4).

Theorems 6 and 7 give improved upper bounds on p. Section 5 considers how
increases when the multiplicities of the columns are increased, subject to the constraint
that the parities ofthe multiplicities are unchanged. More precisely, fix an [nB, k] projective
code B (i.e., one with distinct columns), and consider all [n, k] codes C with ( B. For
sufficiently large n, Oo(B) maxc o(C) and o,(B) minc p(C) are independent of n.
Theorem 8 investigates how rapidly oo(B) can be reached. Theorem 9 shows that o,(B)
can be realized by a normal code having a very special structure, in which all columns
have multiplicity except for one column that has large multiplicity. Furthermore a
normal code C has o,(C) o(C) (see Theorem 11).

For fixed k and large n, the minimal coveting radius of any [n, k] code is given by

t[n, kl =-+ mien o,(B)-

where B ranges over the projective codes of dimension k or k (equation (52)). It
follows (see Theorem 12) that, for large n, t[n, k] can be attained by a normal code
having the above-mentioned special structure. This establishes Conjectures A and D of
[2] for sufficiently large n. A heuristic justification for the special structure of these codes
is given at the end of 6 of Part II.

Codes of dimension k =< 4 were studied in [10]. We have now determined the
coveting radius of every projective code of dimension 5. If C is any [n, 5] code, then

CR(d)_-< p(c) <= CR(d) +
(see Theorem 13 of Part II). This implies that all codes of dimension 5 are normal.

Table 2(a) of Part II gives upper and lower bounds on p, and enables one to write
down the coveting radius of any code C for which the contracted code has dimension
_-< 5, with an error of at most 1, when only the length and dimension of C are known.
For example, suppose C is a [3000, 12] code for which is a [20, 5] code. From Table
2(a) of Part II we see that 7 -< p(C) 9, or in other words (using (2))

CR(C)_3O0 20
2
-8+0= 1498+0,

where 0 -1, 0 or 1.
Section 6 presents a summary of the projective codes of dimension 5 and length

5 =< n =< 31, and gives one or two examples ofthe best coveting codes of each length (see
especially Fig. 3 of Part II). This list of codes should be useful, since the investigation of
the subject has been hampered by a shortage of examples of good coveting codes. The
precise determination ofp for some ofthese codes requires a separate analysis, as illustrated
in Theorem 10, and we have only carried this out in certain cases. At the end of 6 of
Part II we construct an infinite family of (normal) codes with unacceptable coordinates.
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Sections 7 and 8 of Part II show that if drain -< 5 or if C has dmin 2 then C is
normal. Theorem 18 of Part II summarizes the known conditions on the parameters of
a code that imply normality. Finally, 9 of Part II gives Peter Frankl’s construction of
an abnormal nonlinear code.

Definitions and notation. The minimal distance of a code is denoted by drnin, and
the order of its automorphism group by g. We use F to denote both the Galois field
GF(2) and the code {0, ). The empty code of length zero will be denoted by 0, and En
denotes the [n, n 1]R even weight code. The [n, 1]R [1/2n] repetition code Tn
contains 0 and n. The [n 2k 1, k]R 2k- simplex code Sk is defined by a generator
matrix in which the columns comprise all distinct nonzero binary k-tuples (see (14) and
Fig. 3 of Part II). In particular, So 0, $1 F, $2 E3. The 2k columns of a
generator matrix for Sk, for k >= 3, may be regarded as representing the points of a
projective geometry PG(2, k- l) of dimension k over F. In such a geometry every
line contains exactly three points; three points are collinear ifand only ifthe corresponding
vectors sum to zero. We shall occasionally use this geometrical language even when k is
less than 3.

Normal codes. Let C be a linear or nonlinear code of length n and coveting radius
R. For l, n and a 0, let C) denote the subset ofcodewords (c, Cn) of
C with ci a, and for an arbitrary x e F let

f)(x) d(x, C)),
ifC) is nonempty, and letf)(x) n otherwise. Then

N(i) max {/)(x) + f]i)(x)}
X

is called the norm ofC with respect to the ith coordinate. If

(3) Ni)<=N

for at least one coordinate i, we say that C has norm N, and coordinates for which (3)
holds are called acceptable, the other coordinates being unacceptable. Finally, C is normal
if it has norm N satisfying

(4) N_-< 2R + 1,

and is otherwise abnormal. It follows from the definition that if C has norm N, it also
has norm N + 1, N + 2, .... We take N as small as possible. For any code,

(5) 2R<-N.

Many other properties of the norm will be found in [3].

2. Normalized covering radius 0. Let C be an [n, k]R code (assumed throughout
to have no coordinate position that is identically zero). Then 1, Thm. 6]

The normalized coveting radius o(C), defined in (1), satisfies (see [10]) o(C) >= 0; if all
rn are even, o(C) O; if all rn are 1, o(C) R. (Note that o(C) does not depend on the

The meanings of three terms in this paper differ from those used in certain earlier works, as will be
indicated in footnotes. The new definitions seem preferable. This definition of norm is the one used in [2], [10]
and the manuscript of [3]. The definition given in the published version of [3] turns out to be less satisfactory.
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choice ofa generator matrix.) By reordering the coordinates (ifnecessary) we may assume
that the first m columns of C are identical, then the next m2 columns, and so on. We
partition the codewords c e C as

(7) c (C(1), C(2), c(a)), C(i) (Ci, Ci, Ci)

where length (c(i)) mi. Correspondingly, we partition an arbitrary vector x e F as

(8) X--(X(1), ,x(a)),
where length (x(i)) mi. The height ofx") is defined to be

(9) hi=ht(xti))=wt(xti))-[?],
and the height ofx is

(1 O) ht(x) hi.
i=1

Then we have ([ 10, (15)])

11 0 (C) max min ht(x + c).
cC

A vector x such that mincc ht(x + c) o(C), or equivalently d(x, C) R, is called a
deep hole in C. It is shown in Theorem of [10] that, using (11), we can express the
problem of finding o(C) as an integer programming problem.

The following result will turn out to be very useful.
THEOREM 1. Suppose a code C is the row space ofa matrix of the form [’ a]3

where G and G have no columns ofO’s, and let codes A and B be the row spaces ofG
and G2, respectively. (a) IfG3 O, so that C is a direct sum C A (R) B, then

(12) p(C) p(A) + p(B),

and ifeither A or B is normal so is C. (b) Ifall columns in [aa3] occur an even number of
times, then p(C) p(A), and ifA is normal so is C.

Proof (a) Clearly

(13) CR(C) <= CR(A) + CR(B)

(cf. [7]), with equality if G3 0, which implies (12). Suppose G3 0, A is normal and
coordinate r is acceptable. Let A, B, C have lengths hA, nn, nc, respectively. For an
arbitrary x [Yl zl F "c, y Fn, z 6 Fn we have, in the notation of 1,

d(x, C(ar)) d(y,A)) + d(z,B), a O, 1,

Norm (C)= Norm (A)+ 2CR(B)

<= 2CR(A) + + 2CR(B)
2CR(C)+ 1,

and C is normal. (b) Now CR(C) CR(A) + 1/2nB, so p(C) p(A). IfA is normal, then
d(x, C(ar)) <= d(y, A()) + 1/2nB, and again Norm (C) =< 2CR(C) + 1.

3. The effect on O of varying the multiplicities; stable codes. We now investigate
how o(C) changes as the multiplicities mi of the columns of C vary. Any code C of
dimension _-< k can be obtained by assigning suitable multiplicities to the columns ofthe
simplex code Sk. Let us arrange the columns of Sk in some fixed order, for example, the
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binary order illustrated in (14) for $3 (see also Fig. 3 of Part II):

I0 0 0 1(14) S3" 0 0 0
0 0 0

We choose a generator matrix G for C, and let mi >= 0 be the number of times the ith
column of Sk appears in G, for 1, 2k- 1. Then we let

p(k)(m, m2, m2 )

equal the normalized coveting radius (C). Choosing a different generator matrix for C
permutes the m;’s but does not change the value ofo)(m, , m2- ). (However most
permutations of the arguments do change the value of o)(m, , m2- ).)

It turns out that the function ) is best studied by allowing the m to vary while
fixing their parity, or in other words by investigating how ) changes when pairs of
identical columns are added to or deleted from the generator matrix G. It is an elementary
fact that when two identical columns are adjoined to G (columns which may or may not
already be present in G), the coveting radius of C increases by either or 2, so the
normalized coveting radius is either unchanged or increases by 1. This establishes the
monotonicity property 10, Thm. 2]" if mi -< m and mi m (mod 2) for all i, then

(15) o((m m2- ) <= p((m’ m’2- ).

The earliest codes to be considered are therefore the projective codes. Given an
arbitrary code C, with parameters [n, k]R and generator matrix G, the corresponding
contracted code2 is the projective code which is the row space of the matrix formed
by taking one copy of each column of G that has odd multiplicity. C is independent of
the choice of G. (If all m are even we set equal to the empty code 0.) We denote the
parameters of by [a, c]/, so a _-< n, : <- k,/ _-< R and a() -< a(C).

We say that two codes C, D are congruent (written C D) if ( =/5. If the multi-
plicities of the columns in C do not exceed the multiplicities of the same columns in D
(but with no constraints on their parities), we write C _-< D. For example, the contracted
code C satisfies

(16) -=C and -<C.
The monotonicity property (15) states that

(17) C--D, C<=D p(C)<=p(D).

We shall need the following corollary to Theorem 19 of [3].
THEOREM 2. Let C be normal and suppose the rth coordinate is acceptable. Let D

beformed by adjoining 2m copies ofthe rth coordinate to C. Then CR(D) CR(C) +
m, Norm (D) Norm (C) / 2m, D is normal, and any copy ofthe rth coordinate is an
acceptable coordinatefor D.

Proof D is an amalgamated direct sum [3] of C with the repetition code T_m + .
By the remarks made earlier in this section, CR(D) >= CR(C) + m. From Theorem 19 (ii)
of [3], CR(D) CR(C) + m. Then D is normal by Theorem 19(iii) of [3].

The determination of the coveting radius of codes of low dimension is greatly fa-
cilitated by the observation that for many of these codes p does not increase when pairs
of identical columns are adjoined to the generator matrix. We call C stable if it has this

A different definition of contracted code was used in [2].
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property, or more precisely if

(18) C=- D, C-<- D = p(C) p(D).

We shall see, for example, that all codes of dimension k =< 3 are stable.
In view of Theorem l(b), adjoining pairs of identical columns from outside the

subspace ofPG(2, k- 1) spanned bythe columns ofChas no effect on p, so such columns
can be ignored when investigating the stability of C.

THEOREM 3. Let an In, k] code C be the row space ofa matrix G, and let II be the
subspace ofPG(2, k 1) spanned by the columns of G. Then C is stable ifand only if
p(C) does not increase when any number ofpairs ofidentical columns representingpoints
in II are adjoined to G.

Examples. If all the multiplicities mi are even, then o 0. But C is the empty code
0, with o 0. We deduce that 0 is stable. (This can also be deduced directly from the
theorem.)

If C has dimension then (since no coordinate may be identically zero) C Tn,
R [n/2], p 0. But 7n 0 if n is even, 7n F if n is odd, both having o 0. We
deduce that F is stable. In fact all the codes F and En are stable (see the examples
preceding Theorem 6).

Any code C of dimension 2 has a generator matrix containing (say) a columns (0),
b columns () and c columns (I). As stated on page 388 of [3], the coveting radius of C
is given by

(19) + + +1 if a, b, c areodd,

b c
(20) [] + [] + [] otherwise.

This now has a very short proof. We calculate t, which is

0, with o 0,

F, with o 0,

F 2, with o 0,

if a, b, c are even,

if one of a, b, c is odd,

if two of a, b, c are odd,

E3, with o 1, if a, b, c are odd.

All four codes are stable, and (19), (20) follow immediately.
THEOREM 4. A stable code is normal, and all coordinates are acceptable.
LEMMA 5. Let C be any [n, k] code such that for some (1 <= <- n), and all l

O, 1, 2, adjoining 2l copies ofcolumn to C does not increase the normalized cover-
ing radius o. Then C is normal and coordinate is acceptable.

Proof Suppose coordinate is unacceptable. Therefore there is a vector x such that
f(oi)(x) + f]i)(x) >= 2R + 2. Without loss of generalityf(oi)(x) <= f]i)(x), sayf(oi)(x) R O,
f]i)(x) >= R + 0 + 2, where 0 =< 0 _-< R. We construct D by adjoining 2R + 2 copies of
column to C. Then o(D) o(C), so

(21) CR(D)=CR(C)+R+ l=2R+ 1.

Let x* xl u I, where u is a vector of length 2R + 2 and weight w R + 0 + 2. Then
for D,

f(oi)(x*) f()(x) + w 2R + 2,

fi)(x*) fi)(x) + 2R + 2 w >= 2R + 2,

which contradicts (21).
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Theorem 4 now follows because a stable code satisfies the hypothesis of the lemma
for every i.

4. Upper bounds on o. Suppose C is an [n, k]R code, and the contracted code C is
an [r, c]/ code. It follows immediately from (1), (6) that

A stronger upper bound was given in Theorem 8 of [10]. The main goal of the present
section is to prove Theorem 7, which strengthens both of these results. We first quote
(from Corollary 6 of [7]) the result that the maximal coveting radius of any [n, k] code
is given by

T[n,k]

(24) n- k for

where Ix] denotes the smallest integer >= x.

l=<k_<- <=k<=n

The method ofpivoting, introduced in VII of[ 10], is a useful technique for getting
upper bounds on o(C) (which are often tight), and leads to Theorem 6. Consider C to
be formed from the simplex code Sk with appropriate multiplicities mi, with length n

mi. We partition vectors of F into blocks as in (7), (8). We choose a coordinate
Q(1 <- Q -< 2k 1), called the pivot, such that ma 4 O. For an arbitrary vector x we first
make ht(xto)) <= 0 by (if necessary) adding a codeword c (c1), ct2k- 1)) e C for
which cQ) 4: 0.

Let CtaQI denote the set of all codewords of C for which c(Q) a, with the Qth block
of coordinates deleted, for a 0, 1. Ct01 is a code of length n m and dimension
k 1. C]1 is a translate of Ct01 and has the same coveting radius. In particular, Ct0Q is
obtained by assigning multiplicities mo (say) to S_ 1. The mo are related to the original
multiplicities me as follows. The me (1 =< P _-< 2 1) are nonnegative integers assigned
to the points P PG(2, k 1). When we form the subcode Ct0, the me are combined
in pairs to give the new multiplicities m,. The multiplicities mR and ms are combined
if and only if QRS is a line in PG(2, k 1). Thus

(25) m’e mR + ms for QRS a line in PG(2, k- 1).

In particular, the number of distinct columns in Cto with odd multiplicity, say,
is equal to the number of lines QTU for which one of mT and mu is odd and the
other even.

We return to the problem ofreducing the distance from x to C. By adding a suitable
codeword of C[oQ] we can make ht(x) <= o(k-l)(m,,... mk_l_l)" This leads to the
pivoting bound[l0, Thm. 7]: if mQ =/: O,

(26) o(C) -<- + o(CtoQ),
i.e.,

(27) P(k)(ml m2k- 1) < + p(k- l)(m, m2k_ 1),

where rt is the number of lines QRS for which mR and ms are odd, and the m are given
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by (25). In the other direction, we have (from (17))

(28) o()<=o(C).
It is often convenient to be able to refer directly to the code obtained by contracting

CtoQI, which we shall denote by . In particular, if is stable, we have

(29) to(C) <= 7 + to(().
Remarks. (1) Different choices for the pivot Q may give different bounds, so we

can replace the fight side of (27) by

(30) min {7 "- to(k- 1)(m m2k_l_ 1)}.
Q

It appears best to choose Q so that mQ is odd. Even so, (30) may not be tight: there may
be no Q for which equality holds in (27). If there is such a Q we call C and ( tame,
otherwise wild. (2) It was shown in [10] (see especially Theorem 9) that if dim C
dim C and the bounds (26) andQ(28) differ by at most 1, i.e., if, for some choice of the
pivot Q, either o(() 7 + to(Cto 1), or o() 7 + o(CtoQ) 1, then C is normal. (It is
easy to show in fact that the hypothesis dim C dim is unnecessary.)

Examples. Suppose C is an [n, k] code such that Fk. We show by induction
on k that to(C) 0. Without loss of generality C has a generator matrix [IG] where I is
an identity matrix and all the columns ofG have even multiplicity. By pivoting on the
first coordinate, we obtain to(C) 0. Therefore Fk is stable for all k, and to(F k) O. A
similar argument shows that Ek is stable and to(E2) 0, to(Ek) for k >_- 3.

THEOREM 6. Let C be an In, k] code and let the contracted code " be an [, c] code.
Then

(31) p(C) <- T[,k].

Proof The proof is by induction on k, the result being immediate for k 0 and 1.
Let C have multiplicities me, and choose Q so that mQ is odd (if all me are even,
to(C) 0). Then CtoQ has dimension k 1. Let , the contracted code of C[oQ, have
parameters [, ]. Without loss of generality we may assume the generator matrix for C
has the form shown in Fig. 1. The parities of the multiplicities mQ, m, ms,’’’ are
indicated below the matrix. QRS is a typical line with ran, ms odd; QTU is a typical line
with mr odd and me even; and QVW is a typical line with my, mw even. There are 7
such pairs R, & and such pairs T, U. x, y, z denote column vectors of length k 1.

Then/c is the rank of the subspace of F spanned by the columns of types Q, R, S
and T, while is the rank ofthe subspace off- spanned by the vectors y. The difference
in rank A /- therefore satisfies _-< A __< + 7. By the pivoting bound, p(C) <- 7 +
p(Ct0Ql), and by the induction hypothesis p(C) -< 7 + T[u, ]. The desired result will

Q R S T U V W

O O O

O

O
C" X X y y Z Z

O

ODD ODD ODD ODD EVEN EVEN EVEN

FIG. 1. Pivoting (see proofof Theorem 6).
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follow if we show that

(32) 7 + T[u, K] _-< T[,k].

We also know (by counting the odd columns in Fig. 1) that + 27 + . By (23),
(24) we can find a code A with parameters [27 + 1, A]R 7 (using (23) if =< A =< 7,

and (24) if A 7 + 1). Suppose B is a code with parameters [, K] and coveting radius
R T[u, r]. Then A B has length + 27 + u , dimension r + A c, and coveting
radius 7 + T[, r]. This implies (32) and completes the proof.

By combining Theorem 8 of[10] with Theorem 6, we obtain our final bound.
THEOREM 7. Given a code C, let the contracted code have parameters

[1, k]. Then

(a) p(C) <= [r//2]

(b) p(C)= [r//21

(c) p(c) <= - k

iff <-_ [/2] and is not a simplex code;

if f <= [/2] and is a simplex code (this requires
2i- for some i);

if: >- ra/zq.

Remark. We conjecture, but have not been able to prove, that Theorem 6 can be
replaced by t9 (C) =< T*[, c], where T *[r, :] is the largest coveting radius ofany projective
[ti, :] code.

5. Behavior of 19 as n -- ; structure of best covering codes. In this section we
investigate the behavior of 19 as the length n -- (while the dimension k is held fixed).
There are only a finite number of projective codes of a given dimension k (for their
length cannot exceed 2k 1). Previously we began with an arbitrary code Cand considered
the contracted code . Now we reverse the process and begin with a projective code B,
with parameters [nB, k], and consider an arbitrary [n, k]R code C, with multiplicities mi
say, for which B.

Note that R and 19(C) are related via (2):

n nB(33) 19 C R - 4- --f
Therefore, if nB and n are fixed, by minimizing 19(C) we minimize R.

If B and B is stable ( 3), then 19(C) 19(B); in general, however, 19(C) > 19(B).
We define3

(34) po(B) max {p(C): C- B, C> B }.
Note that in view of Theorem (b), adjoining pairs of identical columns from outside
the subspace of PG(2, k 1) has no effect on 19, and so there is no loss of generality in
(34) in assuming that dim C dim B. We also note that by (22), 19(B) is finite:

From the pivoting bound (26),

(36) po(B) <= 7 + po(J).

This definition ofp differs from that in 10] in allowing even multiples of columns not present in B to
be adjoined to B.
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This gives a useful criterion for stability. If, for some choice of the pivot,

(37) p(B) rl + Poo(),
then B is stable. For (17) and (37) assume that p(B) p(B). Also, if C B and (37)
holds, C is tame and stable.

The problem of finding p(B) can also be expressed as an integer programming
problem:

(38) p(B) max

subject to the constraints

(39) hi.Z for 1, ,2k- 1,

2k- 2k-
(40) , hici<=- , rici forc=(c, ,C2-)Sk,

i=1 i=l

where the ci (=0 or l) in (40) are interpreted as real numbers, and ri 0 if mi is even,
ri if mi is odd (cf. 10, Thin. ]).

If C is such that B, dim C dim B, and tg(C) tgoo(B), we say that C has been
obtained by saturating B. Obviously a saturated code is stable.

It is sometimes useful to know how long it would take to saturate B, if pairs of
identical columns were added to B so as to drive t9 up to tgoo(B) as quickly as possible.
The next theorem gives an upper bound on the answer, and also on the values of the m
and hi that are required.

THEOREM 8. Let B be a projective code ofdimension k. (a) There is an [n, k] code
C with multiplicities mi <= 2k and length

(41 n <= 2k(2k- 1),

satisfying B and a(C) aoo(B). (b) Consider any In, k] code C with B and
a(C) ao(B). Let x be a deep hole in Cfor which 0 is a closest codeword. Then the
heights hi ofthe blocks ofx satisfy

(42) [hi[ <=2k- 1, 1, ,2k- 1.

Proof. We prove (b) first. We know that

(43) hi+ +h2k-

so we shall maximize h; (and later -hi) subject to the constraints (39), (40), (43). Inequality
(40) implies that

2k-

(44) , hici < 2k- 2 for c-Sk,
i=1

since all the nonzero codewords in Sk have weight 2k- 1, and ri =< 1. If the inequal-
ities (44) corresponding to those codewords c (cl, c2-1) Sk with cl are
summed we obtain 2k- lhl + 2k-2(h2 + + h2-l) =< 22k-3, which by (43) becomes
hi =< 2k- p(B) =< 2k- 1. Similarly, by using the codewords with cl 0, we obtain
-h _-< 2k- , so Ihl -<- 2k- . The same argument applies to the other hi. (a) Knowing the
possible range of the individual hi we can work out how large the multiplicities mi must
be. From (9), mi 2k is enough to permit -2k- =< hi =< 2k- 1. Therefore there is a code
C of length n Y mi <= 2k(2k 1) with p(C) oo(B).
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Theorem 8 implies that we can add the extra inequalities

(45) Ihgl =< 2k- 1, 1, ,2k- 1,

to the integer program (38)-(40) defining p,(B). Stronger bounds than (45) can often be
obtained in particular cases by detailed examination of (40).

The quantity po(B) tells us the maximal value of p(C) over all codes C with
( B. We now investigate the minimal value. Let

(46) p*(B) men {p(C): Cis an [n,k] code with C=-B, C>=B}.
In view of (33), this also minimizes the coveting radius of C over all [n, k] codes with
( B. From O*n(B) <= o(B) and (15), for sufficiently large n O*(B) is independent
of n, and will be denoted by o.(B). Then

(47) p(B) <= p.(B) <= p(B).
THEOREM 9. Let B be an [n, k] projective code. For sufficiently large n ofthe same

parity as nn there is an [n, k] normal code C with C B, C >- B, and o(C) o.(B),
which is obtained by adjoining n n copies ofa single column to B.

Proof Let us arrange the coordinates ofSk SO that the coordinates ofB appear first.
The set of vectors (hi,’", h2k_ 1) satisfying (39), (40) (with ri for =< _-< nn,
7re 0 otherwise) and (45) is a finite set H (depending on B but not on n).

For fixed large n with n nn(mod 2), we consider all [n, k] codes C for which
C B. Such a code C is defined by its multiplicities ml, m2k- 1, where

ml, mnn are odd,

mnn + 1, m2k-- are even, and
(48)

2k-1

mi=n.
i=1

Then p(C) p(k)(m, m:zk- 1) is equal to the maximum of hi + + h2k_ subject
to (39), (40) and

(49) -[]_-<h=<[] fore=l, ,2k--1

(cf. 10, Thm. ]). Also

O*n(B) men {Otk)(ml, ,m2- l): the mi satisfy (48)}.
Let us define

f(i)= p(k)(1, 1,n--nn+ 1, 1, 1,0, ,0),

for l, nn, where n nn + is in position and there are n ones, and

f(i)=pk)(1, 1,0, ,O,n--nn,O, ,0)

for nn + 1, 2g 1, where n nn is in position and there are nn ones. Since H
is a finite set, for n sufficiently large f(i) is independent of n and is equal to either

p(k)(1, 1, a, 1, 1, O, O)
for 1, ..-, n, or

p(k)(1, 1,0, 0, ai, 0, 0)

for ne + 1, 2 1, where al, a2- are constants (depending only on B).
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Finally, let
M min {f(1), f(2k 1))

and choose an r such that f(r) M.
After these preliminaries we come to the heart of the proof. Suppose n is large

(specifically, we need n > 2k max {ai}), and p*(B) ptk)(m, m2k_ 1), where the mi
satisfy (48). At least one of the mi must be large, say my (and in particular my > ay). By
the monotonicity property (15),

p(k)(1,’’’,mj,-’’,l 0,’." O) (j<----riB)
p,n(B)>=

p(k)(1, 1,0, mj, ,0) j >

_[P(k)(l’’’’’aJ’’’’’l’O’’’" ,0) (j

p(k)(1, 1, O, aj, O) j > nn)

>=M.

In fact p* (B) M, since if C has multiplicities mi for <= nB and mi 0 for >
except for mr n -nB + (if r <-- riB) or n nB (if r > riB), then p (C) M. Therefore
p*n (B) p,(B) M.

Since p(C) p,(B), we can adjoin 2l copies of the special column to C without
increasing p, for l 0, l, .... Therefore C is normal by Lemma 5. This completes the
proof of Theorem 9.

Remark. The single column mentioned in the theorem need not be a column
of B.

Example. As an illustration of the preceding notions we analyze the l, 5]R 3
code C’ having generator matrix

2 3 4 5 6 7 8 9 10 11

(50) C’"

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

which is an interesting code for several reasons (see 6). It has weight distribution
01 41 616 85, and its automorphism group has order 1920, with two orbits on coordi-
nates, {1} and {2, 11 }. Suppose C is an [n, 5] code with ( C’, having odd
multiplicities ml, ml on the columns of(50), and even multiplicities on the remain-
ing 20 nonzero columns of length 5. From (17), p(C) >= p(C’) 3.

If we pivot on coordinate Q 1, we see that r/= 5 (since columns 2 and 7, 3 and
8, etc. combine), Ct0l has even multiplicities; i.e., ( 0, and (26) states that p(C) <= 5.
On the other hand, if we pivot at Q 2 we find that rt 1, t is the [8, 4] extended
Hamming code, for which p 2 or 3 depending on the multiplicities mo 10, Thm. 16],
and (26) yields p(C) -< 4. We conclude that

(51) 3-< p(C) =< 4.

The following theorem determines which of these two possibilities occurs.
THEOREM 10. Let C be any codefor which the contracted code is the [11, 5]R 3

code C’ defined by (50). Ifcolumn of(50) has multiplicity >= 3 or any ofthe 20 nonzero
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columns of length 5 not in (50) have positive multiplicity, then o(C) 4; otherwise
p(C) 3. Thus p,(C’) 3, p(C’) 4.

Proof To check the first assertion we verify (by computer) that if two copies of
column or of any of the 20 missing columns are adjoined to (50), p increases to 4, and
then we use monotonicity (15). On the other hand, by integer programming we find that
p(C) 3 in all other cases.

For example, by assigning multiplicities 1, 1, 1, 1, m, 1, ..., (m odd) to the
columns of(50) we obtain an infinite sequence of[n rn + 10, 5] codes with p 3 and
coveting radius R 3 + [m/2] (n 5)/2, for odd n >_- 11. Figure 2 shows the case of
length 23. These codes are optimal coverings, for it is proved in Theorem 22 of [3] that
t[n, 5] [(n 5)/2] (n 4: 6). (They are not unique, however; there are many codes that
achieve this bound).

Remark. Definitions (34), (46) and Theorem 9 still apply if B is not projective
(although the proof of Theorem 9 must be modified slightly).

THEOREM 11. IfC is normal, then p,(C) p(C).
Proof Suppose column of C is acceptable. By adjoining 2l copies of column to

C we obtain a code D with p(D) p(C) (see Theorem 2). Therefore p,(C) p(C).
Remark. Similarly, if C is a code of length n with the property that, for all

1, , n, adjoining two copies of column to C increases p, then C is abnormal.
Theorem 9 also provides information about the best possible coveting codes.
THEOnEM 12. Forfixed k, and all sufficiently large n, then (a)

(52) t[n,k] =-+ rnin o,(B)-

where B ranges over all projective codes ofdimension k or k (a finite set), and nB is
the length ofB; (b) there is a normal [n, k]R code C with R tin, k] in which all columns
have multiplicity exceptfor one column which has large multiplicity; and (c)

(53) t[n + 2, k] t[n, k] + 1.

Proof Suppose n ) k, and let [n, k] denote the set of all [n, k] codes with cover-
ing radius R t[n, k]. Choose any C e Cg[n, k] and let B C be an [nB, kn] code.
Then 0(C) >= 0,(B). By Theorem 9 there is an [n 2(k kn), kn] normal code D
with/ B and o(D) o,(B). Then C’ D 6) T2-kB is an [n, k] normal code with
contracted code B, and o(C’) o,(B). Thus C’e Cg[n, k] and o(C)= o(C’)
o,(B). From (2), CR(C) 1/2n n + o,(B), and therefore

n, k - +nn o, B -where B ranges over all projective codes of dimension kB =< k.
We next show that in fact kn k or k- 1, and that there is a normal code

C" C[n, k] in which all but one of the columns has multiplicity 1.

FIG. 2. A [23, 5]R 9 optimal covering code obtainedfrom (50). Blank entries indicate zeros.
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Case (i): k kB (mod 2). By Theorem 9 there is an [n (k kB), kB] normal code
A with B and p(A) p,(B), obtained by adjoining (n nB) (k- kB) copies (an
even number) of a single column/3 (say) to B. Then C" A Fk- kn is an [n, k] normal
code with o(C") o,(B), and has nB + k- kB distinct columns with odd multiplicity.
From (2),

n nB+ k-kBCR(C") =- 2
+ p,(B)

which is less than CR(C) unless k kB. Therefore k kB, and C" e [n, k] has the
desired multiplicities.

Case (ii): k kB (mod 2). By Theorem 9, for sufficiently large No there is an
[No, kB] normal code Ao with 0 B and p(Ao) p,(B), obtained by adjoining No -nB
copies of a single column/3 to B. Let A be obtained by adjoining further copies of/3 to
Ao. We know CR(A2) CR(Ao) + l, so

either CR(A1) CR(Ao), CR(A2) CR(A) + 1,

or CR(A) CR(Ao) / 1, CR(A2) CR(A).

In the first case we call Ao late and in the second case we call it early. Whether Ao is late
or early depends on the solution to a certain integer programming problem. Therefore,
in the sequence Ao, A2, A4, from a certain point on either all Azi are early or all are
late, and similarly in the sequence AI, A3, As, Thus for sufficiently large i, A2i+
satisfies the hypothesis of Lemma 5 and is normal. In particular, by taking

i= 1/2{n- l-No-(k-kB)},
we obtain normal codes A2i and A2i+ of dimension kB and lengths n (k kB)
and n (k- kB), respectively, with p(A2i) p,(B),

n- 1-(k-kB) nBCR(A2i) + p,(n),
2 2

CR(A2i + <= CR(A2i -k 1.

Finally, let C" A2i +1 () Fk-kn. Then

n nBCR(C") CR(Ai + ,) <= -x -x- + p,(B),
z z

since k >= kB + 1, with equality only if k kB + and A2i is early. Therefore k kB +
1, and C" e C[n, k] has the desired multiplicities. This completes the proof of (a) and
(b). To prove (c) we observe that the best choice for B in (52) is independent of n, and
when n increases to n + 2, the fight-hand side of (52) increases by 1.

Remarks. (1) This theorem establishes Conjectures A and D of [2] for sufficiently
large n. (2) If the optimal code C is obtained by adjoining 2l columns to B, then C has
length n nB + 2l and coveting radius R p,(B) + l. We can write this as

(54)
n

R nB-- =---- p,(B)

or, if B is normal, as

(55)
n nB- CR C - CR B).



618 K. E. KILBY AND N. J. A. SLOANE

Thus the best seed codes B are normal codes for which the parameter

nB(56) 6 - CR(B

is as large as possible. (3) A possible interpretation ofTheorems 9 and 12 is the following.
An optimal coveting code has the property that the codewords are constructed so as to
be not too far from an arbitrary n-tuple x. This is a difficult task for n )) k, since we are
using only 2k vectors to cover 2n vectors. We may say informally that codes with the
structure described in Theorem 12(b) do this by matching x very carefully on a small
number (ns) of coordinates, and just using an average on the rest (see Fig. 2). (4) This
special structure also greatly simplifies the process of finding the closest codeword to a
given x.
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6. Codes of dimension k -< 5. The inequivalent projective [n, k] codes were enu-
merated by Slepian [8]. The numbers of these codes for k -_< 5 are shown in Table l, as
well as the numbers of inequivalent, projective, indecornposable [n, k] codes. The codes
of dimension k -< 4 were studied in detail in 10], where it was shown that, with four
exceptions, all such codes are tame and stable. The exceptions are described in Theorem
16 of 10], and are also listed below. We have made a similar investigation of all the
proper codes of dimension 5. It would take too much space to list all the codes, and we
just give a summary. The main result is the following.

THEOREM 13. For each projective code B ofdimension 5,

(57) CR(B) <-_ poo(B) <-- CR(B) + 1.

Equivalently, for any code Cfor which the contracted code C has dimension 5,

(58) CR(C) <- p(C) <- CR(C) + 1.

Every code ofdimension <= 5 is normal, and infact every code Cfor which the contracted
code has dimension <= 5 is normal.

Proof. The first assertion was established by direct calculation using a computer,
the pivoting bound (26) of Part I, and the results of 10]. The normality of these codes
then follows from Theorem 9 of [10] (see the remarks in 4 of Part I), and the final
assertion is a consequence of Theorem (b) of Part I.

Remark. While proving Theorem 13 we reconfirmed the assertions required for
the proof of Theorem 22 of [3] that there are no proper codes with parameters 11, 5] 2,
[13, 5] 3,..., [23, 5] 8 or [25, 5] 9.

Table 2(a) gives upper and lower bounds on p(C) for any code C for which C is an
[n, k] code with k _-< 5. Table 2(b) gives tin, k] for k _-< 5 (a much more extensive table
appears in [3]). For large n (indicated by an asterisk) t[n, k] cannot be realized by a
projective code.

The four wild codes of dimension 4 are the [7, 4] Hamming code H7, the [8, 4] 2
extended Hamming code, the 11, 4] 3 code obtained by omitting the columns of an
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TABLE
Number of inequivalent projective [n, k] codes. (In parentheses, the number of inequivalent,

projective, indecomposable In, k] codes.)

k\n 2 4 5 6 7 8 9 l0 ll 12 13 14 15

(1)

(0) (1)

2

(0) (1) (1) (1) (1)

4 5 6 5 4 3 2

(0) (1) (2) (4) (5) (5) (4) (3) (2) (1) (1) (1)

4 8 15 29 46 64 89 ll2 128 144

(0) (1) (3) (9) (22) (40) (60) (86) (llO) (127) (143)

k\n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

145 129 113 91 67 50 34 21 14 9 3 2

(144) (129) (113) (91) (67) (50) (34) (21) (14) (9) (5) (3) (2) (1) (1) (1)

E3 (R) F from $4, and the 12, 4] 4 code obtained by omitting an E3 from $4. For all
four codes, po R + 1. (See Theorem 16 of 10].)

Projective codes of dimension 5. In the remainder ofthis section we briefly describe
the [n, 5] projective codes for each length n, and give one or two of the best coveting
codes. The examples given were selected by applying (in order) the following criteria: (1)
minimize R, (2) choose tame rather than wild codes, (3) maximize the order g of the
automorphism group, and (4) maximize drain. Generator matrices for some ofthese codes
are displayed in Fig. 3. Although many of these codes can be obtained from later codes
by deleting appropriate coordinates, there is no single sequence of nested codes that
includes all our best examples.

For each code B in the following list we give upper and lower bounds (differing by
at most 1) on p(C) for any code C for which B. All tame codes of dimension 5
satisfy (37) of Part I and are therefore stable. However we have not been able to check
all the wild codes (not even all the codes on the following list) to see if they are unstable
and the upper bound on p(C) is actually attained.

n 5. One code: F 5, p 0, tame, g 5!, dmin 1.
n 6. All four are tame, with R 1. Example: E6, p 1, tame, g 6!, dmin 2.
n 7. All are tame, six have R 1, two have R 2. Example: C7 (Fig. 3), p 1,

tame, g 72, dmin-- 2.
n 8. Two wild codes, with p or 2, thirteen tame, with R 2. Example:

H7 (R) F, p or 2, wild, g 168, dmin 1. (This code is unstable. It can be shown
(compare Theorem 10 of Part I) that the precise value of p is as follows. Consider any
code C for which C H7 (R) F. The columns of H7 span a PG(2, 3), in which there is a
unique further point X that is neither a column nor the sum of two columns of HT. If
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TABLE 2
(a) Upper and lower bounds on normalized covering radius o(C), given that ( is

an In, k] code. (b) tin, k], the smallest possible covering radius R for any In, k] code.
An asterisk indicates that this value ofR cannot be realized by a projective code.

(a)

k\n 2 4 6 7 8 9 10 11 12 13 14 15

0

0

0 2 3

0 1-2 1-2 2-3 3-4 3-4 4 5 6 7

0 1-2 1-2 2-3 2-4 3-4 3-5 4-5 4-5 5-6

kkn 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

5-7 6-7 6-7 7-8 7-9 8-9 8-9 9-10 9-11 10-11 10-11 11-12 12-13 13 14 15

k\n

4

5

(b)

2 4 5 6 7 8 9 10 11 12 13 14 15

0 2 2* 3* 3* 4* 4* 5* 5* 6* 6*

0 2 2* 3 4 4* 5* 5*

0 2 2 3 4 4

k\n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

7* 7* 8* 8* 9* 9* 10" 10" 11" 11" 12" 12" 13" 13" 14" 14"

6* 6* 7* 7* 8* 8* 9* 9* 10" 10" 11" 11" 12" 12" 13" 13"

6’ 6 7 7 8 8 9 9 10 10 11 11" 12" 12" 13"

any of the seven points PG(2, 3)\{X U H7 } has positive even multiplicity in C, p(C)
2; otherwise p(C) 1.)

n 9. Twenty-three have R 2 (2 are wild), six have R 3 (all tame). Example:
C9, p 2, tame, g 384, dmi 2.

n 10. Seven have R 2 (all wild), 38 have R 3 (all tame), one has R 4 (tame).
Example: C0, p 2 or 3, wild, unstable (p 3 if any column not in C0 has positive
even multiplicity, otherwise p 2), g 1920, dmin 4.

n 11. Fifty-five have R 3 (2 are wild), nine have R 4 (all tame). Example:
Cll p 3, tame, g 120, dmin 4.

n 12. Twenty have R 3 (all wild), 68 have R 4 (all tame), one has R 5
(tame). Example: Cl2 (Fig. 3, or omit first, second and last two columns of C6), o 3
or 4, wild, unstable, g 192, dmi 4.

n 13. One hundred four have R 4 (6 are wild), eight have R 5 (all tame).
Example: C3 (omit first, second and last columns of C6), o 4, tame, g 576,
drnin-- 5.

n 14. Forty-four have R 4 (all wild), 88 have R 5 (all tame). Example: C4
(omit first and last columns of C6), 4 or 5, wild, unstable, g 2688, dmin 6.
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C7:

C9:

CIO:

Cll:

0

O0

0
0
O0

0 0 0

oi 0 0

CI6:

011
I01
II0
III

Cl8: II
II

0

C24:
II II

011
I01
I0

II
II
II II

II II

III III

III
II

II
II

Cl2:
0111
I011
I101
II10

$5:

0000000
0000000
0001 II
OI I0011
I010101

00000000
IIIIIIII
00001111
001 I0011
01010101

(a) (b)

III II II
0000000 0
00001
001 I001
01010101

II IIII
II IIII

00001
001 I001
01010101

FIG. 3. Selected best (proper) covering codes ofdimension 5. Blank entries indicate zeros.

n 15. One hundred twenty-nine have R 5 (9 are wild), 15 have R 6 (all tame).
Example: C15 (omit first column of C6), o 5, tame, g 192, dmi, 6. (There is an
unstable code with the same R, and higher g and dmin, namely the shortened first-order
Reed-Muller code C’5" o 5 or 6, wild, unstable, g 20160, drain 7. Unstable codes
with a larger group and dmin also occur at other lengths, and we mention some of these
codes in parentheses.)

n 16. Fifty-three have R 5 (all wild), 89 have R 6 (2 are wild), three have
R 7 (all tame). Example: C16 (Fig. 3, or omit first and last columns of C8), o 5
or 6, wild, unstable, g 1344, dmin 7.

n 17. One hundred nineteen have R 6 (8 are wild), ten have R 7 (all tame).
Example: C7 (omit last column of C8), o 6, tame, g 192, dmin 7. (Alternatively

C’7" omit first column of C8, p 6 or 7, wild, unstable, g 21504, drain 8.)
n 18. Fifty-five have R 6 (all wild), 58 have R 7 (all tame). Example: C8

(Fig. 3, or omit columns 1-5 and last column of C24), p 6 or 7, wild, unstable,
g 3072, dmin 8.

n 19. Eighty-six have R 7 (8 are wild), five have R 8 (all tame). Example:
C19 (omit columns 1-5 of C24), 7, tame, g 768, dmi 8.
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n 20. Thirty-nine have R 7 (all wild), 28 have R 9 (1 is wild). Example: C20
(omit columns 1-4 of C24), 19 7 or 8, wild, stability not known,4 g 384, dmin 9.

n 21. Forty-seven have R 8 (6 are wild), three have R 9 (all tame). Exam-
ple: C2 (omit columns 1-3 of C24), 19 8, tame, g 384, dmin 9. (Alternatively, the
cyclic code C with generator polynomial X 16 -[- X 12 -[" X 11 -[- X8 -[- X6 -[- X4 -[- X3 -I-
X2 + x + 1, 19 8 or 9, wild, stability not known, g 1008, dmi 10.)

n 22. Nineteen have R 8 (all wild), 15 have R 9 (all tame). Example: C22
(omit columns and 2 of C24), 19 8 or 9, wild, g 768, dmin 10.

n 23. Nineteen have R 9 (3 are wild), two have R 10 (both tame). Exam-
ple: C23 (omit columns 1-4, 6, 8, 9, 12 ofSs), 19 9, tame, g 128, dmi 10. (Alterna-
tively, C3" omit columns 1-8 of $5, or column of C24, 19 9 or 10, wild, g 2688,
drnin 1|o)

n 24. Six have R 9 (all wild), eight have R 10 (1 wild). Example: C24 (Fig 3,
or omit columns 1-6, 8 of $5), 19 9 or 10, wild, g 384, dmi 11.

n 25. Eight have R 10 (2 are wild), one has R 11 (tame). Example: C25 (omit
columns 1, 2, 4, 7-9 of $5), 19 10, tame, g 192, dmin 11. (Alternatively C5: omit
columns 1-6 of $5, t9 10 or 11, wild, g 9216, dmin 12.)

n 26. Three have R 10 (all wild), two have R 11 (both tame). Example: C26
(omit first 5 columns of $5), 19 10 or 11, wild, g 3072, dmi 12.

n 27. Three codes with R 11 (two are wild). Example: C27 (omit 174 from $5),
19 11, tame, g 384, dmin 12.

n 28. Two codes. C28 (omit 173 from $5), 19 12, tame, g 2304, dmi 13.
(Alternatively, C8" omit E3 from $5,19 12 or 13, wild, g 64512, dmi 14.) For
n > 28 we can achieve a smaller R by using codes that are not projective (see Table 2(b)).

n 29. One code: C29 (omit any 2 columns of $5), 19 13, tame, g 21504,
dmi 14.

n 30. One code: C3o (omit any column of $5), 19 14, tame, g 322560, dmi, 15.
n 31. One code: $5 (Fig. 3), 19 15, tame, g 31.30-28.24.16 9999360,

dmin 16.

Codes with unacceptable coordinates. We have established certain facts about codes
having unacceptable coordinates (the definition is given in ofPart I), which we record
here. All coordinates of all projective codes of dimension k =< 4 are acceptable. The first
instance of a projective code with an unacceptable coordinate is the [10, 5] 2 code C’0
given in (4) of [3]. The second is the [11, 5] 3 code C’ of (50) in Part I, obtained by
adding an overall parity check to C’10. The first coordinate ofC’ is unacceptable. These
two are the only projective codes of dimension 5 and length n < 13 with unacceptable
coordinates. By adjoining an even number of copies of any acceptable coordinate to
either C’0 or C’, we obtain [n, 5] codes with unacceptable coordinates for all n >= 10.
Hence by taking direct sums with F there are [n, k] codes with unacceptable coordinates
for alln>_-k+5>= 10.

7. Codes with minimal distance 4 or 5 are normal. It is shown in [2] that all codes
with minimal distance dmi 3 are normal, and any coordinate in the support of a
codeword of minimal weight is acceptable. In this section we extend this result to codes
with minimal distance 4 and 5.

We begin with two lemmas, the first of which is elementary. For any x e Fn, let x’
denote the vector obtained by deleting the first coordinate of x. Suppose C is an [n, k]R
code, and let D be the [n 1, k’]R’ code D {c’: c e C}.

Preliminary calculations suggest this code may be stable, with poo 7.
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LEMMA 14. For any x Fn, d(x, C) >= d(x’, C’).
LEMMA 15. Suppose C and D have the same covering radius R, and let u F

be such that d(u, D) R. Then there are codewords Co, cl in C such that

d(u, c’o) d(u, c’) R,

thefirst coordinate ofCo is 0, and thefirst coordinate ofc is 1.
Proof Let x 0u. Then d(x, C) R by Lemma 14, say d(x, Co) R. If Co c’

then d(c’, u) R 1, a contradiction, so Co 0c’, with d(c’, u) R as required. Similarly
x u leads to c.

THEOREM 16. A code with minimal distance 4 or 5 is normal, and all coordinates
in the support ofa codeword ofminimal weight are acceptable.

Proof Suppose C is an [n, k]R code containing the word s 11 100 0 of
weight dmin 4 or 5. We present the proof so that it applies simultaneously to both cases.

Let primes indicate that the first coordinate has been deleted, and set D
{c’ c C }. Since D has minimal distance less than C, we may assume by induction
that D is normal and the first coordinate ofD is acceptable. The coveting radius ofD is
either R or R 1.

We shall show that the first coordinate of C is acceptable; i.e.,

d(x, Co)) + d(x, C’)) <- 2R + 1,

for all x 6 Fn, or equivalently that, for each x, there exists Co Co), cl C]) such that

(59) d(x’, c ’o) + d(x ’, c ’) <= 2R.
Let d(x’, D) R m, where rn 0, 1, 2, ....

Case rn 0. Then (59) follows immediately from Lemma 15.
Case rn 1. Without loss of generality we suppose there is Co 0... C such

that d(x’, c) R 1. Ifx =. then g s + Co satisfies d(x’, g’) -< R + and (59)
holds (with c g). So we may assume x =. 0..., say x c0/33,6 Since D is nor-
mal there is c C such that d(x’, c’) =< R + 2. We choose c to minimize
d(x’, c’). There are four subcases.

(a) d(x’, c’) R + 2. Let y 1/33,6... (differing from x in one coordinate), and
let c 6 D be a closest codeword to y’, with d(y’, c’) <= R. Then d(y’, c’z) R. (For
suppose d(y’, c) =< R 1. Ifc2 =. 0..., d(x’, cz) =< R 2, contradicting the definition
of Co, and if c2 d(x’, c’) <= R, contradicting the definition of c.) By Lemma
15 there are go Col), g C) with d(y’, g’o) d(y’, g’) R. Also go and g have
second digit 0, or else d(x’, g) =< R + 1, again contradicting the definition ofc. Therefore
d(x’, g’o) d(x’, g’) R 1, and (59) holds.

(b) d(x’, c’) R + 1. Define y and c2 as in (a). Again d(y’, c’2) R, and go
Co), gl 6 C]) exist with d(y’, g’o) d(y’, g’) R. If the second digit of either go or g
is 0, d(x’, g’o) + d(x’, g’) -< 2R, and (59) holds. Suppose then that go 01 g
11 Choose so that gi and Co differ in the first digit. Then d(x’, C’o) + d(x’, g) <=
(R 1) + (R + 1), and again (59) holds.

(c) d(x’, c’) R. If Co c0.., and c 1 or if Co 0... and c cl
then we may use Co and cl in (59). The difficult cases are when Co and c begin with the
same digit. We define z c0/-i... (differing from x in two coordinates), let do
d(z, C) <- R, and let U denote the set of codewords u C with d(z, u) do.

Case (c. 1). Suppose Co c0 c c If U contains a vector u ... then
d(u, x) <= d(u, z) + 2 <- R + 2, d(u’, x’) -< R + 1, and we use Co and u in (59). Other-
wise all u U begin with c, and d(z’, D’) d(z, D) do. If do R, then z is a deep
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hole in D and by Lemma 15 there is u ... U, a contradiction. Therefore
do -< R 1. Choose some u U. If u a./33, then d(x, u) <= d(z, u) 2 <= R 3,
a contradiction. Therefore u a./33’..., a./33’.., or a./33’ In every case g
s + u satisfies d(x’, g’) =< R + 1, and we may use Co and g in (59).

Case (c.2). Suppose Co n0..., cl The argument is similar to case (c. 1)
and is omitted.

(d) d(x’, c’) =< R 1. Let g s + Cl. Then d(x’, g’) -< R + and we may use
cl and g in (59).

Case m >- 2. Choose c e C so that d(x’, c’) =< R 2, say c C(0l). Then g s +
c C]l) satisfies d(x’, g’) =< R + 2, and we use c and g in (59). This completes the proof.

8. Further conditions for a code to be normal. In this section we show that if has
minimal distance or 2 then C is normal. Theorem 18 summarizes the known conditions
on the parameters of a code that imply normality.

THEOREM 17. Ifthe contracted code has dmi or 2 then C is normal.
Proof If has dmi then is a direct sum F @ Therefore C Tm for

some repetition code Tm. Since Tm is normal, so is C by Theorem (b) of Part I.
Suppose has dmin 2, and there is a word of weight 2 with ones on the first and

last coordinates. By Theorem 19 of [2], C is normal, and the first and last coordinates
are acceptable.

We first "blow up" all but the first and last coordinates of , obtaining a code B
(say) of length n, norm N, coveting radius Rs, and dmin 2. Again by Theorem 19 of
[2], B is normal and the first and last coordinates are acceptable.

Next we blow up the last coordinate ofB, giving it odd multiplicity me, and obtaining
(by Theorem 2 of Part I) a normal code A (say) of length nA, norm Na N + mQ 1,
and coveting radius Ra R + [mQ/2]. By Theorem 2 of Part I we know that the last
mQ coordinates of A are acceptable. The difficult part of the proof is to show that the
first coordinate ofA is acceptable. This is enough to prove the theorem, for then we can
obtain C by applying the amalgamated direct sum construction again, blowing up the
first coordinate ofA, and deduce from Theorem 2 of Part I that C is normal.

Let w e B be the codeword with ones on the first and last coordinates of B, and
let w2 be the corresponding codeword of A. (Primes will indicate that the last mQ
coordinates have been deleted.) Take any x e F", and choose bi B) so as to min-
imize d(x’, b) for 0, 1. Since the first coordinate of B is acceptable, d(x’, bo) +
d(x’, b) <= N. Let r, s be the last digits of bo, bl respectively, and let ai A be obtained
by repeating the last digit of bi me times. (c) If r 4 s then the last digit ofx’ agrees
with either r or s, and

d(x, ao) + d(x, a) d(x’, bo) + d(x’, b) + mo-
<=Nn+ mo-

and the first coordinate of A is acceptable. (/3) If r s, suppose the last digit of x’ is
r. Then Yo b0 + w, yl b + w satisfy

d(x’, yo) + d(x’, y) d(x’, bo) + d(x’, b) 2,

contradicting the choice of bo and b. Therefore x’ ends with r.
Let b b0 or bl be a closest codeword in B to x’. If the initial digits of x and b

differ, let c b + w B, so that b and c differ in their last digits, d(x’, b) d(x’, c),
d(x’, b) + d(x’, c) <= Nn, and by (a) the first coordinate ofA is acceptable. Therefore we
may assume x and b agree in their initial digits. We now have the situation shown
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in Fig. 4. If there are more than 1/2mQ r’s in the last mQ digits of x, then d(x, ao) +
d(x, a) <= d(x’, bo) + d(x’, bl) + mQ <= NA. If there are fewer than 1/2mQ r’s we add
w2 to a0 and a and the same inequalities hold. This completes the proof.

THEOREM 18. Let C be an [n, k]R code, with minimal distance drain and contracted
code . Any ofthefollowing conditions implies that C is normal: (a) n =< 14, (b) k _-< 5,
(c) R -< 2, (d) drain --< 5, (e) ( has dimension <= 5, or (f) (’ has minimal distance <= 2.

Proof. (b) and (e) follow from Theorem 13, (c) is Theorem 22 of [2], (d) follows
from Theorem 24 of [2] and Theorem 16 above, and (f) is Theorem 17. (a) follows from
(b), (d) and the tables of minimal distance [4], 11 ].

9. Abnormal nonlinear codes exist. At present it is not known ifan abnormal linear
code exists. Abnormal nonlinear codes were first constructed by Peter Frankl (personal
communication), and with his permission we include his construction here.

In order for a code C to be abnormal, for each 1, n there must be a "bad"
vector x(i) such that

(60) d(x(i), C()) + d(x(i), C]i)) . 2R + 2

(in the notation of of Part I). The construction begins by choosing x), xn).
Let B be any (linear or nonlinear) code of length n, minimal distance d >_- 6, and

containing at least n codewords. Let x), ..., xn) be distinct codewords of B. We may
assume (if necessary by complementing coordinates) that the ith coordinate ofxi) is 0,
for 1, ..-, n. Let

(61) S {yF d(y,x(i)) <= [(d- 2)/2] and the ith coordinate ofy is 0}
and define

(62) C Fn\(s, U S2 [,..J [,..J Sn).

THEOREM 19. C has covering radius and norm at least [d/2] + >= 4, and is

therefore abnormal.
Proof By the triangle inequality the sets Si are disjoint. We first show C has cover-

ing radius 1. If z E F n, z C, then z Si for a unique i. Let c be obtained by chang-
ing the ith coordinate of z to 1. Then d(z, c) 1, c Si (by (61)), and d(c, xi)) <- [d/2].
Therefore d(c, x(J)) >= [d/2] for j 4: i, so c S and thus c 6 C. Second, by construction
d(x(i), C(oi)) >= [d/2] and d(x(i), C]i)) >= 1, and so the norm of C is at least [d/2] + >=
4 2R + 2. Thus C is abnormal.

Example. Let B be a Hadamard code of length 11, and take the x(i) to be the eleven
cyclic shifts of(01011100010). Then Cis an abnormal code oflength 11 containing 1432
codewords.

For a smaller example we use the vectors x(), -.., x) of length 10 shown in Ta-
ble 3, let Si { y F d(y, x;)) =< 2, and ith coordinate of y is 0 }, and define C by
(62). Although the minimal distance between the x) is only 5 (so Theorem 19 does not

w Ioo...oi
X 0

b=bo 0

b

w2

ao
al

FIG. 4. Vectors used in proof of Theorem 17. Their names in code B are shown in the left, and in A on
the right.
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TABLE 3
Vectors

x(), x() used
in construction ofan
abnormal nonlinear
code.

0101110001
0010111000
1001011100
0100101110
0010010111
0001001011
1000100101
1100010010
1110001001
0111000100

apply), C turns out to be an abnormal code of length 10, with 564 codewords and
coveting radius 1.

Finally, it is possible to omit many ofthose 564 codewords and still have an abnormal
code. In this way we have constructed an abnormal code oflength 10 with 217 codewords
and coveting radius (we omit the details). This is the smallest abnormal code known
at present. It would be interesting to find the smallest possible example.
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LATENT SUBSETS FOR DUAL INTERSECTING SYSTEMS*

P. C. FISHBURN

Abstract. A collection F of subsets of l, 2, n} is a dual intersecting system if no two sets in F have
an empty intersection or an exhaustive union. Let f be the number of sets in F that contain point j, and let

f be the number of sets not in F but included in some set in F that contain j.
We conjecture that if F is a dual intersecting system, thenf

_
f for some j in l, n}. This is shown

to be true if either minf _-< n or minf < 8.

Key words, intersecting systems, latent subsets

AMS(MOS) subject classifications. 05A05, 05C65

1. Introduction. This note discusses a conjecture for systems of subsets of a finite
set that arose from research on related problems [2], including Chvfital’s conjecture 1]
and Kleitman’s stronger conjecture [3].

A system F of subsets A, B, of n { l, 2, n} is an intersecting system if
A f B 4: for all A, B e F and a dual intersecting system if both F and its dual F*
{n\A’A e F} are intersecting systems. The family of latent subsets for F is

FL {A n: AF,AB for some BF}.
Let F {A F: j A}, [FI, F {A VL: j A} andf [F].

CONJECTURE. For every n >= 2 and every dual intersecting system F ofn, f >= f
for somej in n.

Since a counterexample requiresj >f for all j, no generality is lost if we assume
that B F whenever A c B c C and A, C F, and that F is a maximal intersecting
system within F U Fz.

For a slightly different perspective on the conjecture, let/. {A
_

n: j A }, the
principalfilter generated by { j }, and note that F* is an intersecting system if and only
ifA t.) B is a proper subset of n whenever A, B F. The conjecture says that if

(P1) A fq B 4: for all A, Br F;

(P2) A UB :/: n for all A, B F,

then IFz A/1 >= IF N Ij[ for some j _-< n. Its resolution might aid in resolving the con-
jectures of Chvfital and Kleitman, which seem somewhat more intractable (see [2] for
further discussion).

Partial confirmations ofthe conjecture appear in ensuing sections. Section 2 presents
examples and suggests that the nearest one can get to a counterexample occurs when
(P1) and (P2) operate independently in different parts of n. Section 3 proves that the
conjecture is true whenever n >= min f. Section 4 discusses cases for small min which
show that the conjecture is true whenever minf < 8.

The following known results will be used later.
LEMMA 1. IF[ -_< 2n- 2 ifF is a dual intersecting system ofn.
LEMMA 2. IfF and G are systems ofsubsets ofn with A CI B 4: whenever A F

and B G, then

Received by the editors November 13, 1985" accepted for publication March 31, 1987.
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Lemma is proved in various places, the earliest ofwhich appears to be [5]. Lemma
2 is the main result in Kleitman and Magnanti [4]. It clearly implies Corollary 1.

COROLLARY 1. FZl >-- FI for every intersecting system F.

2. Examples. Figure presents two maximal dual intersecting systems for n 6
in terms of their characteristic vectors in {0, }6. The system on the left has FI 10
and IAI 3 for every A in F. Every other B

_
6 is either disjoint from something in F

(no matching l’s) or covers all of 6 in union with something in F (no matching O’s).
Heref 6 andj 5 for all j.

The system on the fight, with FI 16, is a maximum-cardinality dual intersecting
system according to Lemma 1. It has fl J J 12,f f f 4, andJ f.z
for j 4, 5, 6, so fj >=f for every j. It therefore fails as a counterexample only because
of the equalities for j >= 4. Condition (P 1) is wholly verified by the first three columns,
while (P2) is established by the last three columns, so (P 1) and (P2) operate independently
on disjoint subsets of 6.

Other maximum-cardinality dual intersecting systems follow the same pattern. If
{A l, A2} is a nontrivial partition of n, if G is a maximal intersecting system ofA l, and
ifH is a maximal union system ofA2 (no two sets in H have A2 as their union), then

F (A tO B: A eG, BeH}

is a dual intersecting system with IFI [G] IHI 2la’l- 121A21- 2" 2. In every such
case, J f# for each j in A2, andj > f# for j e A if and only ifj is contained in more
than half of the sets in G.

I suspect that this type of example comes as close as possible to violating the con-
jecture. To be more precise and a bit more general, call a dual intersecting system F
separable if there is a nontrivial partition {A, A2} ofn such that {Al f) B: B e F} is an

2 5 456

25456

000

44 0‘1 00
0’1 0.1 0

0O4 04

000’1
0‘1 ’100’1
0‘1 0‘1 0

04 00‘1
00,14 0

0 0 0’1

11

41

0
11 0

0
11 0

01
01
01

04

04
0

0

0

00

01 0

001
000

00
0 0

00’1
0 00
00

0 0

001

00 0

00
04 0

001
000

FIG. 1. Maximal dual intersecting systems.
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intersecting system and no two sets in {A2 f3 B: B e F} have A2 as their union. Then it
might be true that, if F is a nonseparable dual intersecting system,f >f for some j.

An obvious special case of the following consequence of Corollary says that every
separated dual intersecting system satisfies the conclusion of the conjecture.

COROLLARY 2. The conjecture is truefor a dual intersecting system F ofn ifthere
is a j in n for which F {B\ { j }: B F } is an intersecting system.

Proof Given the hypotheses for j, Corollary says that [F)I >- levi, Moreover,
fbj IFj,l andj [Fj[.

3. Partial confirmation. The main purpose of this section is to prove Theorem 1.
THEOREM 1. The conjecture is true for a dual intersecting system F of n if

minf <- n.
We assume henceforth that F is a dual intersecting system of n and for definite-

ness let
c f min .

The following consequence of Lemma 2 will be needed.
COROLLARY 3. The conjecture is true for F if there are distinct j and k in n such

that { j, k} is not a subset ofany set in F.
Proof Suppose that {j,k} f"lA 4: {j,k} for allA F. Then F {B\{j}:BF}

and F, {B\ {k}: B Fk} have A fq C 4 whenever A 6 F and C F,. Hence, by
Lemma 2,

[FiL[ [F’L[ >= [F[ [F,[.

Suppose Fj.’I >= Fj I. Thenf >= f sincef F)’I and Fj I.
Since Theorem is true even without c =< n if the condition in Corollary 2 or

Corollary 3 holds, we assume henceforth in this section that no Fj. is an intersecting
system and that, for every 2-set { j, k} in n, { j, k}

_
A for someA in F. Figure 2 illustrates

these requirements for j in a rearranged characteristic matrix of F.
We proceed under the assumption that n -> c.

C ROWS
FOR F

F\F

0

0

0

0

0

0

2 4 5 n

0 0 0 o
o 0 0

0 0

"t

BOTTOM COLUMN
OF l’S FOR
INTERSECTION WITH
ROW SPECIAL
CASE

NOT INTERSECTING
SYSTEM

A IN EVERY COLUMN
WITHIN F

FIG. 2. Characteristic matrix ofF.
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If AI >-- 2 for every A F’, then fL >__ C since { }, { 1, 2}, { 1, 3}, { 1, n} are
in FL.

Assume henceforth in this section that IAI for at least one A F’, and suppose
initially that at least two A F’ are singletons, as shown for rows and 2 in Fig. 3.
Consider column 4 in Fig. 3 whenj m + m2. Since each of the m_ rows produces
three distinct sets in F that begin 0101, 0011 and 0001, and since 00010 0 is another
set in F4L, we getf4L >- f4 unless m + m2 > 3m2 + 1, or m >_- 2(m + 1). Sincej >= c by
the definition of c, m2 > c- ml, and therefore

m >= (c+ 1).

Since c 2 >- m, this implies c >= 8. A similar conclusion holds for each of columns
5-n. Therefore, ifj > f# for all j -> 4, then there are at least (n 3)[2(c + 1)/3] l’s
in the double-lined submatrix of Fig. 3. It follows that there are at least

m [(n- 3)[2(c+ 1)/3]/(c-2)]

l’s in some row of that submatrix. This row alone produces (the worst case begins 1001)
at least 2m ( 2) sets in F, sof >-f if 2 (C 2) >= , or 2 + 2 >= 2c. Since
this is easily seen to be true when n >= c > 8, we conclude that the conjecture is true if

IAI for more than one A in F’.

C

2 5 4

1 0 0 0

0

0

0

0

0

0 0

0

0

0

0

1"

>m2

0

o

0

FIG. 3. IAI for two A in F’.
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Assume henceforth in the proof ofTheorem that F’ contains exactly one singleton,
say {2 }. If n > c, thenf >= Ji, so assume also that n c with c jq >f c 1, where
F= {{1}, {1,3}, "",{1, c}}.

Under these conditions, suppose there is no row in F like row 2 in Fig. 4, i.e., no
set of the form { 1, j, k} with 2 < j < k in F. Then each A in F’ \ { {2} } must either
have the form {2, j, } or have 2 A and [AI >-- 3. If there are any sets of the latter
type, then f{ > c, a contradiction, so all must contain 2. But then 2 e B for every
B e F, so F) is an intersecting system for all j 4: 2, contrary to an earlier assumption.
Hence our conditions assure an array like that shown in Fig. 4, except that some of the
10 or 01 entries in columns 3 and 4 in the lower part of the matrix can be 11. Since 11
there could only increase our computation off in the next paragraph, we proceed with
the array as shown.

The size of Ff must be at least m2 + m3 (O’s in column 2) plus max {m2, m3}
(O’s in column 3 or column 4) plus 2 ({5}, { 1, 5} from row 3). Therefore j > ff
requires m + m2 + m3 >= m2 + m3 + max {m2, m3} + 3. Since f5 >= c, m2 + m3 >=
c m, so max {m2, m3} >= [-(c m)/2]. Then ml >= [(c m)/2] + 3, which is equiv-
alent to

m >=[c/3]+ 2.

c

0 0

0 0

2 3 4 5 C

0 0 0 0..-0

0 0 0.--0

0

0

0

0 0

im

0

0

im 2

0

0

0

FIG. 4. Special matrixfor n c.
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Since c 2 >- m, this implies c >= 6. A similar result holds for every j > 5. If c e { 6, 7 }
andf >f for all j >= 5, the double-lined submatrix of Fig. 4 has no O’s and this yields
fl >= fl for a contradiction. On the other hand, if c >= 8 and j > ff for all j >= 5, then
some row in the double-lined submatrix has at least

rn [(c 4)([c/3 ] + 2) / (c 2)]

l’s. This row alone produces at least 2m (c 2) sets in F1 (worst case begins 10001),
and two more emerge from row 2, sof >= 2 + 4 c. However, 2m + 4 c >- c for all
c >= 8, again contradicting fl > f.

Hence ifjq >f for Fig. 4, thenf >=j for some j >= 5. This completes the proof of
Theorem 1.

4. Small min Jj. We continue to assume that F is a dual intersecting system of n
with F) {B\ { j }: B e F} and c fl minf. The preceding section shows that if there
is a counterexample to the conjecture then such an F must satisfy

(C1)

(ca)

No Fj is an intersecting system;

For every 2-set { j, k}, { j, k} c_ A for some A e F;

(C3) n < c.

THEOREM 2. Ifc <= 7 and F satisfies (C1)-(C3), then the conjecture is truefor F.
Proof We prove Theorem 2 for c 7. Proofs for c < 7 are similar and simpler.
The first part of the preceding proof with Fig. 3 shows that the conjecture is true

for F when n < c 7 ifF’ contains more than one singleton, so assume henceforth that
F’ has at most one singleton.

Ifn 5, (C1) and (P2) imply that two rows ofF are like the first two rows in Fig.
4. ThenJ >f forces m ->_ 5, so to avoidf >= j the fifth column of F must have l’s
in rows 3-7. This then forces O’s in column 2 for these rows, so they all are 10.. 1.
However, the positions cannot be filled with O’s and l’s in five different ways. Therefore
f >_-j.

Assume henceforth that n 6. If two rows ofF have the form shown at the top of
Fig. 4 then, to avoidf >= j for j 5 or j 6, we again get m 5, and the analysis in
the preceding paragraph shows that this is impossible.

Assume henceforth that F’ does not contain a singleton and a doubleton that are
disjoint. Suppose then that it has a singleton and tripleton that are disjoint (see Fig. 5).
Condition (C2) then forces a row like row 3 in Fig. 5 with a in column 6, a 0 in column
2 ((P2) with row 2) and exactly two l’s in columns 3-5. Since F can have at most two
more rows in F with O’s in column 2, it must have two more rows with l’s in column
2, hence O’s in columns 5 and 6 ((P2) with rows 2 and 3) and at least one in columns
3 and 4 (see rows 4 and 5). These two rows eliminate 101011 and 100111 by (P2). But
then we can add at most one more row in F (say 111100 if the .’s are O’s), so F cannot
be completed.

Assume henceforth that F’ has no disjoint singleton and tripleton. Then (C 1) implies
that F’ has two disjoint doubletons. It then has no singleton, or else we would obtain
the disjoint singleton/doubleton combination. Consequently, f >_- 6 since { } and
each { 1, j } are in F. It is easily seen that if F’ has two tripletons, say {2, 3, 4} and
{2, 3, 5}, thenf -> 7 =f unless all of 23, 24, 25, 34 and 35 are in F’. But then 6 is in
no F set, contrary to (C2).

We therefore arrive at the point for (c, n) (7, 6) where at least six sets in F’ are
doubletons and the seventh is either a doubleton or a tripleton whose doubletons are
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2 3 4 5 6

0 0 0 0

0 0

0 0

0 0

0 0

FIG. 5. A casefor (c, n) (7, 6).

12 54 ,5 6

1111 0 0

2 0 00

51 01 0 0

4 01 0 0

5 0 0 0

6 0

71 01

8 0 0

90 01

100 01

11 0 01

12 0 0

130 0

FIG. 6. Another casefor (c, n) (7, 6).

also in F’ to prevent fl >= 7. Suppose F’ has a tripleton. Then F1 must look like the
upper part of Fig. 6 with some column, say column 6, having only one in FI. Because
j >= c, there must be at least seven rows in F that end in 01 since none can end in 11
((P2) with row 1). Because of row 5 (F’ has all doubletons after row 1), each of rows
8-13 must have a 0 in column 2 or 3. To avoid duplication, one ofthese six rows would
have to be 000001. But then (P 1) is violated.

Finally, suppose all seven sets in F’ are doubletons, so its submatrix has exactly
14 l’s. Then one of columns 2-6 has at most two l’s in F. When we examine the
lower part of the F matrix for such a column in the five or more rows where it has
a (j >= 7), we find that it is impossible to complete these rows without violating (P1)
or (P2) in reference to the upper part of the matrix. The straightforward details are left
to the reader.
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EXTREMAL LENGTH AND WIDTH OF BLOCKING POLYHEDRA,
KIRCHHOFF SPACES AND MULTIPORT NETWORKS*

SETH CHAIKEN

Abstract. Various facts about the extremal length (EL) and extremal width (EW) of a one-port network
on a Kirchhoff space due to Anderson, Duffin and Trapp and their relation to blocking pairs of polyhedra are
unified and extended to the multiport case. The definitions of EL and EW are extended to all pairs of blocking
polyhedra (G, H) on coordinates E given a symmetric positive definite matrix R. It follows that EW-min {xtRxlx G}, EL-l min {ztR-zlz - H} and EL.EW 1. A Kirchhoff space on coordinates (E, P)
where P is called the set of ports is a subspace that represents a matroid on E t.J P in which P is independent
and co-independent. Given any nonzero vector w on port coordinates P, we extend Fulkerson’s construction
of a blocking pair from orthogonal subspaces with one distinguished coordinate to Kirchhoff spaces which
model multiport networks. For o and positive definite R a pair ofminimization problems with reciprocal values
are derived from Kirchhoff spaces. When R is diagonal these problems coincide with the EW- and EL-problems for the blocking pair from Kirchhoff spaces. In the case of a multiport resistor network, EW is the
power dissipated when the voltage vector o is applied to the ports.

Key words, polyhedral combinatorics, networks, multiports, length-width inequality, blocking polyhedra
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1. Introduction. Moore and Shannon [MS] proved the length-width inequality for
graphs which may be stated: Let G be a graph with two designated vertices s, t. Let L(G)
be the length of a shortest s-t path in G, and W(G) be the number of edges in a smallest
set that separates s and t. Then L(G)W(G) is no greater than the number of edges in G.

Lehman [LEH] and Duffin [DUF62] extended the length-width inequality so that
if li, wi are arbitrary nonnegative weights assigned to each edge of G, and

L(G)=min(F.li )
W(G)=min(FAWi

where B ranges over all s-t paths and A ranges over all s-t cuts, then

L(G)W(G) <= , liwe.
icE(G)

Lehman also gave conditions on a system of sets equivalent to the property that the
length-width inequality above holds with the system used in place of the s-t paths of a
graph.

Duffin [DUF62] proved the length-width inequality for graphs using a technique
borrowed from continuous analysis [DUF59]. He applied the notion of extremal width
(EW) and extremal length (EL) of a quadrilateral with curved sides on which is defined
a positive continuous "resistivity" function r to a 1-port electrical network in which each
nonport edge is given a positive resistance ri. In both the curved quadrilateral and graph
cases, EW and EL are defined by max-min optimizations (see 2), EW. EL and the
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solutions ofthe optimizations are electrical currents and potentials in the systems. Duffin
also showed that EW.EL implies the length-width inequality. The physical significance
ofEW. EL in the curved quadrilateral case is that the equivalent resistance between
one pair of opposite sides is the reciprocal of the equivalent resistance between the other
pair of opposite sides [DUF62].

Let Z be the equivalent resistance ofa 1-port resistive network. Ifcurrent I is applied
through the port the power dissipated is ZI2. If, instead, potential difference E is applied
across the port the power is Z-IE2. The fact that the power for unit current excitation
is the reciprocal of the power for unit potential excitation is another manifestation of
the EW. EL relationship. In 4 and 5 a generalization of EW and EL is given for
multiport networks. The EW. EL relationship for multiports is seen to generalize
the above fact.

Anderson, Duffin and Trapp [ADT75], [AT77], [AT79] defined the linear algebraic
concept of the Kirchhoff space or confluence to generalize the Kirchhoff law constraints
on a multiport electrical network with no Kirchhoff law dependencies among the ports.
In [AT77] they defined EL and EW for Kirchhoff spaces with one port coordinate. They
proved EL. EW in this case and so demonstrated the length-width inequality for a
situation involving orthogonal complimentary subspaces with one distinguished coor-
dinate.

Fulkerson [FUL68], [FUL71], [SCHR] placed the length-width inequality into a
general context in which he showed how it characterized that two polyhedra form a
blocking pair (see Theorem 1). He also showed in [FUL68], [FUL70] how a pair of
orthogonal complementary subspaces with one distinguished coordinate define a blocking
pair ofpolyhedra on the other coordinates. Thus the length-width inequality for 1-ported
Kirchhoff spaces was first established by Fulkerson apparently without the use of EL
and EW.

In this paper we unify and extend the results that relate EL, EW, Kirchhoff spaces,
and blocking pairs of polyhedra.

(1) We extend the definitions of EL, EW to all pairs of blocking polyhedra (G, H)
on coordinates E. Given a positive definite symmetric matrix R on E, we show
that Duffin’s definitions [DUF62] are equivalent to EW-1 min {xtRx]x o_ G} and
EL- min {ztR-z]z H} and that EL.EW for all blocking polyhedra (G, H)
( 2).

(2) Given a vector o on the port coordinates, we show how a dual pair of Kirchhoff
spaces defines a blocking pair of polyhedra ( 3).

(3) Given a vector w on the port coordinates of a dual pair of Kirchhoff spaces
and a positive definite symmetric matrix R we give a pair of problems of the form
S min {xtRx} and T min {ztR-z} for which ST 1. When R is positive diagonal
these problems are equivalent to result (1) applied to the blocking polyhedra from re-
sult (2) ( 4).

(4) We observe that in multiport resistive electrical networks, EW is the power
dissipated when the voltage vector o is applied to the ports ( 5).

In what follows, E and P denote disjoint finite sets of coordinate indices; for con-
venience let E { 1, 2, n}. e is the set of tuples of real numbers indexed by E;
+e is the similar set of tuples of nonnegative reals. Inequalities and (absolute value)
of vectors apply componentwise. sometimes designates a vector of ones. x.z denotes
the ordinary scalar product of vectors x and z.

2. Blocking polyhedra and their extremal length and width. We state the basic facts
about blocking polyhedra (see [SCHR]).
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Let G, H be the polyhedra

(2.1) G= {xlx>-O, Ax>= 1}, H= {zlz>=O, Bz>= 1}
where A, B are nonnegative matrices with n columns, indexed by E. (G, H) are called a
blocking pair when

H={z]z>=O,x.z>= for all xeG}.
THEOREM (Fulkerson, Lehman). Thefollowing conditions are equivalent:

(2.2) (G, H) is a blocking pair.

(2.3) H consists of all vectors z such that for some convex combination a of the
rows a, a2, at ofA, z >= a t. That is,

H= convex hull (a a2, al) + -.
(2.4) For all w >= O, min {aw, a2w, atw} max {y. l[y >= 0, yB <= wt}.

(2.5) x G, z H implies that x.z >= andfor all >= O, w >- 0

min {l.x} min { w. z} <= l. w.
xG zH

(2.6) (H, G) is a blocking pair.

We notefrom (2.3) thatfor all l >= 0 and w >= 0
min {l.x} =min {bl, bzl, ,bkl}, and
xrG

min { w. z} min {aw, a2w, a, w}.
zrH

Duffin [DUF62] defined EW and EL by (2.7) and (2.8) for positive diagonal R and
what amount to the classic blocking pair (G, H) arising from s-t paths and cuts respectively
in a network; also the alternative forms (2.9) and (2.10) were given and EW. EL was
proved. In fact, the definitions make sense for all blocking pairs (G, H) and real positive
definite symmetric matrices R:

(min x-z)2
zH(2.7) EW= max

x xtRx

(min wtRx):z
x.G(2.8) EL=max

w wtRw

We will show later (Theorem 4) that for all blocking pairs and positive definite symmetric
R, EW- and EL- are given also by Z and Y, respectively:

(2.9) Z min {xtRx},
x-G

(2.10) Y= min {ztR-z}.
z-n

First we analyze (2.9) and (2.10). The Cauchy-Schwarz inequality for positive
definite symmetric R implies (xtRy)2 <= (xtRx)(ytRy) for all x, y, with equality if and
only if x and y are linearly dependent. The substitution z Ry, y R-z gives
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(X’Z)2 (xtRx)(ztR-1z) with equality if and only if z and Rx are dependent. Hence
ZY >_- for blocking (G, H). (This generalizes a proof in [DUF68].)

THEOREM 2. Let (G, H) be a blocking pair ofpolyhedra as in Theorem and let
R be a symmetric positive definite matrix. Let Z and Y be given by (2.9) and (2.10). Then
ZY 1, solutions Xo, Zo are unique and they satisfy Zo YRxo.

Proof Using Theorem and the positive definiteness of R, R- we pose the defi-
nitions of Z, Y as convex, quadratic programs. A has l rows and denotes a column
vector of ones.

(2.11 Z min xtRx

lt-Ax<=O

-x<=O

(2.12) Y= min ztR-z
zt>= vA

v>=O

vlt 1.

Let L(x; #, t) denote the Lagrangian xtRx + u(lt Ax) + t(-x) for (2.11). Since, for
example, Slater’s condition that there exist x for which all inequalities are strict in (2.11)
is satisfied (see [SW]), x0 is a solution to (2.11) if and only ifx0 is feasible and there exist
u >- 0, >= 0 that satisfy the following Kuhn-Tucker conditions:

(2.13) AxL 2xtoR #A # O,

(2.14) u(lt-Ax0) 0,

(2.15) t,(-Xo) 0.

We find 2xR >- txA. By fight multiplying AxL 0 by Xo and from (2.14) and (2.15) we
derive 2xtoRxo 2Z =/lt. The vectors v (2Z)-/ and z Z-xtoR are thus found
to be feasible for program (2.12). Hence Y <= ztoR-zo Z-ZxtoRxo Z-. From
ZY >_- we conclude that ZY and that z Z-xtoR yxtoR is a solution to (2.12).
The uniqueness follows from the positive definiteness of R and R- and the convexity
of the feasible sets in (2.11) and (2.12). Zl

If all the entries of R- are nonnegative the optimal solution z for (2.12) is
given by z vA in the above proof because vA >= 0 is feasible and if z >-_ vA >= O, then
ztR-z >= ztoR-zo. In particular, this is true ifR is anMmatrix (see [VAR, p. 85]). From
this, together with a similar argument for the dual, we conclude the following.

THEOREM 3. If R is a nonnegative matrix the solution Xo for (2.9) is given by
x wB, wlk 1, for some w >= O. IfR- is nonnegative the solution for (2.10) is given
by Zo vA, v 11 1, for some v >= O.

We now prove the equivalence of the problems (2.9), (2.10) and (2.7), (2.8).
THEOREM 4. Let G, H) be a blockingpair and let R be a positive definite symmetric

matrix. Assume EW, EL are defined by (2.7), (2.8). Then

(2.16) EW- min {xtRx},
x-G

(2.17) EL-= min {ztR-z}.
zH
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Proof It is sufficient to restrict x in (2.7) to x for which minz/ x.z >= 1. This
set ofx is G by Theorem 1, (2.6); hence (2.16).

Let K {Rw[ w 6 }. The substitution z Rw puts (2.8) into the form

(min z" x)2
xG

(2.18) EL=max
zeK ztR-Iz

Since R is positive definite, every nonzero vector in Khas at least one positive component.
We show that the maximization in (2.18) can be restricted to nonnegative z by proving
that for each z e K with a negative component there exists x e G with z.x 0. Let
S { lzi < O, <= <- n} and T { lzi > 0, =< -< n}. A strictly positive x0 e + with
Xo’Z 0 is given by

iTZi ifjS,

(Xo)j -- Z ifj T,
s

otherwise.

Theorem implies that (2.3) applies to G. Therefore x Nxo is in G for sufficiently
large N > 0.

Let K+ K f) so that

(min z" x)2 (min z" x)2

EL max x =< max x y_.
K+ ztR z ztR -1z

The last equality is similar to (2.16). Now by Theorem 2 a solution z0 YRxo for the
fight-hand maximization is in K+. We therefore have EL Y-. V1

For positive diagonal R the equivalence (2.17) is almost immediate [DUF62]. In
the same paper, EL.EW with (2.7), (2.8) was shown to imply the length-width
inequality (2.5). Note we cannot use this result to prove the length-width inequality for
general blocking pairs because we used Theorem to prove EL.EW 1.

3. Blocking polyhedra from Kirchhoff spaces. In this section we generalize results
ofFulkerson [FUL68], [FUL70]: Let D, D+/- be complementary orthogonal subspaces of
n / under the ordinary scalar product. Assume that if (ue, 1) D then uE q: 0 and
(uE, 1) D for some u. Let

G {xffq_lxi>: lugliE for some (ue, 1)D },

(3.2) H= {zffq_lzi>: leiliE for some (ee, 1)D+/-}.

For all x G z H, x.z >= ,lui[leil >= Zuieil Ill 1. Fulkerson showed, in fact,
that (G, H) is a blocking pair. Our results show that Fulkerson’s construction also produces
blocking pairs that arise from subspaces that model Kirchhoff’s laws type of constraints
on multiport networks.

Let E and P be finite-dimensional complex vector spaces with hermitian product
( ). Let E (R) P. Anderson and Trapp say a subspace C of is a confluence
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[AT79] or Kirchhoff space [AT77] provided that

(3.3) for all ue e P there is a uE e E so that (uE, ue) C, and

(3.4) if (0, ue) C, then ue O.

They define the dual Kirchhoff space C+/- by

C+/- {(eE, ee)l(ee, ue) (ee, ue) for all (ue, ue) C}.
They prove C+/- is a Kirchhoff space whenever C is. C and C+/- represent, for example,
the spaces of currents and voltages allowed by Kirchhoff’s laws in an electrical network
with ports P in which the interconnection allows any combination of currents ue to be
applied through the ports and in which it also allows any combination of voltages ee to
be applied to the ports. In the following C, C+/- will represent a dual pair of Kirchhoff
spaces.

For our purposes, we restrict V to be the real vector space with coordinates E t_J P;
we write Re u e, E Re, p Re. Let M, M* be the dual pair of matroids [WEL],
[WHI] on (E (_J P) whose cycle space representations are C, C+/-. The conditions (3.3)
and (3.4) become the following:

(3.5) E contains a base for M, i.e., P is co-independent in M, and

(3.6) P is independent in M.

In this form the conditions that C be a Kirchhoff space are clearly self dual.
THEOREM 5. Let o) R e, o 4:0 and C, C+/- be a dual pair ofKirchhoffspaces. The

polyhedra

(3.7) G {X E+Ix - luili Efor some (ue, ue) C with ue’o },
(3.8) H {z e+lzi >= leli Efor some (e., o) C+/- }
are a pair ofblocking polyhedra.

Proof Given C, C+/- consider the subspaces ofn + 1..

(3.9) 9= {(u, u,,.)l(u, u,,)c),

(3.10) D +/- ((ee,-k)l(eE, ko)eC+/-,k is real}.

Let D1 temporarily denote the fight-hand side of(3.10). We will show that DI D +/-

where D +/- denotes the orthogonal complement of D in En / under the ordinary scalar
product (ue, Un / ).(ee, en / ) uE.ee + u / en / . It is easy to verify that D and D
are subspaces. Since (ue, ue.o)).(ee, -k) ue’ee- kue’o) ue’ee- ue’(ko) and C,
C+/- are dual Kirchhoff spaces, the vectors in D are all orthogonal to the vectors in DI,
so D

___
D +/-. If (ee, -k) e D +/-, then the same calculation shows that for every

(ue, ue) C, ue.eE ue.(ko) 0 so (ee, ko) e C+/- and hence (ee, -k) e D. We con-
clude that D D+/-. It is now clear that G and H in (3.7), (3.8) are of the form (3.1),
(3.2) and so they are a blocking pair.

To prove G, H in (3.1), (3.2) were a blocking pair Fulkerson explicitly constructed
the blocking matrices A, B that define G, H by (2.1) and then he verified condition (2.4),
the "max flow-min cut" identity, in Theorem 1. We will provide here the generalizations
ofFulkerson’s notions for describing the blocking matrices that define G, H for Kirchhoff
spaces given o given by Theorem 5.

Let u be a vector. The support S(u) is the set of coordinates such that ui 4: O. If C
is a vector space then u e C is said to be elementary in C if u 4:0 and for no nonzero
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U’ 6 C does S(u) properly contain S(u’). If u and u’ are elementary in C and S(u)
S(u’), then u is a nonzero multiple of u’. It follows that there is only a finite set of vectors
{(u, 1)lj 1, k} that are elementary in D of the form (ue, 1) and there is only a
finite set {(e, -1)[j 1, l} of elementary vectors in D +/- of the form (e.E, -1).
Fulkerson defined A to be the n matrix whose jth.row is (le I, le I, "’", lenl). B is
the k n matrix whose jth row is ([u [, [u2 [, [UJn 1).

DEFINITION. (eE, o) a C+/- is w-elementary in C+/- if it is nonzero and S(ee) is minimal
along S(e’) for which (ek, o) C+/-. (ue, ue) C is P-elementary in C if it is nonzero
and S(ue) is minimal among S(u’) for which there exists nonzero (uk, u) e C.

Properties (3.3) and (3.4) of Kirchhoff space C imply that for every w 4:0 there
exist o-elementary vectors in C+/- and that (0, o) is never one of them because
(0, ) t C. The same properties applied to C imply there exist P-elementary vectors in
C and ue 4:0 for every one of them.

PROPOSITION 6. Suppose C, C+/- are a dualpair ofKirchhoffspaces; D, D +/- are given
by (3.9), (3.10) and {(u, 1)} and {(eJ, -1)}.are the elementary vectors in D, D- ofthe
form (uE, 1), (ee, -1), respectively. Then {(u, 1)} is the set ofvectors (ue, 1)for which

ej(u ue) is P-elementary in C and u.o for some u {( e, -1)} is the set of vectors
(ee, -1)for which (ee, o) is o-elementary in C +/-.

Proof. We show that if (uE, Up) is P-elementary in C and ue’o 1, then (ue, 1) is
elementary in D and that if (e, w) is w-elementary in C+/-, then (ee, -1) is elementary
in D. The remainder of the proof is straightforward.

Suppose (u, ue) is P-elementary in C and up.o 1. (uE, ue’o) (uE, 1) D
and we must show that (ue, 1) is elementary in D. Suppose not; so there is a
(uk, k) (uk, u,.w) D with S(u’, k) S(ue, 1). If k 0, then (uk, u,) C and
S(u’) S(ue). If k 0, it is possible that S(u’) S(ue). In that case, choose e E so
that ui 0 and let (u, u) (ue, ue) (Ui/U)(U’E, U’p). Then (u, u,) C; it is non-
zero because ue’o and uo.w 0, and S(u)

_
S(uE) {i} S(u). In either case

we contradict the assumption that (ue, ue) is P-elementary.
Now suppose (ee, o) is o-elementary in CA and suppose (e,-1)D+/- is

not elementary in D +/-. Then S(e’, k) S(eE, -1) for some (ek, k) D +/-. If k q: 0,
then (-k-l)(e’, -kw) (e, o) CA with S(e) S(e’) S(e). If k 0, then
(ek, 0) CA. Let e 0 and (e, w) (ee, ) (ei/e)(e’, 0). Again it is a contradiction
that (e, w) is w-elementary.

We conclude that there are finitely many P-elementary (u, u) in C with
ue’w and that there are finitely many o-elementary vectors in CA. Property (3.4) of
C implies that for each uE above there is a unique ue for which (ue, u) e C. From
Fulkerson’s descriptions ofA and B in [FUL70] we conclude the following.

COROLLARY 7. The blocking matrices A, B that define the polyhedra G, H ((3.7),
(3.8) in Theorem 5) by (2.1) are as follows. A is the n matrix whose jth row is

J([e [, leVI, .-., [e,I) where {(e, o)11 <= j <= l} is the set ofo-elementary vectors in CA.
B is the k n matrix whosejth row is ([u [, lull, "-’, lu%l) where

{(u, u)[1 -_<j-<

is the set ofP-elementary ectors i Cfor which Up.w 1.

4. Extremal length and width of a dual pair of Kirchhoff spaces. Theorem 5 reveals
a relationship between the minimizations (2.9) and (2.10) in Theorem 2 and a variational
formulation of resistive electrical network problems. Let C, CA be a dual pair ofKirchhoff
spaces, o RP, o 0. Let R be a positive definite symmetric matrix. Consider the
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minimization problems:

(4.1) S=min {uteRuel(ue, ue)C, ue.o 1},

(4.2) T=min {eteR-eel(ee,o)C+/-}.
THEOREM 8. Ue minimizes (4.1) above ifand only ifue is a solution to

(4.3) (ue, ue)C, ue.o= 1, (Rue, ko)C+/- (k is real)

in which case S k.
Proof. By the semi-definiteness of R, ue solves the minimization if and only if

(ue, ue) C, ue’o and the variation i(uteRue) 2(uteR)/iue 2(Rue)" diue vanishes
whenever iue is such that for some Sue, (Sue, bur) C and ue’o 0. We show this
(uteRue) 0 is equivalent to (Rue, ko) C+/-.

Let C1 {(ue, ue) Clue.o 0}. By condition (3.3) that C is a Kirchhoff space,
dim C1 dim C- 1. Hence

Cf {(ee, ee)l(ee, ee)’(ue, ue) 0 for all (ue, ue)C }
has dimension dim C" + 1. Let

C2 {(ee, ee+ koo)l(ee, ee) C+/-, k is real}.

C2 has dimension dim C+/- + also by (3.4) applied to Kirchhoff space C+/-. Hence to
show C Ci, it suffices to show that C

___
Ci Let (ee, ee + ko)

C1. It follows that
(ee, ee + koo).(ue, ue) (ee, ee)’(ue, uv) ko. ue 0

because (ee, ee) C+/-, (ue, ue) C and o. ue O.
Let D {auel(aue, aue) C } and D +/- {ee D elee" aue 0 for all Sue D };

hence the condition that 6(uteRue) vanish is RuE D+/-. Let ee Rue.
eeD+/- for all (Sue, 6ue) Cl (Sue, 6ue)’(ee, O) 0

... ee O 6 C- C2

...(ee, ko)C+/- for some real k.

From (4.3), (ue, ue)’(Rue, koo) uteRue- kue’o S- k O. []

The result dual to Theorem 8 dates to Rayleigh and Maxwell, see [DUF59]. its
Kirchhoff space formulation below was given by Anderson and Trapp.

THEOREM 9 [AT79]. ee minimizes (4.2) above ifand only ifee is a solution to

(4.4) (R-lee, ue) C, (ee, o)C+/-

in which case T ue" o.
These authors used the existence and uniqueness of solutions to (4.4) for all w and

positive real R -1 to define a linear operator # so #(w) ue. Thus T #(o). w. A fixed
Kirchhoff space defines an operator (b that associates by (4.4) the operator # O(R -l)
to each positive real R-. was used by Anderson, Duffin and Trapp to study matrix
operations based on interconnection ofnetworks; see for example [ADT75], [AT79]. See
also [BD53] for a generalization of (4.4) in which the solution is characterized as the
stationary point of a quadratic function.

COROLLARY 10. IfS and T are given by (4.1), (4.2), then ST 1.
Proof ee, ue is a solution to (4.4) if and only if u R-ee/ue o, u’e ue/ue’o

and k 1/ue’o comprise a solution to (4.3). Hence S 1/T.
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When R is a positive diagonal matrix R diag (rl, r2, rn) and G, H are as in
Theorem 5 the problem (2.9) is equivalent to (4.1) and (2.10) is equivalent to (4.2).
Specifically, uteRue ,’]= riu - 2 x,tRx, >. >.ri Ui] and xtRx > whenever xi x
0 for =< =< n with xi > x for at least one i. Similarly for R -1. Consequently,

EW-l min {xtRxlx G } min { uteRuEl(ue, ue) C, ue’w },
EL-’ =min {ztR z z H} min { eteR ee [(ev w) C- }

When positive definite R is not diagonal a transformation may be performed on
the E coordinates of C to diagonalize R in (4.1) and so we obtain an EW-l problem and
its dual over blocking pairs.

and

5. Examples and application to electrical networks.
Example ofTheorem 2. Let n 2, G be defined by xl >_- a >= 0, x2 >= b >= 0 (Fig. 1)

(5.1) R R -1

--e --e2 e

where 0 =< e < 1. Without loss of generality assume b -< a. When 0 =< b/a < e < the
minimum (2.9) is attained by x (a, ca) with Z a2(1 e2). When 0 _-< e -< b/a the
minimum is attained by the vertex x (a, b) with Z a: 2cab + b2. The blocker H
of G is defined by azl + bz2 >= 1, z >= 0, z2 >= 0 (Fig. 1). When 0 =< b/a < e < 1, (2.10)
is minimized with Y a-l(1 e2)-l by z Z-IRx (a-l, 0) which illustrates Theorem
2. When e =< b/a the minimizing z is Z-l(a e.b, b ca).

We now illustrate that despite Theorem 5 and Corollary 10, when R is not diagonal,
there is no general relationship between S (4.1) and Z (2.9) where G is defined from C
and o by Theorem 5 (3.7). Note (4.1) is a minimization over an affine subspace A. Let
n 2. First, let A {(1, 0)/} and R be (5.1). S trivially. However, G is defined by
X -->" 1, X2 ->- 0; see the previous example with (a, b) (1, 0) so that Z 2 < S; the
minimizing x is (1, e)t. Next, let A {(1, k)tlk is real} and R be (5.1) with -1 < e < 0.
Equation (4.1) is minimized by ue (1, e) and S e2 but the minimum for G now
occurs at x (1, 0) so Z < 2 S. Ofcourse an example with Z < S is immediate

.,,’._/ >\(!/a’O)

(a,Ea)

G

1

FIG. 1. G {(a, b)’} + R2+. H convex hull {(a-, 0)’, (0, b-l) ‘} + R2+.
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from the example with Y > T which exists as a consequence of Theorem 2 and Corol-
lary 10.

We give two dual electrical network interpretations to EW and EL by way of Theo-
rems 8 and 9 in the case of positive diagonal R. For further information on electrical
interpretations and their origins in distributed networks see [DUF59] and [DUF62].

(1) Let C’ be the cycle space ofthe graph Nwith edges ELI P and C+/- be the cocycle
space. C {(up, ue)l(ue, -up)e C’ }. Suppose that each e E is a resistor in an electrical
network with resistance ri, and each edge in P is a port.

For e E, ui represents the current in edge i. For P, ui represents the current
supplied to port edge by an external connection. For e E t.3 P, ei represents the potential
difference or voltage across edge i.

(uE, up) e C is the condition that the edge currents satisfy Kirchhoff’s current law.
(ee, ee) e C+/- is the condition that the potential difference eE across resistors and the
potential differences ep supplied to the ports satisfy Kirchhoff’s voltage law. The signif-
icance of(uE, up). (ee, ep) ue. ee up.ep 0 is that the power dissipated in the network
equals the power supplied, ue eER- is Ohm’s law. Therefore (4.4) represents the
situation where potential (voltage) sources co are connected to the ports, up represents
the currents that flow into the ports in response and ee represents the potential differences
that appear across the resistors. EL- EW T up.co is the power dissipated in this
situation.

The condition up.co in (4.3) is equivalent to ue.(kco) k. Since k S T-l,
the solution to (4.3) is interpreted as the currents and potentials in the same network
after the potential sources have been adjusted by a proportionality constant k until the
power dissipated becomes T-. As noted already in the Introduction, for a single port
network and co this adjustment is achieved when the port current becomes 1.

(2) Let C be the cocycle space of the graph N and C’ be the cycle space.
CA {(ee, -ee)l(ee, ee) e C’ }. Suppose each e E is a resistor with resistance r- and
each edge in P is a port. We interchange the meanings of e and u from so now e
represents potential differences and u represents currents. Therefore (4.4) now represents
the situation where current sources co are connected to the ports. Again EL- EW
T up.co is the power dissipated.
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A NEW HEURISTIC FOR MINIMUM WEIGHT TRIANGULATION*

ANDRZEJ LINGASf

Abstract. A new heuristic for minimum weight triangulation of planar point sets is proposed. First, a
polygon whose vertices are all points from the input set is constructed. Next, a minimum weight triangulation
of the polygon is found by dynamic programming. The union of the polygon triangulation with the polygon
yields a triangulation of the input n-point set. A nontrivial upper bound on the worst-case performance of the
heuristic in terms of n and another parameter is derived. Under the assumption of uniform point distribution
it is observed that the heuristic yields a solution within the factor ofO(log n) from the optimum almost certainly,
and the expected length ofthe resulting triangulation is ofthe same order as that ofa minimum length triangulation.
The heuristic runs in time O(n3).

Key words, planar point set, minimum weight triangulation, minimum spanning tree, heuristic, polygon,
running time, uniform point distribution, almost certainly

AMS(MOS) subject classification. 68C05

1. Introduction. Let S be a set of n points in the plane. A triangulation of S is a
maximal set of nonintersecting straight-line segments between these points. Any trian-
gulation of S partitions the convex hull of S (see [6], [16]) into triangles. For a set of
straight-line segments in the plane, T, let TI denote the total length of the segments in
T. A minimum weight triangulation is any triangulation which minimizes TI among all
triangulations TofS. Minimum weight triangulations have an application in interpolating
values of two-argument functions 14], 16].

There are two well-known triangulation algorithms: the greedy triangulation and
the Delaunay triangulation (see [4], [10], [12]-[16]). The former inserts a segment into
the plane if it is the smallest among all segments between points in S not intersecting
those already in the plane. The latter simply constructs the dual of the Voronoi diagram
for S. Manacher and Zobrist 15] show that neither approximates the optimum. Let
GT(S) and DT(S) denote the outcome of the greedy triangulation and the Delaunay
triangulation of S, and let M(S) stand for the total length of a minimum weight trian-
gulation of S. Specifically, for arbitrarily large n Manacher and Zobrist construct sets of
n points in the plane, S’, S", such that

IGT(S’)IIM(S’) 2(r/1/3),

IDT(S")I/M(S") f(n/log n).

In [10], Levcopoulos improves the former result to ft(f) by constructing another set
family, and in 8], Kirkpatrick strengthens the latter result by exhibiting sets S’" for which

IDT(S"’)I/M(S’") ft(n).

In this paper, we propose a new triangulation algorithm. Its idea is simple. First, we find
the convex hull of S. Next, we construct a minimum length planar forest connecting the
convex hull with the remaining points in S. The convex hull plus the forest result in a
polygon (we may assume that the edges of the forest are doubled). Finally, a minimum
weight triangulation of the polygon is found. The union of the polygon triangulation
with the polygon yields a triangulation of S. The entire algorithm runs in time O(n3).

Received by the editors September 7, 1984; accepted for publication (in revised form) April 21, 1987.
f Department of Computer and Information Science, Linkrping University, 581 83 Linkrping, Sweden.
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For example, the result of the new triangulation run on the set S’ for which the
greedy triangulation does not behave well is not worse than that of the triangulation BT
ofS’ constructed in Lemma 5 in 15], since BT trivially includes all edges ofthe polygon
constructed by the new triangulation. Hence, by Lemma 5 in [15], the result of the new
triangulation of S’ is f(n/3) times better than that of the greedy triangulation of S’. The
result of the new triangulation run on the set S" for which the Delaunay triangulation is
so bad is trivially optimal since all points in S’ lie on the convex hull of S’ (see [8]).

Let jump (S) be the smallest real d such that starting from any point in S, we can
reach the convex hull by jumping from one point in S to another one etc., provided that
the length of no jump is greater than d. Let NT(S) denote the new triangulation of S.
The optimality of the forest connecting S with the convex hull enables us to prove

NT(S)I O(log n M(S) + n jump (S)).

Thus, NT(S)I is within the factor of O(log n + n jump (S)/M(S)) from the optimum.
If jump (S) is small enough, the approximation is satisfactory. It is easy to find, for
arbitrarily large n, sets of n points in the plane, S, where n jump (S)/M(S) can be as
bad as f(n). One example would be a set of n points, n 2 placed on an arc of length
1/n of a circle of radius 1, one in the center of the circle, one on the perimeter of the
circle on the opposite side of the arc. However, sometimes it is sufficient to expand S by
relatively few new points in order to decrease jump (S) dramatically. Note that for any
a > 0 with 0 < a < 1, if jump (S) is not greater than O(n-) times the length of the
convex hull of S, then

NT(S)I/M(S) O(n ).

If we assume that the n points of S are uniformly distributed in a given square, then we
have NT(S)I/M(S) O(log n) almost certainly, i.e., with the probability of at least

cn-, where c, c are constants satisfying c > 0, a > 1. Also, the expected length of
INT(S)I is of the same order as that of minimum triangulation of S, then. In [12] and
13], under the same assumptions, Lingas has shown the greedy and the Delaunay trian-

gulation to be within a logarithmic factor ofthe optimum, almost certainly. On the other
hand, Chang and Lee [3] have shown that the expected length of the Delaunay trian-
gulation is of the same order as that of a minimum weight triangulation, under the
uniform point distribution.

2. The new triangulation.
Specification. To define the new triangulation we shall use the following conventions:
(a) S stands for a set of n real-coordinate points in the plane.
(b) The set of n(n 1)/2 straight-line segments whose ends are in S is denoted by

E(S). Elements of E(S) are called edges.
(c) The set of edges on the convex hull of S is denoted by CH(S).
(d) The figure composed ofCH(S) and the points ofSlying inside CH(S) is denoted

by C(S).
(e) A polygon means a sequence of closed straight-line segments Sl, s2, "", Sk,

such that if #(si fq sj) > then si sj for _-< i, j _-< k, and the union of the segments
partitions the plane into two disjoint, connected regions. The finite region forms the
inside of the polygon. The endpoints of the above segments have real coordinates and
are called vertices of the polygon. Given a polygon P, there always exists a se-
quence (a0, am) of not necessarily distinct vertices ofP such that P { [am, a0] }
{[ai, ai+ ,]10 =< < m}.
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(f) A spanningforest of C(S), F, is any collection of nonintersecting edges in E(S)
such that CH(S) U F is a polygon and each point in S is an endpoint ofan edge in CH(S)
or F. Note that according to (e), the polygon CH(S) U Fcan be represented by a sequence
of its vertices including each edge in F twice as a subsequence. A minimum spanning
forest of C(S) is a spanning forest ofF achieving the smallest possible total edge length.

The above conventions will be used throughout the entire paper. Employing them,
we define a general triangulation algorithm as follows.

ALGORITHM 1.
(1) Find the convex hull of S, CH(S);
(2) Find a minimum spanning forest of C(S), F;
(3) Find a minimum weight triangulation of the polygon CH(S) tO F;
(4) Output the union of the triangulation of CH(S) tO F and CH(S) U F as the

triangulation of S.

Implementation. The convex hull of S can be constructed in time O(n log n) (see
[6], [16]). To construct the forest F, we can use an algorithm analogous to Shamos’s
algorithm for Euclidean minimum spanning tree in the plane 16].

LEMMA 1. A minimum spanning forest of C(S) can be constructed in time
O(n log n).

Proof Let G(S) be the complete weighted graph on S, where edge weights are equal
to the lengths of the corresponding edges in E(S). Let us augment G(S) by a virtual
vertex connected by a zero-weight edge with each vertex on CH(S), and not adjacent to
any vertex inside CH(S).

To see that the problem ofconstructing a minimum spanning forest ofC(S) reduces
to that of constructing a minimum spanning tree of the augmented graph recall Prim’s
algorithm for minimum spanning tree ], [7], 17]. Apply this algorithm to the augmented
graph, beginning with the virtual vertex labeled and all vertices in S unlabeled. At each
subsequent step, we add a shortest edge between a labeled and unlabeled vertex. Let k
be the number of vertices in the augmented graph that are points in S fq CH(S). Clearly,
after the first k steps, all vertices on CH(S) become labeled and connected by zero-weight
edges with the virtual vertex. Now, recall the definition of the Delaunay triangulation of
S 16]. By Lemma 6.2 in 16], at each, next subsequent step of Prim’s algorithm applied
to the augmented graph, the added edge is an edge of the Delaunay triangulation of S
incident to the labeled (nonvirtual) vertex. When all vertices become labeled, we obtain
a minimum spanning tree of the augmented graph where all edges of the tree that are
not incident to the virtual vertex are edges of the Delaunay triangulation of S. Hence, if
we delete the virtual vertex from the minimum spanning tree of the augmented graph,
we obtain a minimum spanning forest of C(S).

To find a minimum spanning tree of the augmented graph, it is enough to run
Prim’s algorithm on its subgraph containing only these edges that are either incident to
the virtual vertex or are edges of the Delaunay triangulation of S. Since the Delaunay
triangulation of an n-point planar set can be constructed in time O(n log n) 16], the
above subgraph can also be determined in time O(n log n). As the subgraph has only
O(n) edges, Prim’s algorithm can be implemented to run on it in time O(n log n) (see
16, p. 77]). D

Further, we shall assume that the forest Fcomputed in the second step ofAlgorithm
is constructed as in the proof of the above lemma.

Finally, we can find a minimum weight triangulation of the polygon CH(S) tO F in
cubic time by the following fact, independently proved in [5], [8] and [12].
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Fact 1. A minimum weight triangulation of a simple polygon with n vertices can
be found in time O(n3).

In conclusion, the new triangulation can be computed in time O(n3).
Worst-case analysis. To derive the upper bound on the approximation factor of

the new triangulation, we need to introduce the concept ofjump (S) formally.
The smallest real d such that there is a spanning forest of C(S) consisting only of

edges of length not exceeding d is denoted by jump (S).
To note that every edge in a minimum spanning forest of C(S) is of length not

greater than jump (S), we prove the following simple lemma.
LEMMA 2. Let T be a minimum weight spanning tree ofa graph G. The tree T also

minimizes the weight ofthe heaviest edge among all spanning trees ofG.
Proofi Let d be the minimum real such that there is a spanning tree of G with all

edges of weight not exceeding d. Let el, e., ek be the edges of T in nondecreasing
order. We shall prove by induction on j, =< j =< k, that for <= < j, ei are edges of a
spanning tree U of G whose all edges are ofweight =< d. Assume the inductive hypothesis
for j < k. We have le.l -< d since otherwise [UI < ITI. If ej. is in U then we are done.
Otherwise, we add ej. to U and delete an edge of T on the cycle closed by ej that is not in
U to obtain a spanning tree of G satisfying the inductive hypothesis for j + 1. l-q

By the definition of the forest F of C(S) in Algorithm 1, we obtain the following
corollary from Lemma 2.

LEMMA 3. Each edge ofthe forest F constructed in the second step ofAlgorithm
has length not exceedingjump (S).

Proofi After extending F by the virtual vertex connected by zero-weight edges to
all vertices ofF on CH(S), we obtain a minimum weight spanning tree ofthe augmented
graph defined in the proof ofLemma 1. Now, the lemma follows from Lemma 2.

The following technical definition and theorem lead to upper bounds on ]NT(S)[
in terms ofM(S) and jump (S).

Consider a triangulation T of S and a spanning forest F of C(S). For every edge e
in F, we define A(T, e) as the set of edges s in T such that:

s crosses e and at least one of the two pieces of s between the crossing point and
an endpoint of s is not crossed by other edges in F.

THEOREM 1. Let T be a triangulation of S. Let F be a spanning forest of C(S).
There exists a triangulation ofthe polygon CH(S) to F ofedge length at most

6 , #A(T,e)lel+(3 log n+9)lTI +(3 log n+2)lFI.
eeF

Before proving Theorem 1, let us see how it induces the upper bound on NT(S)[/
M(S) in terms ofjump (S). Assume that in Theorem 1, T is a minimum weight trian-
gulation of S, and F is a minimum spanning forest of C(S). By the Euler formula for
planar graphs [7], T as a triangulation of S has at most 3n 6 edges. Since every edge
in T can occur in at most two different sets A(T, e), we have

#A(T, e) =< 2 (#T) =< 6n 12.
eF

By Theorem 1, the minimum weight triangulation of CH(S) tO F that is a part of
NT(S) is of length no greater than

6 #A(T, e)le[ + (3 logn + 9)ITI / (3 logn + 2)lFI
eeF

=< (36n 72) jump (S) + (3 logn + 9) M(S) + (3 log n + 2)[ El.
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Since any triangulation of S includes in particular a spanning forest of C(S) and
the convex hull of S, we have IF[ + ICH(S)I <-- M(S). Putting everything together, we
obtain the following.

COROLLARY 1. INT(S)I <= (6 log n + 12) M(S) + 36n jump (S).
In particular, we have the following.
COROLLARY 2. For any real a with 0 < a < 1, if jump (S) O([CH(S)I/n"), then

NT(S)I]M(S) O(n ).

As the proof of Theorem is quite involved, we precede it with the following in-
troduction: At the beginning, the polygon CH(S) tA F is partitioned into smaller polygons.
Next, specific triangulations of the smaller polygons are considered and upper bounds
on their length are derived. The upper bounds are expressed in terms of the length of
pieces of T and F. The union of the triangulations of the smaller polygons and the
contours of the smaller polygons results in a triangulation of the polygon CH(S) tO F.
By summing the lengths of the component triangulations and contours, we obtain an
upper bound on the length of a minimum weight triangulation of CH(S) tO F, i.e., on
[NT(S)[ in particular. The upper bound is the thesis of Theorem 1. Among the smaller
polygons into which CH(S) U F is partitioned, the important ones are polygons denoted
by Pi(e), where e F, l, 2. The total length of the specific triangulations of the other
smaller polygons can easily be expressed in terms ofthe total length ofcontours ofPi(e)’s,
IT[ and IF[. It turns out that polygons P(e) and PE(e) can be triangulated by drawing
lines of the length proportional to the length of the pieces of T inside them plus
#A(e, T)le]. As e may be much longer than particular edges in T crossing Pl(e) or PE(e),
the value of #A(e, T)lel may considerably exceed the length of the pieces of T inside
Pl(e) and PE(e).

The formal proof of Theorem is the remaining part of this section.
Let e be an edge in the forest F, and let H, HE be the two half-planes induced by

the line colinear with e. For l, 2, let Pi(e) be the polygon (q0, ql, qk+ 1) (see
Fig. l) such that:

(a) q0 and qk + are the endpoints of e;
(b) q, qklie in Hi;
(c) There are points Pl, Pk inside (q0, qg + 1) such that forj 1, k, (q, pj)

is an initial segment of an edge (q, -) in the triangulation T such that (q, pj) lies within
the polygon (qo, ql, qk + 1) and is not crossed by any edge in F;

(d) The polygon (q0, ql, qk + 1) is of the maximum number of vertices among
all polygons satisfying (a)-(d).

Next, let Tr (F) be the set of all triangles in T whose three edges are not crossed
inside by any edge in F (see also Fig. 1).

We have the following remark and lemma on Pi(e)’s and Tr (F).
Remark 1. If the inside of an edge (v, v2) in T is crossed by an edge in F then for

j 1, 2, there exist a point w [v, v] and a polygon P(e) such that the segment (v, w)
lies inside Pi(e).

Proof Let e be the edge of F that crosses the inside of (vl, v2) closest to v.
Then, if w is the crossing point of e and (v, v2), then (v, w) lies either inside Pl(e) or
inside Pz(e). [2]

LEIA 4. The convex hull ofS is partitioned into the polygons P(e), triangles in
Tr (F), and some inner convex polygons by drawing the contours ofthe polygons Pi(e),
the triangles in Tr (F) and the convex hull ofS.

Proof The inside of each Pi(e) is disjoint from S and the edges in F. Otherwise, a
point p in S would lie inside some quadrilateral (p, P+I, q+l, q), or some triangle



A NEW HEURISTIC FOR MINIMUM WEIGHT TRIANGULATION 651

q0

q4

.... .,’,’" ,.,/,
t: ,;’t ,-t
,, ",/ ,!

’,,/ t /,, ,, ,( .,
,’,/ [ ,"
,,F /,d

,’/ ’" :’

,1;’, ,,’,

:1,’. ’’ tt, .
1, ,,."

,’ q8,,, ,,, ,.,
/ z

FG. 1. An example ofa polygon Pi(e). The edges ofPi(e), T and F are respectively marked with continuous,
broken and dotted lines. Notice that the triangle (q2, q3, q4) is in Tr (F).

(Pj+ 1, qj, qj+ 1) or (pj, qj, q./ ), assuming the notation from the definition of Pi(e). To
consider only the quadrilateral case, we may assume thatpj qj orpj+ qj + 1, respectively,
in the triangular case. Further, we may assume without loss of generality that the
point p is closest to e among all points in S inside (p, p+, q+, q.). Since the sides
(qj, Pj), (qj+l, Pj+ 1) of the quadrilateral are fragments of edges of T, at least one edge
d of T incident to p has to cross e between pj and pj+l. The fragment of d between
p and e cannot be crossed by F since otherwise either there is a point in S inside
(Pj, Pj + 1, qj +1, qj) closer to e than p is or F crosses (qj, pj) or (qj + , pj + l) (we obtain a
contradiction with the definition ofp or Pi(e), respectively). Hence, the point p could be
added to the set of vertices of Pi(e) without violating the conditions (a)-(c) from the
definition of Pi(e). Thus, Pi(e) could not satisfy the maximality requirement in this case.
We conclude that the inside of each Pi(e) is disjoint from S and the edges in F.

On the other hand, by the definition of the polygons Pi(e), no edge of a triangle in
Tr (F) can intersect two edges of Pi(e). Moreover, no polygon Pi(e) is in Tr (F). Putting
everything together, we conclude that the insides of Pi(e)’s and triangles in Tr (F) are
pairwise disjoint (see Fig. 2).

Draw the perimeters of the polygons Pi(e), the triangles in Tr (F) and the convex
hull of S. Consider a polygonal face P in the resulting partition, different from Pi(e)’s
and triangles in Tr (F), lying within CH(S). Let an initialfragment of an edge e mean a
segment of e at least one endpoint of which is also an endpoint of e.

First, we shall prove that no initial fragment of any edge in T that is incident to a
vertex v of P can lie inside P. Suppose otherwise. Let d be an edge in T violating the
above claim. Naturally, there is another edge d’ in T incident to v such that d and d’
induce a triangular face in T.

If none of the edges of is crossed inside by F then is in Tr (F). Since, by the
definition of d, overlaps with P, we obtain a contradiction with the definition of P. If
an edgeforF crosses the inside ofan edge of t, then either it crosses the inside ofanother
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FIG. 2. An example ofpartitioning the convex hull ofS into polygons Pi(e), triangles in Tr (F), and inner
convex polygons. The edges ofT are marked with continuous lines, and those off with broken lines. The poly-
gons Pi(e) are darkened with points.

edge of or ends at the apex of opposite to the crossed edge. Iffcrosses d then P overlaps
with a polygon Pi(e) by Remark and again we obtain a contradiction. Thus, we may
assume without loss of generality that eitherfcrosses the two remaining edges of t orf
crosses one of the remaining edges and is incident to an endpoint of d. We may also
assume without loss of generality that no other edge of F crosses between fand d. In
either case, the piece of cut off by fand including d lies within one of the polygons
P(f), P2(f). Again we obtain a contradiction. In this way, we have proved that no initial
fragment of an edge in T incident to a vertex ofP lies inside P.

Let q be a vertex of P, and let p, r be the vertices of P incident to q. Suppose that
the angle (p, q, r) in the inside ofP is of more than 180 degrees. Then, an initial fragment
of an edge in T incident to q must lie inside of P, which yields a contradiction. Thus P
is a convex polygon.

By Lemma 4, the following four propositions imply Theorem 1.
PROPOSITIONS.
(A) For e F, { 1, 2 }, there exist triangulations Ti(e) ofPi(e)’s such that

2, Ti(e) <-_ 6 , #A(T, e) [eI + 6 IT[.
eFi= eF

(B) The total length ofthe union ofthe contours ofthe polygons Pi(e) is not greater
than 2ITI + 31FI.

(C) The total length ofthe union ofthe contours ofthe triangles in Tr (F) and the
convex hull ofS is at most lT I.

(D) There exist triangulations ofthe inner convexpolygons oftotal length not greater
than 3[log nJlT[ + 3[log nJlF[.

To prove Proposition A, we use the three following definitions.
(a) A polygon P (q0, "", qk+ ) is moderately visible from its boundary edge

(q0, q/ ) if for all vertices qj, <- j =< k, there are points pj inside (q0, qk/ 1) such
that the segments (qj, p) lie inside P (i.e., q can see p within P), and for any j’, where

=< j’ -< k and j 4: j’, the open segments (qj, p), (q,, p,) do not intersect.
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(b) Given a polygon P (q0, qk+ 1), forj 0, k + 1, dise (j) denotes the
minimum distance from qj to a point in [q0, qk / l]. Next, given a triangulation U of P,
for j 0, k + 1, nv(j) is the number of edges (qt, qj) in U such that dise (1) =<
dise(j).

(c) Given three points in the plane, a, b, c, (a, b, c) stands for the angle that results
from counterclockwise turning a half-line anchored at b, from the line induced by a and
b to that induced by b and c.

Note that for any e F and { 1, 2 }, the polygon Pi(e) is moderately visible from
e. Hence, it will turn out that the following lemma provides a satisfactory candidate for
the triangulations Ti(e).

LEMMA 5. Let P (qo, qk / ) be a polygon moderately visiblefrom its boundary
edge (qo, qk+ l). There is a triangulation U ofP, such thatforj 1, k, nv(j) <= 3.

Proof First, we shall partition P into convex polygons by drawing a set D ofdiagonals
lying within P. Then, we shall triangulate the resulting convex polygons to obtain a
complete triangulation of P.

To produce the convex partition D of P, we proceed as follows. First, observe the
following fact:

For j 1, ..., k, there is a unique vertex qr(j), j < r(j)=< k + 1, such that
dise (j) >_- dis, (r(j)), and for any vertex qr’, j < r’ < r(j), it holds dise (r’) > disc (j). An-
alogously, for j 1, ..., k, there is a unique vertex qt(j), 0 <= l(j) < j, such that
dise (j) >_- dise (l(j)), and for any other vertex qt,, l(j) < 1’ < j, it holds dise (l’) > dise (j).

Note that for j 1, k, qj can see qr() or r(j) j + 1. Otherwise, there would
exist a vertex qr’ such that j > r’ > r(j) and (q, qrj)) crossed (qr’- , qr’). Let Re (j) be
the region of the points in the plane that are within the distance disc (j) from e. Clearly,
the region Re (j) is convex. Since q and qr) can see at least one point on e within P
and Re (j), the point qr’ had to lie within Re (j). Hence, we have disp (r’) =< disp (j)
which yields a contradiction with the definition of r(j) (see Fig. 3). Analogously, for j
1, k, q can see qtt) or l(j) j 1. Clearly, if qj is a concave vertex of Pi(e) then
<- j =< k. Let D be the set of diagonals (q, qr)), where qj is a concave vertex of P, r(j) >
j + and _-< j -< k 1, and the diagonals (qt(j), qj), where q is a concave vertex of P,
l(j) < j and 2 -_< j _-< k. By the definition of D, any vertex q of Pi(e) is incident to at
most two diagonals in D whose other endpoints are within the distance from e not greater
than that from e to qj.

We claim that no two diagonals in D properly intersect each other. Suppose other-
wise. First, consider the case where the intersecting diagonals are of the form (qj, qrj)),
(qttj,), qj,) where _-< j _-< k and 2 _-< j’ =< k. We may assume without loss of gener-

Re(j) q(J)

e

FIG. 3. The dotted lines mark the boundary of Re (j).
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ality disc (j) =< disc (j’). Since l(j’) < j < j’, we obtain a contradiction with the defini-
tion of l(j’). In turn, consider the case where the intersecting diagonals are in the form
either (qj, qr(j)), (qj’, qr(j’)), where =< j < j’ =< k or (ql(j), qj), (ql(’), q"), where 2 =<
j < j’ =< k. We may assume without loss of generality the first possibility. By j < j’ <
r(j), we have disp (j’) > disp (j). Since j’ < r(j) < r(j’) and disp (j) >-_ disp (r(j)),
we obtain a contradiction with the definition of r(j’).

Thus, the set D forms a diagonal partition of P. Next, we claim that D is a convex
partition under the assumption that angles of 180 degrees are considered as convex.

The proof of the last claim is as follows. Consider the diagonals of D incident to a
concave vertex qj ofP that are in the form (q, qr(j)) or (qi, ql(j)). They partition the inner
angle at qj into at most three angles. We can classify the resulting angles into two categories.
The angles of the first category are in the form (ql, q, qr) where disc (l) =< disc (j) and
disc (r) _<- dis, (j). Since the region Re (j) is convex, the angles of the first category
are of no more than 180 degrees. The angles of the second category are in the form
(qr(j), q, q+ 1) or (qj._ 1, q, ql()). By symmetry, it is sufficient to show that the former
angle is of less than 180 degrees. We argue as follows. Since q+1 can see a point on e,
it can see also a point inside (qj, qru)). Hence, the above angle is of less than 180
degrees. We conclude that the set D is a convex partition of P. Importantly, for
j 1, k, there are at most two diagonals in D of the form (qi, qj) where disc (i) =<
disc (j) by the definition of D.

To complete D to a full triangulation of P, consider a convex face C in the partition
of P induced by D. Let b(C) be the edge of C through which all vertices of P that are
also vertices of C and are not endpoints of b(C) see some points on e within P. By
convention, if C is bounded by e then b(C) e. Next, let v(C) be an endpoint of b(C)
that is closest to e. By arguing as for the angles of the second category, we observe that
no other edge of C can be co-linear with b(C). Therefore, if we connect each vertex of
C not adjacent to v(C) with v(C) by a diagonal then we obtain a triangulation T(C) of
C. On the other hand, given a vertex q- ofC different from the endpoints of b(C), at least
one endpoint of b(C) is in Re (j) since otherwise q could not see any point on e through
b(C). Hence, by the definition of v(C) and T(C), for each vertex qj of C, there is at most
one diagonal in T(C) of the form (qi, qg), where disc (i) =< disc (j).

We conclude that the union U of D and the triangulations T(C) is a triangulation
ofP satisfying nu (i) -< 3 for 1, k. E3

Let Ti(e) be a triangulation of the polygon P Pi(e) satisfying the thesis of Lemma
5. Given an edge d (p, q) in Ti(e), let

re(d) ifdisc(p) >- disc(q) thenp elseq.

Let us call a vertex of Pi(e) sound if it is not an endpoint of e. For a sound vertex
of Pi(e), v, let l(v) be the length of the longest edge in T that ends at v and crosses e.
By these definitions and triangle inequalities, for any edge d in T(e), we have [d[ -<
le] + 2l(m(d)). Let IInside (P(e))N T[ mean the total edge length of the piece of
T inside Pi(e). By Lemma 5, we have

ITi(e)l le[ + 2l(m(d))
d Ti(e)

=< 3 x Z lel + 2/(v)
is a sound vertex of Pi (e)

-<(3 E
is a sound vertex ofPi (e) lel) +6 Ilnside (P(e))f’l TI.
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By definition ofA(e, T) and Lemma 4, we have

X 22 IT;(e)l =< 2 3 X E le[ + 2 E 6 IInside (P(e))n TI
e F e F is a sound vertex of Pi (e) e F

<-6 , #A(e, T)]el + 61T]
eF

So, we have proved Proposition A.
Given a polygon P, we shall denote the contour of P by Contour (P). By triangle

inequalities, the length of the contour of Pi(e), i.e., IContour (Pi(e))l, is not greater than
21el + 21Inside (Pi(e)) TI. Hence, we have (B):

2

I,.J U Contour (Pi(e))
e Fi

2

E Z IContour (Pi(e))[- IF[
eeFi=

2 2

--< ] E 21el + E 2[Inside (Pi(e))f) TI-IF[
eF i= eF i=

31FI+21TI

Proposition C is trivial. To prove Proposition D, we use the following lemma.
LEMMA 6. Let P be a convex polygon with vertices. A triangulation ofP ofthe edge

length [log/llContour (P)I can be constructed in time O(l).
Proof To construct a triangulation ofP of length =< [log/JlContour (P)I, we follow

the perimeter of P, and then, the perimeter of the resulting, current convex subpolygon
of P counterclockwise, connecting consecutive, nonadjacent vertices by diagonals
(see Fig. 4). More formally, the triangulation procedure is as follows:

input: a list L of vertices of P in counterclockwise order;
output: a list U of all edges of a triangulation of P;
U empty list;
until #L< 4 do

begin
for -- 1, 3 do front (i) -- the ith vertex on L;
append the diagonal (front (1), front (3)) to U;
move front (1) from the front to the end of L;
delete front (2) from L

end

Let Po, "’", Pl- be the input vertex sequence L. First, suppose that l 2m for
some natural number m. Note that the sequence of consecutive valuations of the varia-
ble index defined by front (1) Pindex can be decomposed into maximal monotone
subsequences a.o, a, "", at of {0, 1, } where #a0 m/2, #ak+ #ak/2 and
#ak+ >= 2 for k 0, 1, 2,..., t. It follows that =< m 2. Each of the mono-
.tone subsequences corresponds to a closed chain of diagonals of P appended to U,
forming a subpolygon of P. Hence, the total length of the diagonals in U does not ex-
ceed (m 1)lContour (P)I in this special case. In the general case, we have 2 + r
where m [lJ. Since r < 2m, the first r diagonals drawn by the triangulation procedure
form a subpolygon of P. The subpolygon has exactly 2 vertices. Hence, the total
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FIG. 4

length of the remaining diagonals in U is (m 1)lContour (P)I by the previous case.
We conclude that [U[ =< mlContour (P)[.

Since during the execution of the block under the until statement, one vertex is
always deleted from L, the procedure runs in time 0(l).

By Lemma 4 and Propositions B and C, the total length of the perimeters of the
inner convex polygons resulting from drawing the perimeters of the polygons Pi(e) and
the triangles in Tr (F), and the convex hull of S does not exceed 3IF[ + 3[TI. Hence,
by Lemma 6, there exist triangulations of the inner convex polygons of total length not
exceeding

3 Llog n_il FI + 3 Llog nllTI,

i.e., Proposition D holds.
Let V be the union of all triangulations Ti(e), all contours of the polygons Pi(e)

and the triangles in Tr (F), and minimum weight triangulations of the inner convex
polygons, minus the edges in F. By Lemma 4, V is a triangulation of CH(S) tO F. By
Propositions A-D, we have

IV]<=6 , #A(T,e)lel+(3 log n+9)lTl+(3 log n+2)lFI.
eeF

Probabilistic analysis. Let us assume the sample area from which the n points
in S are drawn to be a unit square. It seems natural to assume the uniform point dis-
tribution, i.e., if B is a subset of the set of all points lying within the square, then for

1, ..., n, the probability that the ith point is in B is equal to the area of B. Fol-
lowing Angluin and Valiant [2], let almost certainly mean with the probability of at
least cn-, where c, c are constants satisfying c > 0, c > 1.

In 12], 13], Lingas among others showed that the length of the Delaunay trian-
gulation of a point set S uniformly distributed in a unit square is within a logarithmic
factor from M(S) almost certainly. Following 13], we can partition the unit square into
square cells of O(/log n/n) width. Then, arguing as in [13, p. 26], we can prove that
under the assumption of uniform point distribution all cells contain a point in S almost
certainly. This implies M(S) ft(/n/log n) almost certainly (see [13]) and jump (S)
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O(/log n/n) almost certainly. By Corollary 1, we can conclude that [NT(S)I/M(S)
O(log n) almost certainly.

In [3], Chang and Lee strengthened Lingas’s result on Delaunay triangulation in
the average case. They showed that the expected length of the Delaunay triangulation of
a point set S uniformly distributed in a unit square is within a constant factor from the
expected length of M(S). By combining Corollary with the technique of Chang and
Lee, we could also prove that an analogous result holds for the new triangulation. However,
there exists a shorter way of deriving the two probabilistic results for the new triangulation
by using the following observation due to Christos Levcopoulos 11 ]: Since the minimum
spanning forest F of C(S) constructed in the proofofLemma is a subset ofthe Delaunay
triangulation of S, the length of the new triangulation is never greater than that of the
Delaunay triangulation of S.

By combining the above observation with Corollary 2.5 in 13], and Theorem 4.1
in [3], we have the following.

THEOREM 2. Let S be a random set ofn points which are uniformly distributed in
a unit square.

(1) For any positive real a > 1, we have

Pr[INT(S)I/M(S) O(c log n)] >= n -a/log n.

(2) Let E(INT(S)I) and E(M(S)) be the expected total length ofthe new triangulation
and minimum weight triangulation, respectively. Then

E(INT(S)I)
E(M(S))

o().
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ON MINIMUM CRITICALLY n-EDGE-CONNECTED GRAPHS*

MARGARET B. COZZENS AND SHU-SHIH Y. WUf:l:

Abstract. Let n be an integer with n > 2. A graph G is called critically n-edge-connected if the edge-
connectivity MG) n and for any vertex v of G, ,(G v) n 1. The sizes of critically n-edge-connected
graphs are important and interesting in applications in communication networks. The maximum graphs with
this property have been characterized [2]. In this paper, we first discuss some properties of minimum graphs,
then show that the problem of finding a minimum critically n-edge-connected spanning subgraph of a given
graph G is NP-complete.

Key words, graph theory, edge-connectivity X(G), connectivity K(G), NP-completeness

AMS(MOS) subject classification. 05C41

1. Introduction. Let n be a fixed integer with n >= 2. A graph G shall be called n-
edge-connected if the edge-connectivity k(G) n. A graph G is called critically n-edge-
connected if G is n-edge-connected and for any vertex v of G, k(G v) n 1. A graph
G is called n-connected if the vertex connectivity, r(G) n. A graph G is called critically
n-connected if G is n-connected and for any vertex v in G, r(G v) n 1. A graph G
is a minimum (maximum) critically n-edge-connected graph if no critically n-edge-
connected graphs with the same number of vertices has fewer (more) edges than G.

In a communication network and circuit design, reliability is often determined by
the connectivity and edge-connectivity of the corresponding graph. Therefore it is im-
portant to investigate, for fixed n, critically n-connected graphs ([3], [7]), and critically
n-edge-connected graphs. We characterized the maximum graphs in a subset of criti-
cally n-edge-connected graphs, for each n >= 2 in [2]. Here we investigate the minimum
critically n-edge-connected graphs.

We use {x} to denote the least integer greater than or equal to x, and [x] the greatest
integer less than or equal to x.

2. An example of a minimum critically n-edge-connected graph. For any fixed in-
tegers n, m, m >_- n + 1, Harary [5] constructed classes ofgraphs H,,,m, that are minimum
n-connected. These same graphs are minimum critically n-edge-connected graph with
order m. H,,,m is constructed as follows:

Case 1. n is even. Let n 2r. Then H2r, has vertices 0, 1, 2, 3, m and
two vertices and j are adjacent if r =< j _-< + r (where addition is taken modulo m).
H4,8 is shown in Fig. 1.

Case 2. n is odd (n > 1), m is even. Let n 2r + (r > 0). Then H2r/ ,, is
constructed by first drawing H:r,m, and then adding edges joining vertex to vertex
+ m/2 for =< < m/2. H5,8 is shown in Fig. 2.

Case 3. n is odd (n> 1), m is odd. Let n=2r+ (r>0). Then H:zr+,m
is constructed by first drawing H2r, and then adding edges [0, (m- 1)/2] and
[0, (m + 1)/2], and [i, + (m + 1)/2] for <- < (m 1)/2. H5,9 is shown in Fig. 3.

In Case and Case 2, degHn,m(i) n, for all V(H,,,m) so that IE(Hn,m)l
1/2 i V(Hn,m) degHn,m(i) 1/2 n" m.

Received by the editors October 1, 1986; accepted for publication (in revised form) April 30, 1987.
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In Case 3, degn.,(i) n, for 1, 2, m 1, and degn.,(0) n + 1. So that
ZVtZ.,m) degn.,m(i) =nm + 2"IEI. So IE(H.,m)I =(nm + 1)/2.

Therefore for any fixed integers n, m, rn >_- n + 1, E(Hn,m)l {nm/2}.
Now we show that H.,m is a minimum critically n-edge-connected graph, i(G) is

the least degree over all vertices of G.
THEORZM 1. The graph Hn,m is n-connected [5].
From the construction of Hn,m, it is clear that 6(H.,m) n, and since

n <= K(Hn,m) <- ,(Hn,m) <- 6(Hn,m) n,

we have X(Hn,m) 6(Hn,m) n. Therefore, we have the following theorem.
THEOREM 2. The graph Hn,m is n-edge-connected.
For vertices j and k in a graph G, a (j, k)-cutset of G is a vertex cutset T such that

j and k are in different components of G T.
THEOREM 3. The graph Hn,m { i} is (n 1)-connected, for any vertex in H,,m.
Proof Let n=2r if n is even, 2r+ if n is odd. The minimum degree,

6(Hn,m {i}), is n so there exists a vertex cutset of size n 1. We will show that
there is no vertex cutset with fewer than n vertices.

Suppose there exists a vertex cutset T such that 2 -< TI < n 1. Let j and k be
vertices belonging to different components of (H,,m { i}) T such that if is between
j and k then 0 =< k < < j, and if is not between j and k then j < k. Define two vertex
sets A and B in Hn,m { i} (addition is modulo m):

A={j,j+I,j+2, ,k-l,k},
B {k,k/ 1,k+2,---,i- 1,i+ 1,.-. ,j- 1,j}.

Note that A U B V(Hn,m {i}) and A f) B {j, k}. Since ITI < n 1, ITI < 2r.
Therefore not both T f’l A and T N B can have r or more elements.

Case 1. IT f’l AI < r. A T A (A Cl T) so no more than r consecutive
elements are removed from A by T. Hence A T has a sequence of distinct vertices
starting with j and ending with k with no difference greater than r between any pair of
consecutive vertices. This sequence is a (j, k)-path in (H,,m { i}) T, a contradiction
to T being a (j, k)-cutset.

Case 2. IT BI < r.
Subcase (i). IT fq B < r- 1. As in Case 1, no more than r- 2 consecutive

elements are removed from B by T. Hence B T has a sequence of distinct vertices
starting with k and ending withj, and the difference between any two consecutive vertices
is at most (r 1) + r. (There is an additional in the gap between and + 1.)
This sequence is a (k, j)-path of (Hn,m { i}) T, a contradiction to T being a (j, k)-
cutset.

Subcase (ii). IT B r 1. Since j and k are not in T,

ITf3AI=ITI-ITf3BI<n 1-(r- 1)=n-r<r+ 1.

If IT fq AI < r then Case applies. Therefore IT AI r. IAI + IBI (m + 2)
m + 1. Therefore not both of IAI and [B[ can be greater than {(m + 1)/2}, but at least
one is greater than or equal to {(m + 1)/2 }.

Suppose AI >-- {(m + 1)/2 }. Ifthere exists a sequence of vertices in A Tbeginning
with j and ending with k such that no pair of consecutive terms has a difference >-
r + 1, then this sequence is a (j, k)-path in (H,,m { i}) T, a contradiction to T being
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a (j, k)-cutset. Thus we may assume that every sequence of vertices in A T beginning
with j and ending with k has a pair of consecutive terms with difference >= r + 1. In fact,
since IT N AI r, this difference is exactly r + 1, and there is only one such consecutive
pair with difference r + 1. All other consecutive pairs have a difference of 1. Call the pair
of vertices with difference r + 1, s and s + r + in the sequence A T. Thus we can
writeA-Tas{j,j+ 1,j+2,.-.,s- 1, s,s+r+ 1,-..,k- 1, k} (Note that j can
be s.) Split A T into two parts:

A=(j,j+l,...,s-l,s} and A2 ={s+r+l,s+r+2,...,k-l,k}.

The difference in consecutive terms in each Ai is 1, so there is an edge in (Hn,m { i})
T between them. But m >_- n + >= 2r + implies m/2 >- r + 1/2 > r if m is even, and
(m + 1)/2 >= r + > r if m is odd. Thus there are some a A and a A2 such that
a2 a + [(m + 1)/2]. The sequence {j, j / 1, a, a2, k- 1, k) is a (j, k)-
path in (H,,m { i}) T, a contradiction to T being a (j, k)-cutset.

If BI >= {(m + 1)/2 } then the same argument applies since n > TI ->- 2 implies
n >_- 4, hence r >_- 2, so there is an edge between and + in H,,m { i}.

All that remains is to show that no vertex cutset of only one vertex exists for
H,,m {i}. Suppose T= {p} is a vertex cutset ofH,,m {i}. Since IT] < n 1, n >= 3.

Casel. Ifp=i- l(equivalentlyi=p+ 1),theni+ 1, i+2,...,m- 1,0,.-.,
2 is a path containing all the vertices of H,,m { i, p}, a contradiction to T being a

cutset of H,,m { i}.
Case 2. p 4 and p 4 + 1. Without loss of generality assume < p =<

m- 1. NowP =p+ 1, p+2,.-.,m- 1,0, 1,.-.,i- lisapathandP2=i+ 1,
+ 2, p is a path in (H,,m {i}) {p}. If n is even then r >= 2 and

{i- 1,i+ l}.E(Hn,m)

so there is only one component of (H,,m { i}) {p}. If n is odd then there exists an
edge between some x in P and x + [(m + 1)/2] in P2, again contradicting T {p} being
a cutset of H,,m { i}. Therefore, there exists no cutset with only one vertex, and the
theorem is proved. QED

Since n _-< (Hn,m- {i}) =< X(Hn,m {i}) =< 6(Hn,m {i}) n 1, we have
(Hn,m { i}) 6(Hn,m { i}) n 1. Therefore, we have the following theorem.

THEOreM 4. The graph Hn,m {i} is (n 1)-edge-connected, for any vertex
in H,,m.

Now we can show the main theorem of this section.
THEOREM 5. For any given positive integers m, n, m >- n + 1, there exists a minimum

critically n-edge-connected graph with order m.
Proof By Theorem 2 and Theorem 4, Hn,m is critically n-edge-connected.

IE(Hn,m)[ {nm/2} and IV(H,,,m)I m.
Let G (V,E) be a critically n-edge-connected graph with VI m. Thus

,(G) n, and for any vertex v in G, X(G) =< 6(G) =< degGv. Hence

2"IEI
ve V(G)

degGv >= m. 6(G) m. n.

So IEI -> mn/2. IEI is an integer, hence IEI >= {mn/2} [E(nn,m)l. So no critically
n-edge-connected graph with m vertices has fewer edges than H,,,m. Therefore H,,,m is a
minimum critically n-edge-connected graph with order m. QED
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3. Characterizations of minimum critically n-edge-connected graphs. In addition
to Hn,m, there are other minimum critically n-edge-connected graphs. First we discuss
some properties of minimum critically n-edge-connected graphs.

From the discussion of the graph Hn,m, it is easy to obtain the following lemma.
LEMMA 6. IfG is a minimum critically n-edge-connected graph with order m, then

IE(G)I- {mn/2}.
A graph G is called almost regular ofdegree n ifthere is at most one vertex ofdegree

n + and all other vertices have degree n. Clearly, an n-regular graph is almost regular
of degree n.

THEOREM 7. IfG V, E) is a minimum critically n-edge-connected graph, then
G is almost regular ofdegree n. The prooffollowsfrom Lemma 6.

The converse of Theorem 7 is not true. G, as shown in Fig. 4, is almost regular of
degree 5, but G is not critically 5-edge-connected, since k(G) 5, and k(G a0)
34:5- 1.

If G is n-edge-connected, then the order of G, m, is such that m >- n + 1. For
n + =< m =< 2n, we have a characterization of minimum critically n-edge-connected
graphs.

THEOREM 8. Let the order of G be m. For any n such that n + <= m <= 2n,
G (V, E) is a minimum critically n-edge-connected graph if and only if G is almost
regular ofdegree n.

To prove Theorem 8, we will use the following lemma.
LEMMA 9. IfG has m vertices and 6(G) >= [m/2], then X(G) 6(G) [1 ].
ProofofTheorem 8. By Theorem 7, if G is a minimum critically n-edge-connected

graph, then G is almost regular of degree n.
Conversely, if G is almost regular of degree n, then 6(G) n >= m/2 >= [m/2]. By

Lemma 9, we have (G) 6(G) n. For any vertex u V(G), 6(G u) n >=
m/2- 1. Since n- is an integer, n- >_- {m/2- }.

Case 1. rn is odd.

6(G-u)=n -1=> n-l=>-m+2 1==2-1 2-1
Case 2. rn is even.

6(G-u)=n- >= -1
m-2
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By Lemma 9, we have X(G u) 6(G- u) n 1.

IE(G)I --- degav
ve V(G)

mn--, or

((m- 1)n +n+ 1) =(mn+ 1)

Therefore, G is a minimum critically n-edge-connected graph. QED
The reader should note that G need not be n-connected in Theorem 8.
In general, the converse of Theorem 7 is not true, but if the vertex connectivity

K(G) n, then we can give a characterization of minimum critically n-edge-connected
graphs.

THEOREM 10. Let K(G) n. G (V, E) is a minimum critically n-edge-connected
graph ifand only ifG is almost regular ofdegree n.

Proof Let the order of G be m. By Theorem 7, we obtain the "only if part."
Conversely, if G is almost regular of degree n, then 6(G) n. Since n (G) -<

X(G) _-< 6(G) n, we have X(G) n.
For any vertex u in G, (G u) =< X(G u) =< 6(G u) n 1. Suppose that

X(G u) < 6(G u), for some vertex u in G, then (G u) -< X(G u) < n 1.
Thus, the connectivity (G) < n, a contradiction. So for any vertex u in G, we have
X(G- u) 6(G- u)= n- 1.

G is almost regular of degree n, so by the proof of Theorem 8, IE(G)[ {ran
Therefore, G is a minimum critically n-edge-connected graph. QED
The condition K(G) n in Theorem 10 is necessary, since we can find a graph G,

the one shown in Fig. 4, which is almost regular of degree n with (G) < n, G is a
minimum n-edge-connected graph, but G is not critical with respect to X(G). Here
(G) 4, since {a2, a9, al0, all } is a vertex cutset.

For m >_- 2n + 1, we can give some characterizations of minimum critically n-edge-
connected graphs.

THEOREM 1. For any given positive integers m, n, m >- 2n + 1, and lV(G)l m,
G (V, E) is a minimum critically n-edge-connected graph if and only if G is almost
regular of degree n, and for each vertex u in a vertex cutset T with TI -< n- 1,
X(G- u) >_- n- 1.

Proof By Theorem 7, if G is a minimum critically n-edge-connected graph, then
G is almost regular of degree n. Since G is critical with respect to X(G), for each vertex
u in G, X(G u) n 1. So "the only if part" is complete.

Conversely, if G is almost regular of degree n, then 6(G) n. Since X(G u) >_-
n- for some vertex u in G, and i(G) n, we have X(G) >_- n 1.

Suppose X(G) n 1. Let El be a minimum edge-cutset and G, G2 be two com-
ponents of G E. 6(G) n and IEll n 1, so IV(G)I >- 2 and [V(G)I >_- 2. Since
rn >- 2n + 1, without loss of generality, we may let V(G)I >= n + 1. Let A be the set of
vertices in G1 which are incident with El. IAI -< n 1, since [Eli n 1. So A is a
vertex cutset with IAI =< n 1, and for any vertex u in A, X(G u) =< n 2, a contradiction.
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Therefore ,(G) > n 1. n < X(G) =< 6(G) n, so X(G) n. Therefore G is
n-edge-connected. We show next that G is critically n-edge-connected.

For each vertex u in G, we consider the following two cases for a cutset contain-
ing it.

Case 1. u is in a vertex cutset T with IT[ =< n 1, then ?(G u) -> n 1. Since
,(G-u)<=b(G-u)=n- 1, wehaveX(G-u)=n- 1.

Case 2. Every vertex cutset containing u has at least n vertices. Suppose
X(G u) < n 1. Let/ be a minimum edge-cutset of G u, and H, H2 be two
components of (G u) -/. V(H)I + [v(n2)l m >_- (2n + 1) 2n. Without
loss of generality, let V(H)I >= n. Since I?1 < n 1, u must be adjacent to some vertices
in H and some vertices in H2, as shown in Fig. 5.

Let T be the set of vertices in H which are incident with/. T[ < n 1, since
I/l < n 1. [V(H) Z[ > 1. Thus T LI {u} is a vertex cutset of G and ]T tA {u}] _-<
n 1, a contradiction to the assumption of this case. So X(G u) >_- n 1. Since
X(G u) _-< 6(G u) n 1, we have X(G u) n 1. Therefore G is critical with
respect to X(G).

G is almost regular ofdegree n, by the proof ofTheorem 8, IE(G)[ {ran where
m is the order of G. Therefore, G is a minimum critically n-edge-connected graph with
order m. QED

A vertex u of a graph G is called critical if u is contained in a minimum vertex
cutset. Thus, we have the following lemma.

LEMMA 12. A vertex u in graph G is critical ifand only if(G u) (G) 1.
COROLLARY 13. For any given positive integers m, n, such that rn >-_ 2n + 1,

IV(G)[ m, and (G) >= n 1, G (V, E) is a minimum critically n-edge-connected
graph if and only if G is almost regular of degree n, and for any critical vertex u,
X(G-u)>_-n- 1.

Next, we give some examples to illustrate Theorem 11 and Corollary 13.
Example 1. G is shown in Fig. 6.
G is almost regular of degree 5, (G) 3. For any vertex u in a vertex cutset T with

IT[ _-< 4, X(G u) >_- 4. By Theorem 11, G is a minimum critically 5-edge-connected
graph.

Example 2. G is shown in Fig. 7.
G is almost regular of degree 5, (G) 4, and for any critical vertex u, X(G u) >=

4. By Corollary 13, G is a minimum critically 5-edge-connected graph.
Example 3. G is shown in Fig. 8.

HI u H2

G"

FIG. 5 FIG. 6
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FG. 7

G is almost regular of degree 5, K(G)= 3, u is in a vertex cutset S, [SI 4,
k(G u) 3 < 5 1. By Theorem 11 G is not a minimum critically 5-edge-connected
graph. In fact, G is not critical with respect to k(G).

Example 4. G is shown in Fig. 9.
G is almost regular of degree 5, K(G) 4, u is a critical vertex, but k(G u)

3 < 5 1. By Corollary 13, G is not a minimum critically 5-edge-connected graph. In
fact, G is not critical with respect to k(G).

COROLLARY 14. For positive integers m, n, m >- 2n + 1, at least one ofn or m is
even, and IV(G)] m, G (V, E) is a minimum critically n-edge-connected graph if
and only if G is regular of degree n, and for any vertex u in a vertex cutset T with
IT]=<n- 1,(G-u) ->n- 1.

Proof By Theorem 11, G is a minimum critically n-edge-connected graph if and
only if G is almost regular of degree n, and for any vertex u in a vertex cutset T with
[Tl=<n- 1, X(G-u)>-n- 1.

Now, suppose that G is not regular of degree n, but G is almost regular of degree n.
Then vt) degav n(m 1) + (n + 1) nm + is odd, since nm is even. But
Zo vt)degv 2. IEI, so we obtain a contradiction. Conversely, ifG is regular ofdegree
n, then G is almost regular of degree n. QED

4. NP-completeness. A problem is in the class NP ifsome nondeterministic machine
could, in every instance, find the answer in a number of steps which is bounded by some
fixed polynomial in the length of the input data. A problem is NP-complete if it is in
NP, and the existence of a deterministic polynomial algorithm, for it would imply the

FIG. 8
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FIG. 9

existence of a deterministic polynomial algorithm for all NP problems. The proof tech-
nique for NP-completeness in this section uses the restriction technique. An NP-com-
pleteness proof by restriction for a given problem Q e NP consists simply of showing
that Q contains a known NP-complete problem R as a special case.

The main problem in this section is as follows:
Problem n-EDGE.
Instance: G (V, E), a positive integer n, < n _-< IV[ 1.
Question: Is there a minimum critically n-edge-connected subgraph G’ (V, E’)

of G?
We shall show that Problem n-EDGE is NP-complete. To do this, we will use the

NP-complete problem, the Hamiltonian Circuit Problem (HC).
Problem HC.
Instance: Graph G (V, E).
Question: Does G contain a Hamiltonian circuit?
LEMMA 15. G’ V, E’) is a connected spanning subgraph ofG V, E) and G’

is almost regular ofdegree 2 ifand only ifG’ is a Hamiltonian circuit ofG.
Lemma 15 is proved by using the facts that the number of vertices of odd degree

for any graph is even, a connected graph with no vertices of odd degree is Eulerian, and
an Eulerian circuit in a 2-regular graph must be a Hamiltonian circuit.

There are many polynomial time algorithms for computing the number of com-
ponents of a graph G (V, E) including the one given in [8].

Now we consider Problem ARn.
Problem ARn.
Instance: G (V, E), a positive integer n, < n _-< IV[ 1.
Question: Is there a spanning connected subgraph G’ (V, E’), such that G’ is

almost regular of degree n?
THEOREM 16. Problem ARn is NP-complete.
Proof First, we prove that Problem ARn is in NP: Given a yes solution (called

certificate) to Problem ARn, we give a polynomial checking algorithm:
Certificate: a subgraph G’ of G.

CERTIFICATE-CHECKING ALGORITHM (Procedure I):
Begin

1. If V(G’) 4: V(G)
Then return "No"
Else

2. If c(G’) (the number of components of G’) >= 2
Then return "No"
Else
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End.

Sort degrees of vertices in G’, such that
d <=d_<=d3 <= <=d,;

If (dl= d2 d3 dm- n)and (d, n or d, n + 1)
Then return "Yes"
Else return "No";

Step 2 is a polynomial procedure. Step 3 is a sorting procedure, so it also runs in
polynomial time. Therefore, the certificate-checking algorithm runs in polynomial time,
Problem ARn is in NP.

Let n 2. Problem ARn is reduced to Problem HC by Lemma 15. So a specified
type ofinstance ofProblem ARn is NP-complete. By the "restriction technique," Problem
ARn is NP-complete. QED

Problem n-EDGE-T.
Instance: G (V, E), a positive integer n, < Ivl/2 --< n _-< [Vl 1.
Question: Is there a minimum critically n-edge-connected subgraph G’ (V, E’)

of G?
THEOREM 17. Problem n-EDGE-T is NP-complete.
Proof By Theorem 8, Problem n-EDGE-T is the same as Problem ARn. So Problem

n-EDGE-T is NP-complete. QED
Problem MENS (Minimum n-edge-connected subgraph).
Instance: G (V, E) and positive integers n _-< VI and b =< EI.
Question: Is there a subset E’

_
E with E’I -< b such that G’ (V, E’) is n-edge-

connected?
COROLLARY 18. Problem MENS is NP-complete [4].
Therefore, if G’ (V, E’) is a certificate, then there is a polynomial time certificate-

checking algorithm for Problem MENS, we call it "Procedure II."
THEOREM 19. Problem n-EDGE is NP-complete.
Proof First, we show that Problem n-EDGE is in NP.
Certificate: A subgraph G’ of G.

CERTIFICATE-CHECKING ALGORITHM:
Begin

1. If G’ is not a spanning connected subgraph of G or G’ is not almost regular of
degree n--(Call Procedure I)
Then return "No"
Else

2. If G’ is not n-edge-connected--(Call Procedure II)
Then return "No"
Else

3. For I :=
Construct H’ G’- v, H G- vi;

IfH’ is not (n 1)-edge-connected--(Call Procedure II (Instance:
H,n- 1))
Then return "No" and go to 5.
Else go to loop 3;

Return "Yes";
End.
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In step 1, Procedure I runs in polynomial time P.
In step 2, Procedure II runs in polynomial time P2.
In step 3, the number of computation steps is O(P2"
Therefore, the certificate-checking algorithm runs in polynomial time, Problem

n-EDGE is NP.
Ifwe use instance n, vI/2 --< n =< vl 1, Theorem 17 and the "restriction technique,"

Problem n-EDGE is NP-complete. QED
We have shown that the problem of finding a minimum critically n-edge-connected

spanning subgraph of G is NP-complete. If we place any restrictions on graph G other
than the ones imposed in Theorems 8, 10, 11 and Corollary 13 does the problem become
easier?

We thank the referee of an earlier version of this paper for his helpful suggestions.
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1. Introduction. The contraharmonic mean (see [2]) oftwo positive scalars is defined
by the formula

This may be rewritten as

C(a,b)=
a2+b2

a+b

C(a, b) (a + b) 2(a- + b-l)-1,

which is twice the arithmetic mean minus the harmonic mean.
In [2] the contraharmonic mean of positive semi-definite matrices was defined by

(1) C(A,B)=A+B-2(A:B),

where A:B denotes the parallel sum of Anderson and Duffin (see [1 and [4]), given by

(2) A:B lim A(A + B + eI)-B.
0

The formula in (2) above has proved to be a satisfactory definition of the parallel sum
for positive operators on a Hilbert space (see for example [4]), and we therefore define
the contraharmonic mean for such operators by means of (1) and (2). (The authors of
[2] are well aware of the extendibility of some of their results to infinite dimensions.) In
this paper we give several variational definitions of the contraharmonic mean of two
positive operators.

2. Preliminaries. Let f be a (complex) Hilbert space, with inner product (., ). A
bounded linear operator A: 6f - is termed positive if (Ax, x) >- 0 for all x e . If
A and B are operators, then we write A >_- B to mean A-B is positive. This defines a partial
order on the set ofbounded linear operators on . IfA and B are positive operators, we
define their parallel sum, A: B, by

A:B lim A(A + B + e,I)-B., 0

The parallel sum has been extensively studied by Anderson, Ando, Duffin, Fillmore,
Mitra, Purl, Trapp, Williams and many others, [1], [4]-[ 10]. The following theorem
summarizes some of the results from [4].
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THEOREM 1. Let A and B be positive operators; then

(a) A:B ispositive,

(b) (A" Bc, c) inf (Ax, x) + (By, y),
x+y=c

{ [A-X A ]>OandX>=O}(c) A:B=sup X:
A A+B

(In part (c) the sup is with respect to the partial order defined above.)

3. Four variational formulations. In this section we give four variational formulas
for the contraharmonic mean C(A, B) of two positive operators,

C(A,B) A + B- 2(A:B)

lim A +B- 2A(A + B + eI)-lB.
0

THEOREM 2. Let A and B be positive operators; then

(C(A,B)c, c) sup ((A B)x,x) + ((B-A)y, y) + 2 Re ((A + B)x, y).
x+y=c

Proof By definition of the contraharmonic mean, we have

C(A, B)c, c) ((A + B)c, c) 2((A:B)c, c).

By Theorem (b) this is equal to

((A + B)c, c) 2 inf (Ay, y) + (Bx, x) sup ((A + B)c, c) 2(Ay, y) 2(Bx, x)
x+y=c x+y=c

sup ((A + B)(x+ y), x + y)
x+y=c

2(Ay, y)- 2(Bx, x).

Expanding the first term and rearranging things a bit gives the result.
COROLLARY 3. Let A and B be as above. Then

(C(A B)c,c) sup
x+y=c +B B-

Proof Expanding the inner product, we obtain

+B B-
=((A-B)x,x)+((B-A)y,y)+2 Re((A+B)x,y),

and the result now follows from the previous result. [2]

THEOREM 4. Let A and B be positive operators. Then

( x-(+
C(A,B)=inf X>-0:

(A+B) X-(B-A)

Proof. Let X be positive; then

x x
(Xx, x) + (Xy, y) + 2 Re (Xx, y) (X(x + y), x+ y).

X X y y
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Thus, if we set C C(A, B), we have by Corollary 3 that

C
>_

C +B B

This says that if we set

(A’B)= {x: [Xx -(A-B)-(A +B) X-(A +B)] >_ 0,X>__ 0}X-(B-A)

(X(x + y),x + y) > ([AA B
+B

Letting c x + y, maximizing the fight-hand side over all x + y c, and applying
Corollary 3, we get

(Xc, c) >= C(A, B),

and the result follows. V]

THEOREM 5. Let A and B be positive; then

[A-B+XC(A,B) inf X:
2A

Proof By Theorem l(c),

2(A" B) sup X
2A

If we set C A + B X, then

C(A,B)=inf C’X>-_O,X=A +B-C,
2A

The condition X >_- 0 translates into C =< A + B, and thus

{ [2A-(A+B-C)C(A’B)=inf C>--O:C<-A+B’
2A

and the result follows.

2(A + B)
>- O’X<=A + B

2A ] >=0,X_>_0}.2(A + B)

2(A + B)

2(A + B)

4. Comments. The authors ofthe present paper happened upon the contraharmonic
mean quite independently of [2]. We were studying (see [7]) the formula from Fillmore
and Williams [6] for the parallel sum of two operators:

THEOREM [6]. Let A and B be positive operators. Then there are unique operators
D and E such that

(a) A 1/2 (A + B)I/2D,
(b) O 1/2 (A if- B)I/2E,
(c) ker D*

_
ker (A + B)1/2,

(d) ker E*
_

ker (A + B)1/2.
Moreover ifD and E are as above, then

A:B=A1/2D*EB 1/2.

then C(A, B) e qY (A, B ).
To complete the proof we must show that if X 6 q(A, B), then X >= C(A, B). So

let X c(A, B); then as above
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Proof See [6]. F-1

If D and E are as above, then it can easily be shown that

C(A, B) A/2D*DA /- + B/2E*EB /.
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Abstract. For positive scalars a and b the contraharmonic mean of a and b, C(a, b), is defined by

C(a, b) (a + b2)/(a + b).

In this paper we consider a natural matrix generalization of the contraharmonic mean, fit this into the matrix
analogue of some of the classical scalar inequalities for means, develop computational procedures which let us
generate the matrix analogues of an infinite family of scalar means, and study fixed point problems. Finally,
we mention a relationship between least squares problems and the contraharmonic mean.

Key words, harmonic, arithmetic, contraharmonic

AMS(MOS) subject classifications. 15A24, 15A45

1. Introduction. IfA and B are Hermitian positive semidefinite matrices we define

C(A, B) A + B 2(A :B),

where A B is the operation of parallel addition introduced by Anderson and Duffln ].
Many of the properties of C(A, B) are related to those of the harmonic mean 2(A B)
and the arithmetic mean (A + B)/2. For example,

and
A + B >= C(A, B) >= (A + B)/2

(C(A,B)+ 2(A B))/2 =(A + B)/2.

The dual mean C’(A, B) C(A-1, B-)- can be written as

or as
C’(A, B) (A B) + 2(A B)C(A, B)-I(A B),

C’(A, B) [A(A B)-IAI [B(A "9)-19].
We will also present variational characterizations ofboth the contraharmonic mean

and its dual. These variational characterizations arise from the representation of the
contraharmonic mean using the operation of parallel subtraction.

The equation
C(A,X) A + B

is equivalent to the fixed point problem

X 2(A X) + B.

If B is positive definite this latter problem has a unique solution according to the work
of Anderson, Kleindorfer, Kleindorfer and Woodroofe [2], and in fact is the same as the
solution to

C(Y,B)=A+B.
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In the scalar case the solution would be

x {(a + b) + (a 2 + 6ab + b2)1/2}/2,
but in an HSD setting the fractional power needs to be interpreted using the geometric
mean operation #, defined by Pusz and Woronowicz [14] as

A #B AI/2(A-I/2BA-1/2)I/2A 1/2.

Another interesting problem is that of inverse means: given HSD matrices E
and F and means Ml and M2, when can we find HSD matrices A and B satisfying E
M(A, B) and F M2(A, B)? We consider this problem when one of the specified means
is the contraharmonic mean.

In the final section we exhibit a relationship between some classical least squares
problems and the contraharmonic mean. We show that there are two natural ways to
define the contraharmonic mean of three HSD matrices.

2. Preliminaries. The contraharmonic mean is one ofthe classical means ofGreek
mathematics. Its name arises from the fact that, just as solving for x in the equation

(a- x)/(x- b)= a/b

yields the harmonic mean, so solving for x in the equation

yields
(a- x)/(x- b) b/a

x C(a, b) (a 2 + b2)/(a + b).

Many investigators have linked means together by introducing one or more param-
eters into the definition which, when varied, generate some ofthe "named" means. Thus
the harmonic mean is the case s 0 and the contraharmonic mean is the case s 2 for
the mean studied by Gini [8], Beckenbach [6] and Lehmer [9]"

Gs(a, b) (a + bS)/(a + b 1).

The arithmetic mean and geometric mean can also be associated with this mean, by
letting s and s 1/2. Other parametrizations are discussed in Mays 11 ].

To generalize from the scalar case, we consider matrices on a finite-dimensional
inner product space. The inner product is denoted by (,). A matrix is called Hermitian
positive semidefinite (HSD) ifA A*, where A* is the adjoint (conjugate transpose) of
A, and (Ax, x >= 0 for all vectors x. IfA and B are both HSD, we write A >= B ifA B
is HSD.

To generalize the contraharmonic mean to the case of HSD matrices, we require
three special HSD matrix operations: the parallel sum (harmonic mean), the geometric
mean and the parallel difference. If A and B are invertible HSD matrices, the parallel
sum, denoted A B, and the geometric mean, denoted A # B, are defined by

and
A" B A(A + B)-IB

A #B A1/2(A-1/2BA-I/2)l/2A 1/2.

In the case that the inverses do not exist, the limit of nonsingular approximations may
be used as the definition.

Another operation that we will use is a subtraction operation related to A B. We
seek HSD X so that A X C for given A and C. We refer to [3] and 13] for additional
background; here we only require the following result from [13].
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Ifthere is an Xso that A X C, then one suchXis given by the variational formula

min[XIXisHSDand[A-CA A+xA]isHSD}"
The minimum X is called the parallel difference of C and A and written C + A. The
minimum X is the only solution ofA X C such that the range ofX is contained in
the range ofA. We use the parallel difference to characterize the dual ofthe contraharmonic
mean. This X may also be obtained from the formula

X=A(A C)+C

where the superscript "+" denotes the Moore-Penrose generalized inverse.
A fundamental theorem used in our investigation is the arithmetic-geometric-

harmonic inequality
(A + B)/2 >-A #B >= 2(A B),

which is valid for all HSD matrices A and B. Trapp [15] has more information and
background on these operations and inequalities.

3. The contraharmonie mean and its dual. IfA and B are HSD matrices, we define
the contraharmonic mean, denoted C(A, B), by

(1) C(A, B) A + B 2(A" B).

This definition is motivated by an identity in the scalar case. Since both + and are
commutative, this operation is commutative. When Q- exists we can write

Q(C(A, B))Q* C(QAQ*, QBQ*),

a matrix homogeneity property stronger than the standard requirement for homogeneity,
in which Q would have to be a scalar.

Clearly A + B >-_ C(A, B), and since (A + B)/2 >= 2(A B) we see that

C(A, B) >= (A + B)/2.

This guarantees that C(A, B) is HSD.
A direct computation shows that

(C(A, B) + 2(A B))/2 (A + B)/2,

i.e., the arithmetic mean of the contraharmonic and harmonic means is the arithmetic
mean. WhenA + B is invertible, another direct computation using the equivalent parallel
formula

A B A -A(A + B)-A
yields

hence
(A + B)/2 2(A" B) (A B)(A + B)-(A B)/2;

C(A, B) (A + B)/2 + (A B)(A + B)-(A B)/2.

As a corollary, note that

(A + B)/2 >= (A B)(A + B)-(A B)/2.
because

A + B (A + B)/2 + (A + B)/2 >= C(A, B).
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Duality is a natural matrix mean concept. The dual of the contraharmonic mean,
which we will denote C’(A, B), is defined by

C’(A,B)=C(A-1,B-I)-1

when A and B are invertible.
THEOREM 1. C’(A, B) A" B + 2(A B)C(A, B)-I(A B).
Proof. Let D A-1/2BA-1/2. Then

C(A, B) C(A l/2IA I/2,A I/2DA 1/)
A l/2C(I, D)A 1/2

and
C(A-l, B-l)-l A l/2C(I, D-l)-lA

Since I and D commute, as in the scalar case we have

Thus
C(I,D-I)-l I:D+ 2(I:D)C(1,D)-I(I:D).

C(A-,B-I)- A1/2{I" D + 2(I" D)C(I,D)-I(I D)}A 1/2

A /2(I" D)A 1/2

+2A 1/2(I D)A 1/2A-1/2C(I, D)-A-I/2A 1/2(i. D)A

A" B + 2(A" B)(A /2C(I, D)A l/2)-l(A "B)
A" B + 2(A" B)(C(A, B))-I(A "B),

as desired.
Another representation of the dual is given by the following theorem:
THEOREM 2. C’(A, B) (A(A B)-IA) (B(A B)-IB).
Proof

C’(A, B) (A-1 + B-l 2(A-l B-l))-l

(A-1 -A-I. B-I + B-1 A-I. B-1)-l.
Now let

and
X-l A-I (A-l" B-l) A-l (A + B)-I

y-I B-I (A-I B-l) B-I -(A + B)-l.

The proof is complete upon noting that C’(A, B) X: Y, and that

AX-IA A A(A + B)-lA A B

implies X A(A B)-IA, with a similar result for Y.
Now we begin with the original formula for the contraharmonic mean and take the

duals of each side to generate the following sequence ofequations. Note we are using the
fact that the arithmetic and harmonic means are duals.

C(A, B) A +B 2(A :B)
or

Taking duals yields
2(A- B) + C(A, B) A + B.

((A + B)/2) C’(A, B) A B,

and thus C’(A, B) exists for all invertible A and B. Since the range of (A + B)/2 contains
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the range ofA B, according to a result of [3], the equation ((A + B)/2) :X A B has
a solution, and hence a minimum solution. This minimum solution should be defined
as C’(A, B) in the most general situation; it is in accordance with C(A-, B-1) for invertible
A and B. Since the range of the contraharmonic mean is contained in the range of the
arithmetic mean, the dual contraharmonic mean may be written

C’(A, B) (A :B) + (A + B)/2.

Alternatively, we can use the variational characterization of parallel subtraction to write

C’(A, B) inf {X X is HSD and [(A + B)/2 A

+ B)/2
(A+B)/2 ] is HSD}.(A + B)/2 +X

We multiply the composite matrix by 2 (which does not change its HSD character)
to obtain the following theorem.

THEOREM 3.

C’(A’B)=inf{XIXisHSDand[ C(A’B)A+B A+B+2xA+B]isHSD}.
Green and Morley [7] have developed other variational representations of the con-

traharmonic and the dual contraharmonic means. We list their results here for com-
pleteness and comparison. The proofs are in [7].

THEOREM 4. (a)

(b)

(c)

(C(A,B)z,z) sup {((A B)x,x) + ((B-A)y, y) + 2((A + B)x, y)}.
x+y=z

C(A,B) inf {X>= 0 (A+B) X-(B-A)

4. Fixed point problems. We now consider two fixed point problems. Given the
HSD matrices A and B, find X and Y so that

(2) C(A,X)=A+B,

(3) C(Y,B)=A+B.

The two fixed point problems may be rewritten as

(2’) X= 2(A :X) + B,

(3’) Y= 2(B: Y) +A.

Equations (2’) and (3’) are special cases ofa fixed point problem studied by Anderson,
Kleindorfer, Kleindorfer and Woodroofe [2]. Their form was

(4) Z Q(M: Z)Q* + N,

and they showed that (4) has a unique HSD solution when N is invertible. Assuming A
and B are invertible, we have that (2’) and (3’) have unique solutions. We now show that
the solutions must be equal. Multiply (2’) by A-/ on each side. Then for

X’ A-/zXA-/2
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and

we have

(5)

Here we use again the fact that

B’ A-/ZBA-I/2

X’= 2(I" X’) + B’.

Q(A’B)Q* =QAQ*’QBQ*.

With the problem reduced to (5), we can use the fact that I and B’ commute to
treat (5) as a scalar problem and write

S’= (I+ B’)/2 + SQRT{(B’)2 + 6B’+ I}.
Therefore

X AI/2X’A 1/2 (A + B)/2 +AI/2SQRT{(B’)2 + 6B’ + I}A 1/2.

The term inside SQRT may be factored as

(aB’ + bI)(B’/a + 1/b)

for any scalars a and b such that a/b + b/a 6. Since we wish to keep all matrices HSD
we will also require that a > 0 and b > 0. The SQRT term may then be written as

(aB’ + bI) # (B’/a + 1/b).
Then using the fact that

O(A #B)Q* QAQ* # QBQ*
we can write

A /2(aB’ + bI) # (B’]a + I]b)A 1/2 (aB + bA) # (B/a + A/b).
Therefore

X (A + B)/2 + (aB + bA) # (B/a + A/b).

A similar analysis is possible for (3’), and we see that Y has an analogous form. The
only question that remains is whether the expression

(aB + bA) # (B/a + A/b)

depends on the choice of a and b. That the expression does not depend on this choice
follows immediately from the results in [2], since the solution is unique.

We close this section by noting some properties of the fixed point viewed as a
function ofA and B. Let

where

Then

T(A,B) (A + B)/2 + {(A + bB)#(A + B/b)}/2,

b+ 1/b= k>=2.

T(A,B)>=A+B

because the work of Ando [5] gives that

{(A + bB # (A + B/b) }/2 >- (A #A + bB# B/b)/2 (A + B)/2.

We also have that
T(O,B)=B,

and if

then
A -- A2 and B >- B2,

T(A, Bl) > T(A2, B2).
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5. Loewner’s theorem and monotonicity. Given a binary operation & on HSD ma-
trices, define a function F(z) by

F(z)I zI&L

Such a function F(z) is called a "Pick function." Loewner 10] shows that under certain
restrictions on & the operation I & B is monotone if and only if F(z) is analytic in the
upper half plane and satisfies Im (F(z)) > 0 for Im (z) > 0.

For example, parallel addition is monotone. In this case

We have for z a + bi that

and the result holds.

F(z)I zI I (z](1 + z))I.

Im (F(z))= b/((1 + a)2 + b2),

For the contraharmonic mean C(A, B),

F(z) + z2)/(1 + z).

Since this function has a zero at z i, it will have a sign change and we can conclude
that C(A, B) is not monotone.

6. Related means of HSD matrices. We have seen that several scalar means in the
family

Gs(a, b) (a + b)/(a- + b )

have interpretations as means of HSD matrices. A set of scalar means arising from a
graphical representation of Moskovitz 12],

M(a, b) (ab + ba)/(a + bS),

may be interpreted in this way as well.
Three algebraic identities connecting these means provide a recurrence relation that

easily extends to the HSD matrix case while avoiding problems of commutativity, so
that we have a family of HSD matrix means

Gs(A,B)

defined for s, an arbitrary integer. These identities are

(6)

(7)

and

(8)

Gs(A,B)=Ms(A-,B-)-,
Ms(A,B)+ Gs+ (A,B)=A + B

Ms(A,B)=G,-(A,B).

Thus we have means and their duals arising not only for s 2 (the contraharmonic
mean) but for s 3, 4, as well. In none of these cases, however, is monotonicity
preserved.

To see why G(A, B) is HSD ifA and B are HSD, note that for both symmetry and
positivity we may use induction. First,

and if
A + B >= Gz(A,B) > (A + B)/2,

A + B >= Gs(A,B)>=(A + B)/2

for all HSD A and B then

A- + B- >__ G(A-1, B-1) >__ (A-1 + B-I)/2,
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SO

-(A-1 + B-l)-1 >__ -Gs(A-, B-)- __> -((A- + B-1)/2)-Now add A + B to each part, and note that the left-hand part is bounded above by
A + B, the fight-hand part is C(A, B), which is bounded below by (A + B)/2, and the
middle is Gs / I(A, B), by (6) and (7).

7. Inverse mean problems. In this section we are interested in the follow-
ing type of problem: Given E and F HSD, when can we find HSD A and B so that
E (A + B)/2 and F 2(A B)9. This question and similar questions involving the geo-
metric mean are answered in [4]; here we wish to consider questions of the same form
involving the contraharmonic mean. For example, let E and F be HSD. When can we
find HSD A and B so that E A + B and F C(A, B)9.

We know that such a representation can exist only when E and F satisfy 2F >=
E >= F. In fact this inequality is also sufficient for such a representation to exist. This
result is presented in the next theorem.

THEOREM 5. Given HSD E and F with 2F >= E >= F, let A and B be defined by

A (E+E# (2F- E))/2,

B=(E-E#(2F-E))/2.

Then A and B are HSD, A + B E, and C(A, B) F.
Proof It is obvious that A is HSD and A+B=E. Since E>-F, we have

E >= 2F- E and hence

E=E#E>=E#(2F-E)

and B is HSD. To complete the proof we need that C(A, B) F.
Let X E # (2F- E). Recall from [3] that 2F- E is then equal to XE-X. Write

C(A,B) A + B- Z(A B)

E- 2((E + X)/2"(E-X)/2)
E- (E+X)(2E)-’(E-X)
E-(E-XE-X)/2

=E-(E-(2F-E))/2

=F.

Similar techniques lead to the following.
THEOREM 6. Given HSD E and F with 2F >- E >= F, the following A and B are

HSD with E C(A, B) and F (A + B)/2:

A=F+F#(E-F),

B--F-F#(E-F).

We leave unresolved the question of finding A and B such that E C(A, B) and
F A # B. Even the scalar version of this problem is difficult to solve because a quartic
equation arises.

8. The contraharmonic mean and least squares problems. If we wish to solve the
Ax dsystem B= as a least squares problem, x (A 2 -l- B2)-I(A - B)d, If instead we use

x C(A, B)-d_, these agree when there is an x which simultaneously satisfies the equations
Ax d and Bx d. The two forms also agree ifAB BA.
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A natural extension of the contraharmonic mean to three variables would seem to
be via a least squares problem for a system with three components:

Ax=d,

A2_x =_d,

A3_x= d.

The least squares solution of this system is

x (A2 +A2 +A)-’(A, +A2 +A)d.
In the scalar case,

a2 +a + a] ala2 + aa3 + a2a3a + a2 + a3- 2
al + a2 + a3 a + a2 + a3

a + a2 + a3- 2M.

There is more than one analogous identity in the matrix case because there is more than
one matrix generalization of M. It is noted in 15] that the following are not equivalent
in general:

M ((AI" (A2 +A3))+(A2"(A +A3))+(A3"(A1 +A2)))/2
and

M2 2((A -- (A2" A3))" (A2 -Ji- (A 1" A3))" (A q" (A 1" A2))).

Therefore there are at least these two candidates for the contraharmonic mean of three
HSD matrices:

C(A,A2,A3)=A +A2 +A3 2Ml
and

C2(A,A2,A3)=A +A2 +A3- 2M2.
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Abstract. Boolean circuits of polynomial size and polylogarithmic depth are given for computing the
Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers.
The circuits for the Smith normal form computation are probabilistic ones and also determine very efcient
sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential algorithm for the Smith
normal form over the rationals. The Smith normal form algorithms are applied to the rational canonical form
of matrices over finite fields and the field of rational numbers.

Key words, parallel algorithm, Hermite normal form, Smith normal form, polynomial-time complexity,
probabilistic algorithm, matrix normal form, polynomial matrix, invariant factor
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1. Introduction. The main results ofthis paper establish fast parallel algorithms for
computing the Hermite and Smith normal form of matrices with polynomial entries.
The Hermite or Smith normal form of a square matrix is generally defined for the case
of entries from a principal ideal domain. For example, the entry domain may be the
integers or univariate polynomials over a field. The forms are, roughly speaking, a trian-
gularization, respectively a diagonalization, of the input matrix and they are computed
entirely within the domain ofthe entries. Sequential algorithms for computing the forms
are known at least since Hermite [7] and Smith [20], but it requires some effort to show
that the forms can be computed in polynomial time. We refer to Kannan and Bachem
[! 3] for integer entries and Kannan [12] for polynomial entries. Applications of both
forms include solving linear systems over the domain ofentries, computing the geometric
multiplicities of the eigenvalues of a matrix, computing the invariant factors of a matrix
over a field, and others. For discussion of applications see [1] and [18].

We will show that computing the Hermite normal form over F[x], F a field, is NC
reducible to solving singular linear systems. We refer to Cook [4] for the definitions of
the complexity classes NC and RNC and NC reductions. Since the class NC requires us
to perform field operations on Boolean circuits, the previous claim is precise only for
concrete fields such as Q or GF(p), the field with p elements. As a corollary we get from
the parallel complexity of linear systems [2] that HERMITEFORMover Q[x] is in NCa

and HERMITE FORM over GF(p)[x] is in RNC2, where HERMITE FORM over D is
the problem ofcomputing Hermite normal forms over D. Our parallel reduction is com-
pletely different from any of the sequential solutions, discussed, for example, in 13]. Of
course, we have Kannan’s result that HERMITE FORM over Q[x] is in P as a conse-
quence, where P is the class of sequential polynomial-time problems.

Second, we will present a probabilistic parallel algorithm for computing the Smith
normal form over F[x], that is we establish that SMITH FORM over F[x] is in RNC2.
The nature of our probabilistic algorithm is such that with controllably small probability
an incorrect result might be returned, as with the fast probabilistic parallel rank algorithm
[2]. Since Kannan [12] does not prove that his sequential algorithm for SMITH FORM
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over Q[x] runs in polynomial time we will also present another sequential algorithm
with which we can establish that SMITH FORM over Q[x] is in P. Neither our proba-
bilistic parallel algorithm nor our deterministic sequential algorithm for the Smith normal
form is based on repeated computations of Hermite normal forms as is Kannan and
Bachem’s algorithm. Our key idea in the parallel algorithm is that though each entry in
the Smith normal form is a quotient oftwo GCDs ofpossibly exponentially many minors
we can quickly produce random linear combinations ofthese minors whose GCD is with
high probability equal to the needed GCD. Unlike our parallel Hermite normal form
algorithm our parallel solution for the Smith normal form also provides a practical al-
gorithm superior to previously known methods.

We wish to add two remarks. It is possible to use HERMITE FORM over Q[x] as
a tool for solving linear systems over Q[x] in polynomial time. Also, however, the fact
that solving linear systems over F[x, xo ], v fixed, is NC reducible to singular linear
systems over F is a consequence of Hermann’s [8] degree estimates of Hilbert’s [9] re-
duction. See also the appendix of Mayr and Meyer [15] for several corrections to Her-
mann’s proof. Second, we cannot hope to provide fast parallel algorithms for HERMITE
FORMover Z and SMITHFORM over Z unless progress is made on computing GCDs
of integers in parallel, a problem easily shown to be NC reducible to 2 by 2 Hermite or
Smith normal forms over Z.

In this paper we will restrict ourselves to nonsingular square input matrices, but we
note that there are no great difficulties in generalizing our approach to rectangular inputs
of nonmaximal rank.

2. Parallel Hermite normal form computation. In this section we construct an NCl-

reduction from HERMITE FORM over F[x], F a field, to singular linear systems over
F. But first we present the necessary definitions and lemmas.

A nonsingular n by n matrix H over F[x] is in Hermite normalform if it is lower
triangular, the diagonal entries are monic and the entries before the diagonal entry in
each row are of lower degree than the diagonal entry. It is well known that for every
nonsingular matrix A there exists a unique unimodular matrix Uand matrix Hin Hermite
normal form such that AU H. H is referred to as the Hermite normal form ofA. It is
fairly clear that Hermite [7] knew the uniqueness though he did not offer a proof. In any
case, we need the uniqueness in a stronger form than is usually presented, which we will
include as Lemma 2.1.

For a matrix A over F[x] let ai,j,k denote the coefficient ofx k in the i, jth entry.
LEMMA 2.1. Given the n by n nonsingular matrix A over F[x] with entry degrees

less than d, and the vector (d, dn) of nonnegative integers, consider the system
AP G, where G is lower triangular, and more specifically,

Pi,j are polynomials ofdegree less than nd + max _iz n di, whose coefficients are
unknowns;

gi, are monic ofdegree di with lower order coefficients unknowns, andfor > j,
gi, are polynomials ofdegree less than di with unknowns as coeJficients.

This is a system oflinear equations over F in the unknown P,j,k and g,,k for which the
following statements hold.

(1) The system has at least one solution, if and only if each d is no less than the
degree ofthe ith diagonal entry ofa Hermite normalform ofA.

(2) If each di is exactly the degree of the ith diagonal entry of a Hermite normal
form ofA, then the system has a unique solution, hence G is the unique Hermite normal
form ofA and P is unimodular.
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Proof Let H be a Hermite Normal Form of A and U a unimodular matrix such
that AU H.

Suppose G and P solve the system for a given degree vector (d, ,dn). Since U
is invertible in F[x], we have G AP HU-P. Because G and H are triangular and
nonsingular, U-P must be also. It follows that the degrees di must be no less than the
degrees of hi,i, which proves (1) in one direction.

On the other hand, if for each i, we have di >= deg (hi,i), let

D diag (x d deg (hi,l), .X7 dn deg (hn,n)).
Then the system is solved with P UD and G HD. Thus (1) is proved ifwe can show
that this solution is expressible within the degree bound given for P. Since det (A)P
adj (A)G, the degrees in P are bounded by the degrees in adj (A)G, which are bounded
by (n 1)d + max _irn di.

It remains to show that the solution is unique (i.e., G H, P U) when di
deg (hi,i). Let R denote the lower triangular matrix, U-P. It sutfices now to show that
if G and H are in Hermite normal form and R is a unimodular lower triangular matrix
such that G HR, then R I (and G H). This we do by induction on n, the size of
the matrices. Partition this system so that the upper left block is by 1"

G’ h c H’ r c

We see that g hr, gC hCr + H,r c, and G’ H’R’. Now G’ and H’ are in Hermite
normal form and R’ is unimodular, so by induction, R’ is the n by n identity
matrix and G’ H’. Also, since g and h are of the same degree and monic, we have
r and g h. If any entry in the column vector r c is nonzero, let be the index of
the first nonzero entry. Then

(4f) gC c ci=hi+h i,i r

Since deg (h,c.) < deg (h.i) di, the degree of the fight-hand side of () is no less than
On the other hand, since deg (g,C.) < deg (g,i) di, the degree of the left-hand side is
strictly less, a contradiction. Hence all entries of r c are 0, and g C h c, which completes
the proof.

We now define the size of a matrix A over F[x]. Let A be an n by n matrix of d
degree polynomials with coefficients in F representable in l bits. Then size (A) n2dl,
which is the number of bits required to write down A in binary.

LEMMA 2.2. For di <= nd the linear system ofLemma 2.1 consists ofO(n3d) equations
in O(n3d) unknowns. Its entries are ofsize (O’s, l’s, and coefficients ofA). [2]

Now let LINEAR SYSTEMS over F be the problem of computing one solution to
the (possibly) singular linear system Ax b, or of indicating that a solution does not
exist, given an n by n matrix A and length n column vector of l bit entries from F.
Following Cook [4], we say that problem X is NC reducible to problem Y, if there is a
uniform family of Boolean circuits for solving X which use oracle circuits to solve Y.
For the purpose of defining the depth of such circuits an oracle contributes a depth of
log (r), where r is the fan-in to the oracle. The main theorem of this section now follows.

THEOREM 2.1. HERMITE FORM over F[x] is NC reducible to LINEAR SYS-
TEMS over F.

Proof We construct our circuit as follows from processing units at three levels.
(1) Let e nd >= deg (det (A)). The input matrix A is passed to each of n(e + 1)

processors which work in parallel. They are numbered by pairs (i, j), where =< =< n
and 0 -< j =< e. The (i,j) processor constructs from A the appropriate input for a LINEAR
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SYSTEM circuit over F. This determines if the system as described in Lemma 2.1 can
be solved when the degree vector is given by di= j and dk e, for k :/: i. If the oracle
produces a solution, then true is passed to the next step. Ifthe oracle indicates no solution
exists, then false is passed on. By Lemma 2.1 the (i, j) circuit answers true just in case
the ith diagonal entry of the Hermite normal form has degree less than or equal to j.
The depth of the circuit at this point is O(log (size (A))), by Lemma 2.2.

(2) The n circuits numbered through n work in parallel. The ith processor gets
input from the e + circuits of step numbered (i, 0) to (i, e). Its output, di, is the
minimum j such that the output of processor (i, j) is true. Clearly, these circuits have
O(log (size (A))) depth and polynomial size.

(3) One processor receives the dis which are the exact degrees ofthe diagonal entries
ofthe Hermite normal form. It feeds a LINEAR SYSTEMS oracle the system described
in Lemma 2.1, and, by part 3, obtains the desired Hermite normal form.

COROLLARY. HERMITE FORM over Q[x] and over GF(p)[x] is in NC2.
Proof The corollary follows from the fact that LINEAR SYSTEMS over Q or

GF(p) is in NC2 [2], [3], [10], [16]. [3

3. Parallel probabilistic Smith normal form computation. A polynomial matrix S
is in Smith normalform if it is diagonal, each diagonal entry is monic, and each diagonal
entry except the last is a divisor of the succeeding one. If S is equivalent to A, i.e.,
A PSQ, where P and Q are unimodular, then S is called the Smith normal form ofA.

LEMMA 3.1. Let yl be an n by n nonsingular matrix over F[x].
(1) There is an n by n matrix S in Smith normal form and unimodular matrices

P and Q such that A PSQ.
(2) Let s.*, denote the greatest common divisor of all by minors ofA. Then the

diagonal entries in the Smith normal form ofA are s,l s, and si, s?/s?_ 1, for
i>1.

(3) Two n by n matrices A and B have the same Smith normalform ifand only if
they are equivalent. [23

For a proof see Gohberg, Lancaster and Rodman [5] or Newman 17].
Let C7 denote all element subsets of { 1, n} and let AI, j, for/, J C/’, denote

the minor ofA restricted to the rows in I and columns in J. By the above theorem we
could compute the Smith normal form of A by computing s? GCDI,JcAI,j. The
problem is that there are exponentially many by minors. To overcome this problem
we compute two random linear combinations of AI,S whose GCD is likely to be the
wanted GCD. These are the principal by minors of two randomly selected matrices
equivalent to A. The following lemma shows this suffices. Let 1..-i denote the
set {1, ..., i).

LEMMA 3.2. Let A be an n by n matrix over F[x], and let s? be as in (2) ofLemma
3.1. Let F be the extension ofF[x] by 4n2 indeterminants, F F[X][Kj,k, )kj,k, #j,k, Pj,k].
Then there exists a polynomial r F oftotal degree no more than 4i2d with thefollowing
property. For any n by n matrices R, T, U, V over F, ri(rj,k, tj,k, Uj,k, Vj,k) 0 implies that
GCD (B i, , C i, i) sT, where B RAT, C UA V.

Proof First let the matrices have indeterminate entries, R (j,k), T ()j,k), U
(j,k) and V (Uj,k). In this case, we first show G GCD (B i,i i, Cl i, i)
s} in F[x] where B RAT and C UAV, and F is F with the indeterminates in R, T,
U and V adjoined. We observe that s’ is the only factor of B i,l or C i,l

which lies in F[x]. By the Binet-Cauchy formula,

BI i,1
, R i,KAK,LTL,1...
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and

C1 i,l U1 "-i,KAK,LVL, i"

,Le C7

Now, clearly the factor ofB i,1 (or C i,l i) in F[x] must divide each Ar,z. On
the other hand, B i, and C i,l have no factor in common in F[x]\F[x]
since each involves a different set of indeterminates. This shows our claim on G. We
now consider

B* BI... i,l and C* Cl... i,l

s?
B* and C* are relatively prime in F[x], thus 71" resultantx (B*, C*) is nonzero. If

r rj,k tj,k Uj,k l)j,k 4 0

then the polynomials B*(rg,k, tg,g, Ug,k, Vg,k) and C*(rg,k, tg,k, Ug,k, Vj,k) in F[x] remain
relatively prime. (For the theory ofresultants, consult, for example, [21, 5.8].) Therefore
GCD (B i, i, C i, i) s?.

It remains to estimate the degree of 71"i. Clearly, degx(B*), degx(C*) =< id.
Their degrees in the other indeterminants are bounded by 2i; thus the degree of
id 2i + id 2i 4i-d.

LEMMA 3.3. With the notation ofthe previous lemma, ifwe select the entries in R,
T, U, V randomlyfrom a set S c F then the probability

4n3d
Prob (s? GCD (B i,1 i, CI i,l i),for all i, <= <= n) >=

cardinality (S)

Proof Let r l-I’= ri. We are unlucky only if the randomly selected rj,k, tj,k, Uj,k
and vj, are a zero of 7r. By a result of Schwartz 19] this happens with probability no
more than deg (r)/cardinality (S). The degree estimate for 71" now immediately implies
that deg (r) _-< 4n3d.

We now can prove the following theorem.
THEOREM 3.1. There is a uniform family of probabilistic circuits of depth

O(log 2 (size (A)/e)) andpolynomial size which compute the Smith normalform over F[x]
correctly with probability e. These circuits make O(n log (nd/e)) random bit choices.
In short, SMITH FORM over Q[x] or GF(p)[x] is in RNC2.

Proof By Lemma 3.3 the problem reduces to matrix multiplications, determinant
and GCD computations. These are in NC2 [2]. We must make our 4n2 random choices
from a subset S of Q for which 4nad/cardinality (S) < e. The integers less in absolute
value than 4nad/e will do. These are O(log (nd/e)) bit numbers.

If the field is too small to allow choice of a sufficiently large set S, S may be chosen
from an extension field. Like GCDs, the Smith normal form is an entirely rational form
and thus is unchanged if we compute over an extension of the given field.

Lemma 3.2 remains true if we replace U by an upper triangular and V by a lower
triangular matrix, as well as if we do not randomize B. This saves in both matrix mul-
tiplications and number of random bits required.

4. Sequential deterministic Smith normal form computation. The purpose of this
section is to establish that SMITH FORM over Q[x] is in P. First we note that it is a
consequence of Kannan [12] that SMITH FORM over GF(p)[x] is in P, a result on
which we will have to depend. We can assume without loss of generality that our input
matrix A has integer coefficients. The following lemma is the key to our argument.
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LEMMA 4.1. LetA be a nonsingular n by n matrix over Q[x] with integer coefficients,
d max {deg (a/,j.)ll =< i, j =< n}, L max (la,v,l[1 =< i, j =< n, 0 -<_ k =< deg (a,v)}, IA
be the leading coefficient of det (A), and let S be the Smith normal form of A, di
deg (si,i). Then for any prime p which does not divide IA, exactly one ofthefollowing two
conditions can occurfor S, the Smith normalform ofA mod p.

(1) Smodp=S, or
(2) (d, ,dn) 4: (d, ,dn) with di deg (/,i).

Furthermore, there exists an integer BA <= (n(d + 1)L)3n3d such that ifp does not divide
BA condition (1) must occur.

Proof Let -? GCDj,KcT(Aj,K mod p), =< -< n, 1. Then by Lemma 3.1,
s-i,i g?/?- for =< =< n. It is clear that s’ mod p divides (?. Let i deg (?),
ei deg (s?). Then >= el, o eo O, di i- i-, di ei- ei-1. Either i ei
for all =< =< n or there is a first such that . > ei. In the first case, since s ? and ? are
both monic, we have that s? mod p g? and hence &,i mod p ,i. In the later case,
we have di > di.

It remains to establish a condition under which

(af) (GCDj,KC.(Aj,K)) mod p GCDj,KC’](Aj,K mod p)

for all =< =< n. First we note that for Aj,K bjxj, bj Z and Ibm[ -< B
(Vn(d+ 1)L) (cf. [6, Problem 73-17]). Second, we appeal to the following (cf. [11,
Lemma 4]).

PROPOSITION. Iff, ft Q[x] are polynomials with integer coefficients and
deg (f) -< e, then there exists an by determinant A Z\{0 }, <= 2e, whose entries are
coefficients ofthef such that, for any prime p which does not divide A,

GCDI _jz t( mod p) (GCDI zjz t()) mod p.

Proof Let d(x) GCD (f). For any prime p, it is clear that d mod p divides
GCD (f mod p), since d mod p divides each f mod p. We show that the converse
holds for most primes. There exist s,..., st EQ[x] with deg(s)< e such that
GCD (f) Z fs. Since each term has degree at mosfe + (e 1), this equation may
be viewed as a linear system, d Fs of at most 2e equations over Q in te variables, the
coefficients of the s. The entries of the matrix F are the coefficients of the fj.. Such
a linear system has a solution just in case the rank of F is the same as the rank
of the augmented matrix (F, d). Since the system has a solution over Q, the rank
condition holds. If the rank of F mod p is 2e, then an by minor, A, of F must
be nonzero. If A is nonzero mod p as well, it follows that the rank condition will hold
mod p and hence the system will have a solution, s’. Thus GCD ( mod p) divides
(f mod p) (sj-) d mod p, for polynomials sj appropriately constructed from s’. [2]

Continuing the proof of Lemma 4.1, we apply this proposition to Aj,K and obtain
as the asserted determinant an integer B,

Bi <= YrB2di <= 2n(n(d+ )2L2)dn2 < (n(d+ )L)3dn2,
such that ifp does not divide Bi, (f) is satisfied for i. It remains to set BA I-I-_ Bi. [-q

The deterministic algorithm is now easy to describe. First we select

k 2[logz(lA(n(d+ 1)L)3n3d)]>= 2[IogZ(IABA)]
primes p and compute for all primes not dividing lA the Smith normal form Sj of
A mod p. We note that the kth prime Pk is _--< k log (k), k >_- 6, which makes this step a
polynomial-time process. Also, more than half of the primes considered do not divide
laBa. Hence by the above lemma a majority of the S must possess the same diagonal-
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degree vector, say these mod pj, j e J. Also by the lemma Sj, j e J, is an image of S. By
Chinese remaindering we compute

=S mod/, /= I-[ P.
jJ

It remains to recover the coefficients S,,k from their modular images gi,,k. We first observe
that the si, are monic factors of det (A) over Q[x]. Therefore by Gauss’s lemma the
denominators of &,i,k are factors of la and hence relatively prime to/. We now claim that

la gi,i,j mod/
Si’i’k 1.4

where the modulus in the numerator is taken balanced. The only problem could be that
/ were too small to capture la the numerator of &,,. But the integral coefficients of
factors of det (A) are absolutely bounded by 2naB (see [14, 4.6.2, Exercise 20]). Now
clearly 2la 2"aB </ and we have the following theorem.

THEOREM 4.1. SMITH FORM over Q[x] is in P.

5. Rational canonical form and similarity. IfA is a matrix over a field F, then the
diagonal entries ofthe Smith normal form ofxI- A (over F[x]) are the invariant factors
ofA. The invariant factors characterize A up to similarity and their companion matrices
form the diagonal blocks of the rational canonical form R of A. Thus we can compute
RATIONAL FORM in RNC2 and in P. Furthermore, we can compute the similarity
transform U such that UAU -l R, whereas for the Smith normal form S such that
PAQ S, we did not obtain P and Q. Knowing U, we can verify that UAU-l R. Thus
the probabilistic algorithm for Rational normal form is of Las Vegas type (controllably
small probability of no result), whereas the Smith normal form algorithm was of Monte
Carlo type (controllably small probability of incorrect result).

To compute the transform U, first compute R via the Smith form of xI- A, as
indicated above. Then solve the linear system UA RU. An arbitrary U satisfying this
equation will not do, as it may be singular. However, we may do the following. We
compute a basis Ul, Uk of the solution space. Let Xl, Xk be indeterminants
and let

7r()tl’ ’Xk)=det ( ’iUi)
We choose rl, rk at random from F and let

k

U riUi.
i=1

Then U is nonsingular unless 7r(rl, rk) 0. We know that r is not identically zero
since if R is the rational form of A, then, by definition, a nonsingular U such that
UA RU must exist. By Schwartz’ result [19] the probability that we unluckily obtain
a singular U is less than deg (r)/sk, where s is the size of the set from which we choose
(rl, rk). Thus, if det (U) is nonzero R is a verified rational canonical form of A.
If it is zero then we return no solution. Either we were unlucky in computing R via the
probabilistic Smith normal form algorithm, or we were unlucky in computing U. IfF is
finite, and a larger s is desired, the r; may be chosen from an extension of F.

More details on this and the construction of the Jordan normal form can be found
in [22].
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6. Conclusion. In the meantime, we have discovered a Las Vegas solution for the
Smith normal form problem of polynomial matrices [23]. This solution hinges greatly
on the Hermite normal form process, as opposed to the Monte-Carlo solution proposed
here. Its analysis, however, is similar to the one here. The new algorithm also finds the
multipliers. In the future we will carry out practical experiments with our randomized
algorithms.
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THE CASE OF EQUALITY IN HOPF’S INEQUALITY*

LORENZO O. HILLIARDf

Abstract Hopf’s inequality states that the subdominant eigenvalues X of a positive n-square matrix A
satisfy

M-m
IxI--<M+ rn x

where Xp is the Perron eigenvalue ofA and M, tn are, respectively, the maximum and minimum entries ofA.
A complete analysis of the case of equality in Hopf’s inequality is given. IfA has an eigenvalue X which satisfies
the case of equality, it is shown that X is real and the structure of the matrix A is determined.

Key words, positive matrices, stochastic matrices, eigenvalues, Hopf’s inequality

AMS(MOS) subject classifications 15A48, 15A51

1. Introduction. We shall consider properties of eigenvalues of positive matrices,
that is, matrices with positive entries. The first significant work on this subject was done
by Perron. His main result may be stated:

Let A be a positive n n matrix. Then there exists an eigenvalue Xp > 0, which
we call the Perron eigenvalue, such that Xp has multiplicity one and such that for
every other eigenvalue X ofA, IX[ < Xp. The corresponding Perron eigenvector p
is positive.

The theorem was later generalized by Frobenius to allow nonnegative matrices. In this
case there may be other eigenvalues X satisfying IX] Xv. For a statement ofthese results,
see [31.

In the case of positive integral operators, E. Hopf gave a more precise form of
this result. In the case of positive matrices, this result states that the subdominant eigen-
values satisfy the inequality

M-m
(1 1) IXl < Xp=M+m
where M and m are respectively the maximum and minimum entries of the matrix. In
this paper we shall determine completely the structure of a matrix A for which there is
an eigenvalue X which satisfies (1.1) with equality. We show that X must be real and that,
after a permutation, A takes a particular form. As a consequence of our results, the order
ofA is even and the rank ofA is two, all eigenvalues ofA other than X and X being zero.
Since the set of positive matrices with fixed M and m form a compact set, it follows that
when n is odd, there is an improvement on the inequality (1.1). It would be of interest
to find the best inequality ofthe form (1.1) for the subdominant eigenvalues ofa positive
matrix.

There is considerable literature on the estimation of subdominant eigenvalues of a
positive matrix. Rothblum and Tan [4] give a thorough survey of this literature. Most
of the inequalities in [4] require information about the matrix A beyond the entries of
A. Usually, a knowledge of the Perron eigenvector is required, and in some cases, infor-
mation concerning the field ofvalues or other quantities are required. The Hopfinequality
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692 LORENZO O. HILLIARD

only uses information that is easily obtained from the matrix entries, and it is of special
interest for this reason.

In 2, we give a proof of (1.1) following Ostrowski [2]. Section 3 gives our results
on the case of equality. We denote by Rn and Cn the n-dimensional space of real and
complex vectors, respectively. If x Rn, we say that x > 0 if each component xj > 0,
and we use a similar notation for matrices. In the rest of the paper, A denotes a positive
matrix of order n, with entries ao, and M maxl _i,j_,ao and m min _i,j_ao.

2. Hopf’s inequality for positive matrices. Let x e C" and y e R", with y > 0.
Following Hopf, we define the oscillation, osc (x]y), by

osc max
y s,t Yt

We show in Lemma 2.3 that

[Ax\ M- m x
osc yy) _-< osc

M+m y

and we then use this to prove the Hopf inequality, Theorem 2.1. We start with some
preliminary lemmas.

LEMMA 2.1. IfO <--_ V <= U -< 1, then

ul/2(| __/))1/2 __/)1/2( U) 1/2

O<=u-v<=
ul/2( --/))1/2 __/)112( U) 1/2"

Proof From the arithmetic-geometric mean inequality,

ul]2(1 --/))1/2 <= 1/2(U q-
and

/)1/2(1 U) 1/2 <= 1/2(/) -1- U).

When we add these inequalities,

u/2(1 v)/2 + v/2(1 u)/2 <- 1,
SO

(2.1) -<
(ul/2( --/))1/2 q._/)1/2( U)I/2)2"

Multiplying both sides of (2.1) by u -/), we have

u-v<=
(u/2( --/))1/2 ../)1/2( u)l/2)2

(ul/2(1 --/))1/2)2 (/)1/2(1 U)I/2)2

(ul/2( --/))1/2 _[_/)1/2( U)I/Z)2

ul]2( --/))1/2 __/)1/2( U) 1/2

u/Z(1 v)/2 + v/2( u)/"

LEMMA 2.2. Let p, f R" with p > 0 and set

O max --,
-s-nPs
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Let a, [3 be indices with <= a, {3 <= n and let (Af), denote the ath component olaf If
(2.2) fis not proportional to p,

and ifwe define K,(f) by

[A(f- dP)l[A(Dp- f)lt 1’/2(2.3) K.e(/) [A(Dp---dl
then

(2.4)
(Af) (Af)
(Ap) (Ap)

K.(f)-
K(f) +

f
OSC --.

P

Proof. First we shall show that

(2.5) osc -f= D- d.
P

By the definition of oscillation, we see that

Let j, k be indices so that

But

Thus

which proves (2.5). Set

(2.6)

Then

(2.7)

fosc >_- D d.
P

_-<D and f__k>=d.
Pj Pk

fosc =< D- d
P

f=f-ap.

Dp -f=p osc f f

follows immediately from (2.5) and (2.6). Since

<= <= Dp ,
then

-f
P

for s 1, 2, n. Replacing each component off by Ps osc (f/p), we have

(Af <_ -f
(Ap)s p"

Thus we may define u and v, with 0 =< u, v =< 1, by

(2.8)
(Af)._

u osc f
(Ap). p
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and

(2.9)
(Af)t

v osc -f.
(Ap)e p

By equation (2.8)
[A(p osc (f]p)-f)], (Ap), f (Af),

OSC
(Ap), (Ap), p (Ap),

f f(2.10) osc u osc
P P

and similarly,

f(1 u) osc
P

(2.11)
[A(p osc (f]p) -f)lt

v) osc f.
(Ap) p

From (2.2) and (2.6)-(2.11), u # 1, v 4:1 and u :/: 0, v # 0. Thus we may assume
0 < v =< u < 1. By Lemma 2.1 and (2.8)-(2.11),

/,/OSC--
f v osc f-] =<
P Pl

ul/2( --/))1/2 I)1/2( U) 1/2

ul/2( I)) 112 "+ 1)112( U) 112
f

OSC
P

u/2(1 v)/2 osc (f/p) 1)1/2( U) 1/20SC (f/p)
ul/2( 1))1/20SC (f/p) + 1)1/2( U) 1/20SC (f/p)

f
OSC --.

P

Then

where

(Ap), (Ap)a
X-Y f< osc
X+Y p

I (Af),, [A(p osc (f/p) f)le l ’/
(Ap) J

Y= I [A(p osc (f]p) f)]o, (Af)t
(Ap), (Ap)t J

Since

X= {[A(f dP)]a [A(Dp- f)]#}
1/2

(Ap), (Ap)a

[A(Dp f)], [A(f- dp)lt ] 1/2
y=

(Ap), -p j’

we have

and hence
K,a(f)=X]Y,

K,a(f)-
K,a(f +

f
OSC --.

P
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To show (2.4), we write

(Af). (Af)
(Ap)

[A(f- dp)],
(Ap).

(Af). (Af)e
(Ap). (Ap)

K.a(f)-
K.a(f) +

[A(f- dp)lt
(Ap)a

f
OSC --.

P

Therefore (2.4) holds and the proof is finished.
LEMMA 2.3. (a) Iff, p Rn, with p > O, and (2.2) holds, then

M
(2.12) _-< K.a(f) <= --, <= , <= n.

rn

(b) Iff6 Cn, p Rn with p > 0, and (2.2) holds, then

(2.13)
(Af). (Af)a
(Ap). (Ap)

M-m f_-< osc-, =< c,/3_-< n.
M+m p

Proof (a) Let g, h R" be nonnegative vectors. Consider

(Ah).(Ag)e 27= a.lh ET= aeg
(Ag).(Ah)a

(2.14)
Mgl

ET= mht

m2

Setting h f- dp, g Dp -f, we obtain from the definition of

M
K.(f <

m

which shows one of the inequalities of (2.12). To show K.e(f) >= we use the definition
of K.e(f) and (2.5)-(2.9) as follows:

(2.15)

K.a(f) {[A(f dp)I"[A(Dp- f)la} 1/2

[A(Dp f)].[A(f dp)]a

{(Af). [A(p osc (f/p)-
(Ap)a

{ u osc (f/P)(1- v) osc (f/P) } 1/2

(1 u) osc (f]p)v osc (f/p)

osC(Ap).(f/p) Jr)l" (AJ)/3)1/2

Since u >- v and v >= u, we have K,a(f) >= 1. Therefore part (a) of the lemma
is true.
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(b) Equation (2.13) obviously holds if

To show (2.13) for

(Af). (Af)
(Ap), (Ap)"

(Af).
#
(Af)a

(ApL (Ap)a

we first suppose that fe Rn. Note that (K- 1)/(K + 1) is a monotonically increasing
function of K. From part (a),

(2.16)

K,e(f)- <=M/m-
K,t(f + M/m +

M-m
M+m

Therefore, by Lemma 2.2 and the inequality above,

(Af). (Af)[ <M- m f
OSC --.

(Ap), (-P)al m+m p

Hence (2.13) is true for real f.
Supposefe C and write

(Af), (Af)o
(Ap) (Ap)a

where n is a complex number with In[ and > 0. Then

Obviously,

(AFtf). (AFtf)e
(Ap). (Ap)t

f f
OSC OSC --.

p p

Then if we apply (2.13) to the real vector Re (f),

(Af), (Af)alRe
(Ap), (-P)a

[A(Re (f))], [A(Re (f))]a
(Ap)o (Ap)

Therefore (2.13) is true for complex vectors and the proof of the lemma is finished.
THEOREM 2.1. Let A be a positive matrix with Perron eigenvalue ),p. Let X be any

other eigenvalue ofA. Then

Ixl <M-m=M+ mXp
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Proof Let p > 0 be the Perron eigenvector of A, and let f be an eigenvector cor-
responding to X. By Lemma 2.3

(Af) (Af)a <M-m f
OSC--.

(Ap), (Ap)a M+ m p

Since X, Xp are eigenvalues ofA

Hence

Therefore

and the theorem is proved.

(Ap), (Ap)a

M-m f
OSC --.

M+m p

Ixl f M-m fosc =< osc -.
Xp p M+m p

M-m
M+m

3. The case of equality. In this section A denotes an n n strictly positive matrix
with Perron eigenvalue X,, and with another eigenvalue X satisfying

M-m
(3.1) IXI-M+mXp
where M maxl <=s,t_nast and m min _s,t<__nast

Our goal is to develop the consequences for A of the equation (3.1). The first series
oflemmas leads to the result that X must be real (Lemma 3.9). Following this, we provide
a series of lemmas that lead to the final result (Theorem 3.1).

We let p > 0 denote a Perron eigenvector ofA, and we letfdenote an eigenvector
of A corresponding to the eigenvalue X. We shall suppose that X 4: 0. If 0, then
M m and the matrix A consists of all entries M, so the structure is trivial in this case.
We use the notation X X’ + iX" to represent X in terms of its real and imaginary parts.
Similarly, we writef= f’ + if", where the real vectors f’, f" are the real and imaginary
parts off Let

D’= max
f]

d’= min f
<----s--nPs --s--nPs

f’ f’D"= max --, d"= min
_s_n Ps _s_n Ps

wheref],f are components of the vectors f’, f", respectively. Let a,/3 be integers with
-< a,/3 =< n and let r/, Ir/] 1, be a complex number chosen so that

(AnfL (Anf)
> O.

(Ap). (Ap)a
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Since fis also an eigenvector, we may replace f byf, and assume that

(Af). (Af)t. O.
(Ap), (Ap)a

We shall say that the eigenvector f is normalized with respect to the indices a, 3 iff
satisfies this inequality.

LEMMA 3.1. Let X be an eigenvalue ofA satisfying (3.1). Then there exists an ei-
genvectorfcorresponding to , and indices j, k so that

(a)
(Ap)j (Ap)k M+---
(s’); (s’) ,-,,, s’, S’s

max(b)
(Ap)j (AP)k M+ rn

_
r,s_ n [Pr Ps[

(i) (i) -m I’, imax(c)
(Ap) (Ap) M+ m _,_. lp PI

Proof Let fbe an eigenvector of A corresponding to eigenvalue X and let j, k be
indices with =< j, k _-< n so that

OSC
p Pk

Then

Xp Pk M+m

Rewriting the left side of the above equation, we have

(Ap)j (--J-p)l M+m Pk"
By normalizingfwith respect to indices j, k, we obtain part (a) ofthe lemma. Also, from

(Af) (Af)k (Af’) (Af’)k
(Ap)i (AP)k (Ap) (AP)k

Lemma 2.3(b)

M+ m <=r,s_n IPr Psi

max
M+m r,s

_
n [Pr Psi

By part (a) of the lemma, the inequalities above become equalities and the lemma is
proven.

LEMMA 3.2. Let g be a real vector not proportional to p and let

and

D= max --.
_l_n 131
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Suppose there are indices a, with <- , [3 <= n so that

M
K,a(g) --.

m
Then for each 1, 2, n,

(3.2a) at M or gt dpt,

(3.2b) a,l m or gl Dpl,

(3.2c) am M or & Dp,

(3.2d) am m or gl dPl.

Proof By definition

and we have

K2a(g) [A(g- dp)],[A(Dp- g)]a
[A(Dp g)l,[A(g- dp)]a

(3.3)

(3.4)

K2(g) X? =
L- a.(Dp g)’/= ae(g dp)

M(& dp,)E’/= M(Dpl

ET= m(DPl gl)ET= m(gt dpl

The numerator of (3.3) is less than or equal to the numerator of (3.4) and similarly, the
denominator of (3.3) is greater than or equal to the denominator of (3.4). Hence, since
we have equality in (3.3) and (3.4),

(3.5) , al(gt dpl) E actl(Opl el) M(gl dpl) M(Dpl gl)
1=1 l=1 l=1 l=

and

(3.6) ., a,l(DPl &) aal(gl dPl) Z m(DPl gl) m(& dPl)
1=1 1=1 1=1 l=1

Note that the eight sums in (3.5) and (3.6) are positive, and that each term in each sum
is nonnegative. Since m <- a,l <= M, m <= aal <= M, we conclude that

a,l(gl @1) M(gl dpt),

atI(DPl gl) M(Dp gt),

a,,,l(DPl gl) m(Dpl gl),

or
am(gl dpl) m(& dpl)

(a,l M)(gl dPl O,

(al m)(Dpl &) 0,

(al M)(Dpl &) O,

(aal m)(gl dpl) O.

Thus, the lemma is true.
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LEMMA 3.3. Let g R and a, fl be indices satisfying Lemma 3.2. Then for each
l 1, 2, n either

(a) at=m, aot=M, gt=dpt
or

(b) a,t=M, a0t=m, gt=DPz.
Proof Pick an index and suppose that m < a < M. Then from (3.2a), gt dpl,

and from (3.2b), g Dpt, which is a contradiction. Hence either at m or a,t M. If
a,l m, then by (3.2a), g dpt so from (3.2c), aoz M, and case (a) holds. In a similar
way, if a,t M, we deduce case (b), so the lemma is true.

LEMMA 3.4. Letfbe normalized with respect to the indices j, k. Then
(a) Kk(f’)= M/m.
(b) For each 1, 2, n either

air=M, akt m, f D’pt, or

ajt m, akt M, f d’pt.

Proof It is easily seen that f’ is not proportional to p, so Kjk(f’) is defined. By
Lemma 2.3

M
Kk(f’) <=

m
and

Then by Lemmas 2.2 and 3.1

(Af)
(Ap)j

Thus from (3.1),

Kk(f’)- <_M-m
Kj.k(f’)+ -M+m

(Af) (Af’)
(Ap) (Ap)

<= Kk(f’)-
Kk(f’) +

OSC
P

M-m

M-m
M+m

OSC
P

M
Ke(f’) m

and part (a) of Lemma 3.4 is true. Part (b) follows from Lemma 3.3.
Using Lemma 3.4, we define a partition A, of the set { 1, 2, n} so that for

each l o,
(3.7) ajt M, ak m, f D’Pl
and for each

(3.8) at m, akt M, f d’pt.

This partition will be used in the subsequent development.
LEMMA 3.5. Let A be an n n positive matrix with eigenvalue satisfying (3.1).

Letfbe normalized with respect to indices j, k. Then
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(a) X is real iff}/pj 4: f’/Pk;
(b) X is purely imaginary iff)/pj f’/Pk.
Proof For simplification, set

3’ Im
(Af)s (Af)s

ps Re
(Ap) (Ap)

where s j or k. (From the normalization off, 3" does not depend on j, k.) So

(Af) Xfs ps+ i3", s=j,k.
(Ap)s Xp p

Solving these equations forf, j, we obtain

f’ ps’+3""

Ps iX12
Xp, s=j,k

and
f
P, [X[2

Xp, s=j,k.

Case 1. Suppose f}/Pk 4: f’/Pk. Then

(Af)s (AS)k_--m
max

(Ap)s (AP)k M+ m Pr Psi
M-m

(O’-d’)
M+m

Hence

Since pj > ok,

Therefore,

M+ mlP Pkl

Pj-- Pk
mmm
M+m

pj X’ + 3"X Pk X’ -t- 3"k

ix12
x,,- IX12

and X is real.
Case 2. Assumef)/p f’/Pk. By the normalization off,

(Af) (Af)k_M- mi_f
(Ap). (AP)k m+ m[p.i Pk

Hence

IxllX’ - , x"o-o=1 Ixl
Ixl

-&X" + ok

Ixl(,m-,o<) Ix"ll-os +
Then
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or equivalently

Thus 3‘ is pure imaginary.
LEMMA 3.6. Suppose 3, is pure imaginary. Then

f f" f’
OSC OSC OSC .

p p P

Proof By Lemma 2.3 applied to the vectorf’,

=< osc --.
M+m p

Hence, taking the maximum over a,/3,

Thus,

Ix"l f" M-m f’osc _-< osc --.
3‘t, p M+ m p

f" f’osc _-< osc --.
P P

Using similar arguments we can show that the inequality

reduces to

(Af")<, (Af")
(Ap), (Ap)a

< osc
M+m p

f’ f"osc _-< osc --.
P P

Note that osc (f/p) osc (f’/p) by Lemma 3.1 (a), (c). Thus the lemma is true.
We now define indices u and v, with =< u, v =< n, by

(3.9) osc
P IP. PI

We have the following lemma.
LEMMA 3.7. Let A be an n n positive matrix with eigenvalue 3‘ i3‘" satisfying

(3.1) and letfbe the corresponding eigenvector, normalized with respect to j, k. Then
(a) Kuv(f")= M/m,
(b) For each l l, 2, n either

aul=M, avt=m, f’[=D"p, or

aut m, avt M, f’[ d"pt.

Proof It is easily seen that f’ is not proportional to p, so Kuo(f") is defined. From
Lemmas 2.2 and 3.6,

(3.10)

Glpu PoI
(Af")u (Af"),,
(Ap)u (Ap)o

< Kuo(f")- f"
OSC

Kuo(f") + p

--< osc .
M+m p
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By the definition of ),, u, v we must have equality in inequalities of (3.10). Thus

M
Ku,,(f") --.

m

Part (b) of the lemma follows from part (a) and Lemma 3.3.
Using Lemma 3.7, we may define a partition q/, of the set { 1, 2, n} so that

(3.11) aut M, a,,t m, f}’ D"pt for each 1q/,

(3.12) aut m, a,,t M, f}’ d"pt for each l t.
LEMMA 3.8. We have
(a) f}’ +f f +f,
(b) pj + Pk Pu +
Proof. Let o, JC and q/, be partitions on the set { 1, 2, n} as defined in

equations (3.7), (3.8), (3.11) and (3.12), respectively. The real parts of rows j, k, u, v of
the matrix equation Af= ),fare given by

aklf’+ aklf+ aklf}+
le no le ] n " leno len ,"

ajlf --X"f’:
"’d

aklf} __v’c"
Jk,

Z autf}+ Z aulf}+ Z autf}+ E autf}=-),"f’,,

Using the definition of the partitioned sets ], o, q/, t we obtain

(3.13) MD’ p +MD’ , pt + md’ , pt + md’ pt -),’,
1 noli le n ,,t/" 1.,, he, leof, n "

(3.14) mD’ ., pt + mD’ Pl + Md’ pt + Md’ _, Pt -,,ak,
n oll 1 n /" 1 ., n oll aCg, n

(3.15) MD’ Pl -t- roD’ pt + Md’ , Pl + md’ , Pl -),"f,,

(3.16) roD’ , pt + MD’ , pt + md’ , pt + Md’ pt -),"f.
noil

Adding (3.13) to (3.14) and (3.15) to (3.16), we obtain part (a) of the lemma.
Similarly, part (b) of the lemma may be proven using rows j, k, u, v of the matrix

equation Ap
LEMMA 3.9. Let A be an n n positive matrix with eigenvalue ), satisfying (3.1).

Then X is real.
Proof. Suppose

& P

By Lemma 3.5, ), is pure imaginary. Without loss of generality, we may take

(3.17) f}’=D"
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and

f d".(3.18)
P

By the definition of u, v of (3.9) and Lemma 3.6

f f
Pu Pv

and

Pu Pv J
Supposef d"pu andf d"po. Then by Lemma 3.8 and (3.17) and (3.18)

D"pj + d"Pk d"pu + d"po

d"(pu +Po)

d%+ d%.
Then

or
D"p= d"p

d",

which is a contradiction by Lemma 3.6. We may obtain similar results if we set

and

f f,=D" and =D"
Pu P

"_ f’fJ-d" and--=D".
Pj Pk

Hence, the lemma is true. fq

In the next series of lemmas we assume that h is a real eigenvalue satisfying (3.1)
and we determine the structure of A. We write D" D and d’ d, so that Lemma 3.4
becomes

at M, ak! m, fl Dpt for each l]
and

ajt m, akt M, fl dpt for each le.
LEMMA 3.10. Letfbe normalized with respect to indices j, k.
(a) Ifh > O, then

f D& and f dPk.
(b) If < O, then

f d& and f DPk.

Proof Assume h > 0. Then by assumption on j, k

if and only if

(Af) (Af)k
(Ap) (Ap)
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if and only if

and f__k d.
P

Hence part (a) of the lemma is true. By a similar proof part (b) can be shown to be true.
LEMMA 3.1 1. Let At, l 1, 2, ..., n, be the row vectors ofA. IfX > O, then

and ifX < O, then

Proof Let f be normalized with respect to indices j, k and suppose X > 0. Let

(Af)t (Af)k
(Ap)t (AP)k

e . Thenf Dpt and

)kpPt kpPk

>0.

We see thatfis also normalized with respect to the indices t, k. By Lemma 3.4

aa M, akt m, fi Dpt ifle
and

aa m, akt M, ft dPt ifleof’.
Therefore,

At=Aj.

Using a similar argument, we may show that for each s e 3"

at M, at m, fi Dp ifle
and

ajl m, asl M, fl dPl if/eft{’.

Hence As A. The proof for the case X < 0 is similar and thus the lemma is true.
LEMMA 3.12. Let

and

Then

Proof The equations

are equivalent to

(3.19)

(Il Pl

(Af)j XJfi and (Af)k Xfk

Z ajlfl + Z ajlfl fj
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and

(3.20) , at,if+ ., aktft=Xf.

Without loss of generality, we may assume ), > 0. If we use the definitions for 0, ,, 2 and Lemma 3.10, then (3.19) and (3.20) are equivalent to

(3.21) MDI + md2 XDpi,

(3.22) mDl +Md2 XdPk.
Multiplying (3.21) by pk and (3.22) by pj and subtracting the result, we have

(3.23) (MD,I; + mdb:z)p,- (mD +Mdbz)pj XpiPk(D d).

To obtain an expression for p and Pk, we consider the equations

(p) xp,(Ap) Xppj and

which are equivalent to

Mrb + mcb2 hppj,
Then

(3.24)
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Hence

LEMMA 3.13. Let A be an n n positive matrix with real eigenvalue X satisfying
(3.1) and letfbe normalized with respect to j and k. IfX > O, then

and ifX < O, then

[ p iflo,
,,fl

-pt ifl,

fl= {--PlPt ifleo

for some positive number .
Proof Suppose X > O; the proof in the other case is similar. The matrix equations

(Af)j Xj5 and (Ap) Xpp are equivalent to the following:

(3.27) a+ a X
and

(3.28) ajlPl 4r ajlPl )tppj.

Using the definitions of, 2, o and o, (3.27) and (3.28) become, respectively,

MDrb + md(b2 XDpj,

Mb + m(b2 ,ppj.
Then

and

p(XD- pd)
M(D-d)

p:D(Xp- X)
m(D-d)

But by Lemma 3.12, I’2 and thus

p(XD- Xpd)_pD(Xp- X)
M(D- d) m(D- d)

m(XD- Xpd)= MD(Xp- X),

XDm- Xpmd XpMD- XMD,

XDm + XMD XpMD + Xpmd,

XD(m +M) Xp(MD + md),

M-m
X,D(m +M) XD(M- m) X(MD + md),M+m

D(M- m) MD+ md,

-Din md,
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THEOREM 3.1. Let A be an n n positive matrix with eigenvalue satisfying (3.1)
with M > m. Then n is even,

n
(3.29a) Xp (M+ m),

n
(3.29b) , + (M- m),

and (1/)p)A is a stochastic matrix with thefollowing structure.
(a) If )t > O, there exists a permutation matrix P so that

where

(3.31)

and

(3.32)

are square matrices oforder n/2. The normalized eigenvector Pfcorresponding to has
theform

(3.33)

n
ifl<i <-=2’

(b) If < O, there exists a permutation matrix P so that

where r and M are defined in (3.31) and (3.32). The normalized eigenvector Pf corre-
sponding to has theform

n
ifl<i <-=2’

n
if -<=i<=n.

Proof By Lemma 3.9 the eigenvalue is real. Suppose > 0; the proof for
part (b) is similar. Let the sets and g be given by { j, j } and {k, kn },
respectively, and let P be the permutation matrix corresponding to the permutation
{ jl, j, k, kn }. By Lemma 3.11, PAPr must have the structure in (3.30)-
(3.32). The equations (Ap)j kppj and (AP)k kpPk withj e of and k eg are equivalent
to

(3.34) MO + mO2 Xp
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and

(3.35) mO +MO2 XpPk.

By Lemma 3.11 we may sum (3.34) and (3.35) over indices j, k to obtain

(3.36) ’vMI,I + "ym,:I,2 ,ptI)

and

(3.37) (n- "y)mOl + (n- 3,)M02

Applying Lemma 3.12 to (3.36) and (3.37) we have

3’M+ 3’m Xp, (n "r)m + (n qr)M= X.
Then

(3.38) r M+m

and

nmt M+m"
Therefore,

n
(3.39) 3,=n-3,=.
The expressions for ,p and in (3.29) follow immediately from (3.38) and (3.39). Using
(3.34), (3.35) and Lemma 3.12, we may write pj Pk and p as

Thus (3.33) is true.
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THE GENERAL MINIMUM FILL-IN PROBLEM*

H. WENDEL

Abstract. We consider the well-known graph-theoretical elimination process which is related to Gaussian
elimination on a sparse, positive definite system of linear equations. The general minimum fill-in problem is
concerned in ranking (elimination) orderings by so-called criterion functions and is interested in those orderings
which minimize (which are optimal with respect to) any (fixed) criterion function or, more generally, which
minimize even the whole class of such functions. A valuable tool for attacking this problem is the Initial
Theorem due to Bertele and Brioschi (J. Math. Anal. Appl., 35 (1971), pp. 48-57). An Isomorphic Theorem
can be proved guaranteeing a particular invariance property which is of great importance for the application of
the Initial Theorem. In addition we consider the so-called separation approach which--roughly speakingm
splits a given graph G into two partial graphs G and G2 so that optimal orderings of G and G2 together form
an optimal ordering of G. We are able to give conditions on a separating set of vertices sufficient for this
procedure. Furthermore, a special class of graphs is introduced which arise in the field of load-flow calculation.
The Initial Theorem is generalized to that class of graphs.

Key words, minimum fill-in problem, optimal ordering, Gaussian elimination, sparse linear equations,
load-flow calculation, separating set, tearing a graph

1. Introduction and notation. The graph-theoretic minimum fill-in problem is of
great interest in the field of sparse matrix research. It is stated as follows: Given an
undirected and finite graph G (X, E), IXI =." n, without self-loops and parallel edges
(only those graphs are considered in this paper), X is the set of vertices and E is a set of
unordered pairs (x, y) of distinct vertices, the set of edges. For G the well-known elimi-
nation of a vertex x is defined by

adding edges to the neighbourhood Adj (xlG) ofx (mdj (xlG) denotes the .set of
vertices adjacent to x) so that Adj (xlG) becomes a clique;
deleting x along with the edges belonging to x from G.

The graph resulting from this elimination process is denoted by Gx (Xx, Ex). Every
ordering a of X (which should be considered as a sequence a (a(1), a(n) of
distinct vertices of G, respectively, as a bijective map a: { 1, ..., n} -- X) induces a
sequence of elimination graphs

G(a(1), ..., a(k)) :: (G(.<l), ..., a(k l)>)a(k), k O, n.

In this context sequences of distinct vertices are called elimination orderings. Thefill-in
F(a) produced by an elimination ordering c is the set of new edges which arise during
the successive elimination process. The problem ofdetermining elimination orderings a
producing a minimal fill-in F(a) (in the sense of IF(a)l <- IF(a’)l for all elimination
orderings a’ of G) is well known as the minimum fill-in problem.

In this paper a generalization of this problem, introduced by Rose [Ro70], is
considered. The so-called general minimum fill-in problem deals with ranking elimi-
nation orderings by criterion functions. By definition, a criterion function is a function
f: N - which satisfies

f(al, ,an)=f(atl), ,at,)) for all permutations r of the numbers 1, ,n

and
ai <= bi for <= <= n f(a an) <= f(b b,).
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The class of criterion functions, suitable for G, is denoted by n, respectively, #’(G). If
there is no doubt about the underlying graph G we write ff only. In order to relate
criterion functions to an elimination ordering a, we attach to a the vector

D(aIG) := (d(a(i)lG<.t),... ,a(i- l)>))i 1, ,n

(where d(xlG) denotes the degree ofthe vertex x in the graph G). The entries ofD(alG)
are the degrees ofthe vertices a(i) (at the moment oftheir elimination) in the elimination
graph G<t), ,t;_ )>. Note that D(a]G) can be regarded as the "result" of a. Ranking
an elimination ordering by a criterion functionfis carried out by calculatingf(D(aIG)).

The general minimum fill-in problem is stated by the following two types of opti-
mality.

DEFINITION 1.1. An elimination ordering a of G is called f-minimal (f ), if
f(D(alG)) <= f(D(a’lG)) for all elimination orderings a’ of G. We call a :-minimal, if
a isf-minimal for all fe :.

Evidently, f-minimal elimination orderings always exist. In contrast, the existence
of :-minimal elimination orderings cannot be guaranteed. But note that in [We83]
such elimination orderings are determined for (large) graphs which arise in connection
with load-flow calculation in power systems.

Two criterion functions are of particular interest in the field of sparse matrix com-
putation. These are

f(a, ,a,)’= ai and fo(a, ,a,,):= a.
i=l i=l

The function f can be used to give an alternative definition of the minimum fill-in
problem: An elimination ordering a minimizes the fill-in F(a) if and only if a is
-minimal. This equivalence justifies the name "general minimum fill-in problem."

The elimination process on graphs models the combinatorial features of Gauss’
(respectively, Cholesky’s) algorithm for solving a sparse and positive definite system
of linear algebraic equations Mx b; a detailed analysis of this subject is given in
[Ro70] and [Ro72]. For example, the factorization of the matrix M requires j](D(clG))
multiplications and f2(D(alG)) additions, where G G(M) is the graph representing
the zero-nonzero pattern of M, a is an elimination ordering of G which corresponds
to the used sequence of diagonal pivots and fl andj are criterion functions defined by

:= 0.5-fQ + 1.5-fL, j := 0.5"fa + 0.5"fL. Analogously, the number of multiplica-
tions and the number of additions for the backsolving process are given by 2.f(D(aiG)),
the space to store the triangular factors ofM by f(D(alG)) + n. Summarizing, we see
that an f-minimal elimination ordering a of G G(M), where fis one of the criterion
functions defined above, corresponds to a sequence of diagonal pivots which minimizes
the corresponding arithmetic, respectively, space, criterion. More generally an -minimal
elimination ordering corresponds to an ordering ofM which is optimal with respect to
both, arithmetic and space requirements.

In addition to criterion functions, Rose [Ro70], [Ro72] and Bertel and Brioschi
[Be71 ], [Be72] have introduced a quasi-ordering relation for ranking elimination orderings.

DEFINITION 1.2. For two elimination orderings a and a’ of a graph

G=(X,E),n:=IXI,
it is said that a dominates ’ if there is a permutation r of the numbers 1, ..., n with

d(a(i)[G,i_ )) <= d(c’Or(i))lG,,t,,ti)- )) for 1, n.

a is called dominating if it dominates all elimination orderings of G. If there exists a
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permutation r of the numbers 1, n with

d(o(i)lG,,,(l,i_ 1)) d(ot’(’n-(i)){Go,,(l,(i)_ )) for i= 1, ,n

we say that a and a’ are equivalent to each other.
Dominating orderings exist for chordal graphs [Ro70]. But there are graphs with

no such ordering [Be72, Example 2.7.2]. In Appendix A2 it is proved that an elimination
ordering a is if-minimal if and only if it is dominating. In particular, we will see that a
is -minimal if and only if it isf-minimal for only a finite number of suitable criterion
functions f.

It is well known that there is no general and feasible procedure for solving the
minimum fill-in problem. The reason for this lack is provided by Yannakakis [Ya8 l]
which proves this problem to be NP-complete. Therefore, any attempt to solve the general
minimum fill-in problem may only result in methods which do not succeed in the whole
variety of graphs. But we note that from the theoretical point of view we are interested
in any procedure to determine f-minimal elimination orderings. This is because, in the
field of sparse matrix computation, standards are required for finding out the absolute
quality of he heuristical ordering procedures which are currently in use (for example,
the minimum degree algorithm, the minimum deficiency algorithm, the reverse Cuthill-
MacKee algorithm, the nested dissection algorithm and the one-way dissection algorithm),
i.e., we want to know how close the heuristic orderings are to the theoretical figures of
the minimum fill-in and the minimal number of arithmetic operations. In [We83], for
some large graphs out of the field of load-flow calculation in electrical power systems,
those theoretical figures are computed and listed along with the corresponding results of
the heuristic procedures. As an interesting result of this classification we mention that
the minimum degree algorithm really produces "near-optimal" orderings (at least in the
considered field of application). This paper presents the methods used to compute these
orderings.

The most useful and efficient approach is (in the author’s opinion) that of Bertel
and Brioschi [Be71 ], [Be72]. Its key idea is the so-called Initial Theorem: If G contains
a (so-called) vertex x of type B then there exists an f-minimal elimination ordering (for
anyfe) ofG starting with x. Repeated application ofthe Initial Theorem (if possible)
leads either to a -minimal elimination ordering or at least to a starting sequence of an
J:minimal elimination ordering. In the second case an isomorphic theorem (Theorem
2.6) is proved; it guarantees that all those starting sequences are "equivalent." Conse-
quently, the repetitive elimination process can be realized in a very efficient algorithmic
manner. It is obvious that a graph need not have any vertex of type B and therefore the
approach of Bertel and Brioschi may fail. But this situation confirms the nonexistence
of a general and feasible method to solve the general minimum fill-in problem, rather
than being a disadvantage of the method itself.

Another method used to attack our problem is the so-called separation approach,
which is motivated by a well-known principle in optimization theory stating that a large
optimization problem should be solved (if possible) by separating it into smaller sub-
problems. In connection with the determination of optimal sequences of pivots such
separation procedures (among others) are given in [Bau67], [Ti73], [Ge73], [GET8],
[Ge80]. Common to all these methods is that a given graph G is split into partial graphs
Gi G(Xi) by removing a separating set S of vertices. For the partial graphs Gi, near-
optimal (in general only "good") elimination orderings fli are constructed. Subsequently,
these orderings are concatenated to an elimination ordering a l + +/n + di of
G, where di is any suitable ordering of S (+ denotes the concatenation operator). Com-
monly, the subdivision ofthe graph is motivated by a great deal ofheuristics (for example,
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the subdivision of a power system in local subsystems): global optimality is out of con-
sideration. Therefore none ofthese methods cited above can guarantee that the computed
results minimize the considered criterion exactly; yet some ofthem produce results which
are optimal in an asymptotic sense.

In contrast we are only interested in those subdivisions of G (X, E) for which the
elimination orderings /i and i5 form a jZminimal elimination ordering of G. The basic
ideas of this separation approach and its application are introduced in 3. Obviously,
splitting a graph with respect to jZminimality imposes hard restrictions on the related
separating set of vertices. In 4, three separation theorems are presented which introduce
such conditions. The proof of one of these theorems is given in detail in the Appendix.
It should be noted that the method ofBertel and Brioschi can be considered as a special
case of separation, respectively, the Initial Theorem is a straightforward corollary of one
of the mentioned separation theorems.

The idea of separation to solve the general minimum fill-in problem has already
been proposed by Rose [Ro70] and Bertel and Brioschi [Be71 ]. Their ideas are sum-
marized by the following three theorems which are written down in our notation.

THEOREM 1.3. Let G (X, E) be a graph and S c X be a complete set of vertices

ofG splitting G into the two (partial) graphs G(Y) and G(Z), where X\S YtO Z (i.e.,
G(X\S) G(Y) (R) G(Z)). Then to each fe o there exists an fiminimal elimination
ordering a ofG (depending onf) eliminatingfirst the vertices ofYfollowed by the vertices
ofZ; the vertices ofS are eliminated at the end.

Theorem 1.3 follows directly from Theorems 1.4 and 1.5, which are frequently used
in this paper.

THEOREM 1.4 (Final Theorem). Let G (X, E) be a graph and S Xbe a complete
set of vertices of G. Then for each f o there exists an f-minimal elimination order-
ing a of G (depending on f) eliminating the vertices of S at the end, i.e., a(i) S for
i= Ixl- IsI / 1, ..., Ixl.

THEOREM 1.5. Let G (X, E) be a graph and S X be a separating set ofvertices
splitting G into the two (partial) graphs G(Y) and G(Z), where X\S Y (A Z (i.e.,
G(X\S) G(Y) (R) G(Z)). Furthermore let a and a’ be two elimination orderings satisfying

a(i), a’(i) Sfor IXl [SI + 1, Ixl (i.e., S is eliminated at the end);
ar a’randaz a z.

Then a and a’ are equivalent to each other.
In the field of load-flow calculation in power systems a special type of graphs, called

simplex graphs, is ofinterest. In 5 we will considerf respectively, , minimal elimination
orderings of such graphs. The Initial Theorem is generalized to simplex graphs. Finally,
Appendix A1 summarizes some statements and "rules of computation" for handling
elimination graphs.

The rest of this section introduces some additional notation. For an elimination
ordering a (a(1), a(n)) of a graph G (X, E), IX[ n, a partial sequence
(a(i),..., a(ik)) =:/3 (/3(1), ...,/3(k)) of a, where <- i < i2 < < ik =< n is
called partial elimination ordering. The length k of/3 is denoted by I1, the set of vertices
belonging to/3 by M(/3) := {a(i), a(i)}. For the empty elimination ordering we
write ( ). Special partial elimination orderings of a are the so-called "sections" of a,
a(i, j) := (a(i), a(i + 1), a(j)), i, j q. Evidently, a(i, j) is empty for > j,
respectively, for > I1. For a subset S X, as denotes the "S-part" of a, i.e., that partial
elimination ordering of a consisting of all those a(j) with a(j) S. In other words, as
arises from a by erasing all a(j) with a(j) S from c. The concatenation + - of two
partial elimination orderings 3, 3’ with g := [/[ and m := [3’[ is defined by

+ q := (3(1), (e), 3’(1), 3,(m)),
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their "difference" by/3 , "=/3ta)\t). IfM(/3) f3 M(,) ,/3 + 3’ becomes a (partial)
elimination ordering.

Now we introduce further graph-theoretical notation. In addition to Adj (x]G) the
neighbourhood of a subset Y c X is defined by

Adj (YIG)’= {xX\Yl(x,y)eE for any y Y}.
For Y c X the section graph with respect to Y is denoted by G(Y). If there is no doubt
we will relate graph-theoretical notions directly to the set Y instead of onto G(Y) (for
example: Ycomplete instead of G(Y) complete). The Y-elimination graph ofG is denoted
by Gr (Xy, E,) and (well-) defined by eliminating the vertices of Y in any order. A
sequence o (x0, xe) of distinct vertices of G (X, E) satisfying (Xi, Xi + E
for 0 =< =< g is called a path of length g from Xo to xe. If g we speak of a trivial
path. For the set of intermediate vertices of a path oa we introduce the notation Z(oa)"=
{x, xe- }. A path o from a to b is called disjunct to a path oa2 from a2 to b2, if
Z(oa) f’) Z(oa2) and a, bl Z(oa2) and a2, b2 Z(oa). A system of paths oa from a
to bj, j 1, k, is called disjunct if the paths are mutual disjunct. For two graphs
G (X, E), G2 (X2, E2) with X f’) X2 we define the direct sum of G and G2
by G (R) G2 := (X CJ X2, El t3 E2), where t3 denotes the union of disjunct sets. By
this notion, for any separating set S X there is a partition Y C3 Z S x of the set of
vertices of G (X, E) so that G(X\S) G(Y) (R) G(Z). The complementary graph of
a graph G is denoted by G. Furthermore the terms "complete graph" and "clique" are
used synonymously.

2. The approach of Bertel and Brioschi. The basic idea ofthe approach ofBertel
and Brioschi is the so-called Initial Theorem. The assumptions of the Initial Theorem
are stated by the following definition. But first we remember that a graph G (X, E) is
called a bush if there is a vertex w satisfying: d(wlG) IX and d(blG) for all
b X\{w}; the vertex w is called root, the vertices b X\{w} are denoted as peaks. If
IXI 1, we speak of a trivial bush, consisting of a root only. A graph G is called aforest
ofbushes if it is the direct sum of bushes.

DEFINITION 2.1. Let G (X, E) be a graph. A vertex x is called of type B if:
(i) G(Adj (xlG)) is a forest of bushes.
(ii) To each of these bushes with root w and peaks b, b there are disjunct

paths (.oi, 1, k in G from w to bi with Z(wi) ["] (Adj (xlG) tO {x}) 5.
Figure shows some typical samples of vertices x of type B together with their

neighbourhood. Paths are indicated by Evidently, any vertex having a complete
neighbourhood is of type B.

THEOREM 2.2 (Initial Theorem [Be72, Thm. 3.5.2]). Let G (X, E) be a graph
andx X be a vertex oftype B. Then to eachf there exists anf-minimal elimination
ordering a ofG (depending on f) starting with x, i.e., with a(1) x.

Analogously to the Final Theorem the Initial Theorem follows directly from The-
orem 2.3.

THEOREM 2.3 [Be72, Thm. 3.5.1 ]. Let G (X, E) be a graph and x X be a vertex
oftype B. Then to each elimination ordering a’ ofG there exists an elimination ordering
a ofG which dominates a’ and starts with x.

Repetitive elimination of vertices of type B is described by the following.
DEFINITION 2.4. A (partial) elimination ordering a of a graph G is called a B-

(partial) elimination ordering, if a(i) is in Ga(,i-) of type B, =< =< [cl. We call a
noncontinuable if G, does not contain any vertex of type B.

B-elimination orderings exist for chordal graphs. This is verified by induction over
the number of vertices, where we have to apply Dirac’s Lemma, which guarantees that
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FIG. 1. Note that o and w’ may not be disjunct.

a chordal graph always contains a vertex with a complete neighbourhood. The key property
of B-(partial) elimination orderings is described by the following proposition.

PROPOSITION 2.5. (i) Every B-elimination ordering ofa graph is -minimal.
(ii) For anyfe it is true that: A B-partial elimination ordering 3 ofa graph G

can be chosen as a starting sequence ofa f-minimal elimination ordering, i.e.,
there exists a partial elimination ordering (depending on f) so that [3 + is
a f-minimal elimination ordering ofG.

Since -minimal elimination orderings may not exist, a B-partial elimination or-
dering of a graph is not necessarily a starting sequence of a -minimal elimination
ordering.

Example. Consider the graph G given in Fig. 2 ([Ro70]). Then

a’= (1,2,3, ,11)
is a B-elimination ordering withf(D(alG)) 27 andfQ(D(alG)) 77. Other graphs for
which a B-elimination ordering exists are presented in [We83]. Most of them are of
interest in the field of load-flow calculation in power systems.

Now we consider the situation that for a graph G the successive elimination of
vertices of type B leads to a (real) noncontinuable B-partial elimination ordering. This
situation arises when, during the process ofeliminating vertices oftype B, an elimination
graph has been generated that does not contain any more type-B vertices. From the
theoretical as well as from the practical point of view, it is interesting to know whether
any other (larger) B-partial elimination ordering exists. If such an ordering existed (and
this is absolutely imaginable) the determination of the "best" B-partial elimination or-

5 6

7 8

ii

FIG. 2
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dering would require a backtracking process in order to inspect all noncontinuable B-
partial elimination orderings. But fortunately the length of noncontinuable B-partial
elimination orderings is an invariable of a graph G. This is guaranteed by the following
theorem.

THEOREM 2.6. For any two noncontinuable B-partial elimination orderings and
{3’ ofa graph G it is true that

(i) I1 I/’1;
(ii) Ga is isomorphic to Ga,.
The proof of Theorem 2.6 is given in Appendix A3.
Obviously, a graph G has no B-elimination ordering if and only if there exists at

least one true B-partial elimination ordering ofG which is noncontinuable. In particular,
all noncontinuable B-partial elimination orderings ofG are elimination orderings ifthere
exists a B-elimination ordering of G. For example any repetitive elimination process of
type-B-vertices in the graph of Fig. 2 always terminates in the empty graph. Yet the most
important consequence ofTheorem 2.6 is that "the best" B-partial elimination ordering
can be determined by a simple and backtracking-free algorithm which is sketched below.

-:-(
G) G;
i:=0;
WHILE ’G(i) contains a vertex of type B’ DO
BEGIN
choose any vertex x of type B out of G<i);
G(i+ 1):__ (G(i))x;

i:=i+1;
END

In implementing this algorithm a test-procedure is required to check whether a vertex is
of type B or not. In this procedure the verification of condition 2.1 (i) is easily done. In
contrast the test of condition 2.1 (ii) is a much more difficult task. In order to carry out
this verification in an efficient manner it should be realized as a (equivalent) flow problem.
For solving the flow problem efficient procedures are available.

The author has used a PASCAL-implementation of this algorithm; the involved
flow problem is solved by the algorithm of Dinic [Ev75]. The program works very effi-
ciently. For example the computation ofa B-elimination ordering for a graph G containing
118 vertices (for readers familiar with power systems, it is the AEP 118-bus test network)
requires 4.9 seconds’ execution time on a DEC PDP-11/23.

3. The separation approach: basic ideas. We begin this section with an example
introducing some problems concerning any separation approach. Let us look at the graph
G (X, E) of Fig. 3 for which afL-minimal elimination ordering should be determined
(fz(a,’" ,a,,)".= ai). We see that G does not contain any vertex of type B
and therefore the method of Bertel and Brioschi fails. According to Theorem 1.3
an j-minimal elimination ordering c of G exists eliminating first the vertices Y
{Y, 9:4} succeeded by the vertices Z {Zl, z4}; the vertices S {s, $4}
are eliminated at the end ofa. In order to determine a in detail (Theorem 1.3 guarantees
the existence ofa only) we compute, for example by a combinatorial procedure [Bau67],
a partial elimination ordering/ of G which satisfies M(B) Y and which minimizes

4, d(/3(i)lGa<,i- ))
i=l
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SI ZY

Y2 Z2

FIG. 3

(roughly speaking, an fL-minimal partial elimination ordering/3 with M(/3) Y). Sub-
sequently, also by a combinatorical process, anfL-minimal elimination ordering 3" of Gr
is computed which eliminates the vertices of S at the end. Evidently, the elimination
ordering/3 + 3’ is fz-minimal. The "algorithmic expense" has been reduced by this pro-
cedure from Ix I! to [YI! + Izl! / sl!, respectively, from 2Ixt to 2IYI + 2Izl + 2Isl.

Problems arise in the notation when we have to minimize an arbitrary and more
complicated criterion functionf; a good example ofsuch a function is given in Appendix
A2. Again, Theorem 1.3 guarantees the existence of an jZminimal elimination ordering
a eliminating Y, Z and S one by one. But in this situation we are not able to construct
anf-minimal elimination ordering by minimizingfin the partial manner as it has been
done above because we do not know the "kind of optimality" which matches the con-
stituents/3 and 3’ of a. An imaginable but expensive alternative would be to compute
f(D(alG)) for all elimination orderings a composed of/3 and 3" as mentioned above and
to choose anf-minimal one; this procedure reduces the algorithmic "expense" from Ixl!
to YI!" Izl!. sl! only.

Now a notation is introduced appropriate for handling subdivisions of graphs in
connection with f, respectively, , minimal elimination orderings.

DEFINITION 3.1. Let G (X, E) be a graph andf o. G is called separable with
respect tof if there is a separating set S c X splitting G into two partial graphs G(Y) and
G(Z), where X\S Y tO Z (i.e., G(X\S) G(Y) 6) G(Z)). Furthermore there exists a
correspondingf-minimal elimination ordering a of G satisfying

Y for/=l,..-,lY[,
a(i) Z for i= IYI + , "", IYI + Izl,

s fori-lYl+lzl+, "",lxl.

The partition (Y, S, Z) ofX is called decomposition ofG with respect to f. A partition
(Y, S, Z) which is a decomposition ofG with respect to allfe o is called a decomposition
ofG with respect to .

In 4 sufficient conditions on a graph G are established guaranteeing that G is
separable with respect to .

Now the lack of our notation which has appeared in the introductory example is
eliminated. Essentially, we have to specify which "kind of optimality" is satisfied by a
partial elimination ordering ofanf-minimal elimination ordering. It will become evident
that ranking partial elimination orderings by criterion functions is appropriate too.
Therefore, we define the (well-known) vector

D(flIG)’= (d(fl(i)lGa,i-1)))i= 1, ,e

also for partial elimination orderings/3 (fl(1), ..., fl(e)) of a graph G. Comparing
two partial elimination orderings/3 and/3’ of a graph G is reasonable only if M(fl)
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M(3’); for example, the part/3 of an elimination ordering a =/3 + 3’ can be replaced by
a possibly "better" partial elimination ordering ’ only ifM() M(fl’). In this context
for a partial elimination ordering/3 of G satisfying M(/3) Y, Y c X, we introduce the
notation Y-elimination ordering ofG. For Y-elimination orderings the termsf respectively,
o minimal are used analogously, i.e., a Y-elimination ordering/3 is called f-minimal
(f e, g 1/31) iff(O(13]G)) <= f(O(’]G)) for all Y-elimination orderings/3’ of G;/3 is
called e-minimal if it isf-minimal for allfe oe. To rank partial elimination orderings
of af-minimal elimination ordering the following functions

j(al, am)’= f(b, br, a, am) where

b=(b,...,br)qr, r<n, m=n-r

are derived from f Evidently, j is a criterion function as defined in 1, i.e., J Om.
Furthermore we remark that

(3.2) j(a)=fa(b) where a=(a, ,am)m.
Using this notation we give an obvious and important identity: Let a be an elimination
ordering of the graph G (X, E). Set a := a(1, r) and az a(r + 1, n), where r N,

-< r < n IX 1. Then the following equalities hold:

(3.3) f(D(alG))= f(O(a + a2lG))= fo,lo)(D(a2[G,,))= fD,21o,)(D(alG)).
The "kind of optimality" holding for partial elimination orderings ofanf-minimal elim-
ination ordering is now derived from (3.3).

PROPOSITION 3.4. Given a graph G (X, E), [XI n, a criterion functionfe ,
and af-minimal elimination ordering a ofG. Set a a(1, r), O2 :’- O(F -[- 1, n), re q,

<= r < n, and Y M(al). Then it is true that
(i) a is a fDt,2lor)-minimal Y-elimination ordering ofG;
(ii) a2 is a fot,,lo)-minimal elimination ordering ofGy.
Proof (i) We assume that there is a Y-elimination ordering , of G satisfying

fot,lr)(D(3,[G)) < fo(:ly)(D(a[G)). According to (3.3), for the elimination ordering
a’ 3’ + a_ of G we get the inequality

f(D(a’lG)) fz,lr)(D(3"lG)) <fD(,lr)(D(a[G)) f(D(a[G))
which is a contradiction to thejZminimality of a. (ii) The proof is analogous to (i).

PROPOSITION 3.5. ] addition to the assumptions and notation of Proposition
3.4/et

"V be afm,2lr)-minimal Y-elimination ordering ofG,
6 be afzelo)-minimal elimination ordering ofGr,
2 be afz,,l)-minimal elimination ordering ofGr,
"r2 be afo(lr)-minimal Y-elimination ordering ofG.

Then the elimination orderings 3’ + a2, "r + 6, a + 6 and 3"2 + 62 aref-minimal.
Proof Using (3.3) we get

f(D(alG)) fz)(,zlor)(D(allG)) fz)(,lor)(D(3,1lG))

fz)(,la)(V(a2lGr)) >= f(,rlo)(V(6lar)) f(V(3’l + 61 [G)).

Since a is j:minimal 3’ + a and 3’1 + 61 are f-minimal too. The f-minimality of
a1% 62 and 3’2 + 62 is proved analogously. [3

Proposition 3.5 solves the notation problem of the introductory example: Given a
graph G (X, E), IX[ =: n, which is separable with respect to a criterion function
fe n. Set (Y, S, Z) to be a decomposition of G with respect to f, r IY[ and a to be
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the correspondingf-minimal elimination ordering satisfying a(i) Y for 1, ]Y[,
a(i) Z for IYI / , "", IYI / Izl and a(i) S for IYI / Izl / , ..., n.
According to Proposition 3.5 it is sufficient to determine first a fz((r+ ,,)lr)-minimal
Y-elimination ordering 3"1 of G, and subsequently anfD(,l)-minimal elimination ordering
61 of Gr. Evidently, the elimination ordering 3" + 61 is f-minimal. It is also possible to
start with the determination of anfD(,(1,r)l)-minimal elimination ordering/2 of Gr. Sub-
sequently, anfz(21r)-minimal Y-elimination ordering 3’2 ofG is required. In this situation

3’2 + 62 is f-minimal. If G is small enough a combinatorical method for determining
and 61, respectively, 3’2 and 62, appears reasonable. But for an arbitrary f #" a new
problem arises. Since we do not really know the elimination ordering a the criterion
functions fD(a(r + 1,n)lGy), respectively, fo(,(l,r)l), are unknown too. The criterion function
given in Appendix A2 demonstrates this lack very clearly. Such kind ofproblems do not
arise if we consider criterion functions like f fL or f fQ (which are interesting from
the practical point ofview) because in this situation minimizingfz(,(r / 1,,)ly) is equivalent
to minimizing f0, ,0)((0, 0) N- r). This is easily verified by:

fD(a(r + l,n)[Gy)(al ar) ai + const,
i=1

where const Zf=r+l d(a(i)lG,(l,i-1)). Minimizing the function f0, ,0)is the formal
description of the "partial minimization" used in the introductory example.

More interesting than computing 3"1 and 61, respectively, 3"2 and 62 by a combina-
torical procedure is their determination using the Initial Theorem. This problem is con-
sidered for the rest of this section.

PROPOSITION 3.6. Given a graph G (X, E), Ix =." n, along with a decomposition
Y, S, Z) ofG with respect to . Furthermore set 13 to be a partial elimination ordering
ofGr satisfying thefollowing two conditions:

For any g (Gr): /3 may be chosen as a starting sequence of a g-minimal
elimination ordering ofGr;
M({3) n S .

Then for anyfe , [3 may be chosen as starting sequence ofan f-minimal elimination
ordering ofG.

Proof Letf , [YI =: r. Set a to be ajZminimal elimination ordering satisfying
a(i) Yfori= 1,..., r,a(i)Zfori= r+ 1,..., r+ IZI anda(i) rSfori=
r + IZI + 1, n (which exists according to Definition 3.1). From the assumptions
above it follows that/3 can be extended to an fo,(l,r)l)-minimal elimination ordering
/3 + 3" of Gr. Proposition 3.5 shows that a’ := a(1, r) + /3 + 3" is f-minimal. Since
M(3") S Theorem 1.5 guarantees that a" :=/3 + a(1, r) + 3" is equivalent to a’. Therefore,
a" is f-minimal too.

Since Definition 3.1 is symmetric with respect to Y and Z, it is possible that there
are partial elimination orderings/31 of Gr and/32 of Gz both satisfying the assumptions
of Proposition 3.6. If additionally S is complete in Gr (or Gz), then for any f 6 ,
/31 +/32 may be chosen as a starting sequence of anf-minimal elimination ordering. The
(short) proof of this statement is given in [We83].

In general Gr contains more edges than G(Z (A S), that edges which are introduced
by the elimination of Y. Therefore, it may be possible that Gr contains vertices of type
B in contrast to G(Z (A S). If at least one of these vertices is not contained in S, the
partial elimination ordering/3 (required for Proposition 3.6) may be computed as a
B-partial elimination ordering of Gr. This is demonstrated by the following example.

Example. The graph G (X, E) (Fig. 4) does not contain any vertex of type B. Set
Y := {Yl, Y2, Y3, Y4 }, := {z1, z2, z3, $5} and S :--- {Sl, $2, $3, s4 }. Remark 2 on
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Y3

$4

S

$5

FG. 4

Theorem 4.4 will guarantee that (Y, S, ) is a decomposition of G with respect
to . We consider the two elimination graphs G and G2 (Fig. 5). For Gy and G we
determine two B-partial elimination orderings/ := (z3, z2, z, ss) (of Gr) and/2 :=
(Y4, Y3, Y2, Yl ) (of G2). Evidently, and 2 satisfy the conditions of Proposition 3.6.
Since S is in Gr (and G:) complete we have proved that

Ot (Z3, Z2, ZI S5 Y4, Y3 Y2, Yl SI S2 S3, S4 )
is a -minimal elimination ordering of G.

A recursive application of this separation approach is also imaginable. It is feasible
if (roughly speaking) the new edges which are introduced (in Gr, respectively, Gz) by
the separation of G induces another separation of one (or both) of the graphs Gr and
Gz. An example of this idea is given in [We83].

4. Separation theorems. In this section conditions on a graph G are established,
sufficient for G to be separable with respect to a criterion function fi They depend on the
graph G only (especially they are independent of the criterion function f) and therefore
yield to decompositions of G with respect to ’.

The following definition generalizes the first assumption of the Initial Theorem
("the complementary graph ofthe neighbourhood ofa type-B-vertex is a forest ofbushes").

Y3
Y2 " $4

$4 "
$5

S

ZI

G2 Gy

FIG. 5
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DEFINITION 4.1. Let F (S, L) be a graph and So c S be complete. F is called
reducible to a complete graph by elimination ofany k vertices (k q) out orS\So if

Is\s01 >-_ k;
The elimination graphs Fr are complete for all T c S\S0 with TI k.

This notation is used analogously for sets of vertices S of a graph G (X, E), i.e., S is
reducible to a complete graph by elimination of any k vertices out of S \So (So c S) if
this is true for G(S).

Remarks on Definition 4.1. (1) A graph F (S, L) whose complementary graph F
is a forest of bushes is reducible to a complete graph by elimination of any vertex out of
S \S0, where So denotes the set of peaks of F.

(2) Given a graph F (S, L) and a subgraph/# (S,/2) of F ( c L). If F is
reducible to a complete graph by elimination ofany k vertices out ofS\So (So c S) then
this holds true for F too. Attention has to be drawn to the following situation which is
of particular interest in this paper: Given a graph G (X, E) and a set of vertices
S c X which is reducible to a complete graph by elimination of any k vertices out of
S\So (So S complete). Then this property remains true for any elimination graph Gr
with T X\S.

The following two definitions state the assumptions for a first separation theorem.
DEFINITION 4.2. Given a graph G (X, E), Y X, S X with S fq Y and

So S complete. The pair (S, So) is called of type Zk relative to Y (k q, k >= 1), if:
(i) Adj(Y[G) c S.
(ii) For all s, s’ e S, s 4: s’, it is true:

(s, s’)E There are k disjunct (nontrivial) paths 0i, 1, k,
in G from s to s’ with Z(oi) Y;

(iii) For any y e Y and to any T S\So with TI k there exist k disjunct paths
ot, e T, from y to with Z(ot) Y;

(iv) IS \Sol >= k.
We remark that (iii) and (iv) imply (evidently): For any y Yand to any T S\S0 with
IT[ < k there exist IT[ disjunct paths ot, T, from yto satisfying Z(c) c Y. Furthermore,
condition (iv) is a technical one, which always holds true because Definition 4.2 is of
interest only in connection with Definition 4.3.

DEFINITION 4.3. Given a graph G (X, E), S X and S0 S complete. The pair
(S, So) is called of type Tk (k IN, k >_- 1) if the following conditions are satisfied:

(i) S is reducible to a complete graph by elimination ofany k vertices out ofS \ S0.
(ii) S splits G into two graphs G(Y) and G(Z) (not necessarily connected), where

X\S Yk) Z (i.e., G(X\S) Co(Y) ( G(Z)). The situation Y-- , respectively,
Z is, in contrast to the definition ofa separating set ofvertices (by technical
reasons), also allowed.

(iii) (S, S0) is of type k relative to Y and relative to Z.
(iv) To any s S\So there are m (m := ]SI) disjunct paths Os,, s’ S, s’ 4: s,

from s to s’ with Z(os,) Z.
Remarks on Definition 4.3. (1) If there is no doubt on the complete set of vertices

So we will also say that S is oftype Tk.
(2) In order to employ a uniform notation we call (S, So) oftype To, if conditions

4.3 (i) and (ii) are true; conditions 4.3 (iii)-(iv) are canceled. Evidently, sets of type To
are complete and separating. Their use to determinef-minimal elimination orderings is
considered by Theorem 1.3. We remark that neither the elimination of Y nor the elim-
ination of Z introduces new edges in G(Z to S), respectively, G(Y tO S). Therefore, the
method presented in 3 (applying the Initial Theorem) will not succeed.



722 H. WENDEL

(3) Figure .6 illustrates two examples of sets of type Tk in its "basic form." Paths
are indicated by

(4) The conditions of Definitions 4.2 and 4.3 may be divided into two classes. The
conditions 4.2 (i), (ii), (iv) and 4.3 (i), (iv) may be considered as "local with respect to
S," because to verify these conditions we have to inspect only a (in general small) neigh-
bourhood of S. In contrast the conditions 4.2 (iii) and 4.3 (ii) are global; their proof
requires an inspection of the whole graph.

Using the two definitions introduced above we get a first separation theorem.
THEOREM 4.4. Given a graph G (X, E) containing a set S ofvertices oftype Tk,

then for anyfe there exists an f-minimal elimination ordering a ofG (depending on
f) which satisfies

Y fori= l,
a(i) Z fori=[Y[+ l, ,[Yl+lZI,

S fori=lYl+lZl+l,’"

The notation Y, Z and S is used in the sense ofDefinition 4.3.
A proofof Theorem 4.4 is given in Appendix A4.
Remarks on Theorem 4.4. (1) The feasibility of Theorem 4.4 depends essentially

on the chance of finding sets of vertices of type Tk. This problem may be considered
from two distinct points of view. On the one hand, if we are interested in an algorithmic
search, no efficient procedure for solving this problem can be expected. This depends
essentially on two facts: First, the verification of Definitions 4.2 and 4.3 is a very expensive
task. Second, a lot of subsets of vertices (all of X) must be checked. On the other hand
in a "clear" graphical representation ofa graph sets ofvertices oftype Tk can be recognized
frequently (if contained) because Definitions 4.2 and 4.3 are based on the visual notions
"separating" and "disjunct paths." In this context it should be noticed that in some fields
of applications clear graphical representations ofthe considered graphs are available (for
example the network graph in the field of load-flow calculation in power systems). We
summarize: Theorem 4.4 does not lead to an efficient programmable algorithm for the
determination off, respectively, o minimal elimination orderings but it is a useful tool
for attacking this problem by working with "paper and pencil."

(2) In [We83] a more general separation theorem is proved. The definition of the
property T must be generalized as follows.

k-- 1
S= {s,,s,s
So s_, s3})

k--2,
S-- {Sl, s2, $3}
So {s}.

FIG. 6
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DEFINITION 4.3’. Given a graph G (X, E), S c X and So c S complete. The pair
(S, So) is called oftype Tk (k q, k >= 1), if the following conditions are satisfied:

(i) Analogously Definition 4.3 (i) (remains unchanged);
(ii) Analogously Definition 4.3 (ii) (remains unchanged);
(iii) There are subsets S c S and $2 c S satisfying

S--- SI US2,
S\So=S $2,
ml := IS, I--< IS21-: m2.

For $1 and $2 the following conditions (iv) and (v) also hold.
(iv) (Sl, Slf) So) is of type zk relative to Y. ($2, $2 f) So) is of type z relative to Z.
(v) For any s S\So there are m2 disjunct paths Os,, s’ $2, s’ 4: s, from s to

s’ with Z(os,) c Z.
Using this notation, [We83, 8.2.4] guarantees that for a graph G containing a set S of
vertices of type T (in the sense defined above) there exists an jZminimal elimination
ordering a (depending onf ) which satisfies

Y
a(i) 2

S

for/= 1, ,IYI,
for IYI / , "-’, IYI / 121,
for IYI + 121+ , --., Ixl,

where 2 := Z U ($2\S).
Figure 7 gives an example of a set of type T (in the sense of Definition 4.3’); paths

are indicated by again.
(3) Counterexamples demonstrate that 4.2 (ii) and 4.3 (iv) may not be canceled, by

the assumption of 4.4 [We83, 8.2.4, Remark 4].
The following example demonstrates the application ofTheorem 4.4 in connection

with the Initial Theorem.
Example. We consider the graph G (X, E), shown in Fig. 8. G is interesting from

the practical point of view. It is the elimination graph (after repeated elimination of
vertices of type B) of a graph containing 175 vertices originally representing an electrical
power system (a connection of the AEP-118-node test network by the AEP-57-node test
network; see [We83]). In G

S:={123,128,129}

) $3

FIG. 7

SI--’tSIS2S3tS s $4 $5

So-- s s3 s4, s5}.
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49 I3 i3

4

23

&8

FIG. 8

is of type T, where So := { 128, 129 }. For Y and Z we get:

{23, 30, 34, 37, 49, 65, 68, 69, 77 } and

Z= { 124, 135, 132, 133, 169, 158, 157, 142, 144, 149}.
Now we consider (as described in 3) the graph G’ := Gr-(Fig. 9). It is easily verified
that

3’:= (132, 135, 169, 133)
is a B-partial elimination ordering of G’ with M(3’) S . Therefore, for any
f6 o(G), 3’ is a starting sequence of an3Cminimal elimination ordering of G. The graph
G" := G0, (Fig. 10) remains to be investigated. G" does not contain any vertex of type B.

128 i27

FIG. 9
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49

&8 77

FIG. 10

We apply Theorem 4.4 again. In G" the set of vertices

S"’={123,124,149,129}

is of type Tl, where So { 149, 129 }. For Y" resp. Z" we get

Y"= YU {128}, Z"={144,142,158,157}.

Now we have to look at the graph G(3) G’,, (Fig. 11). Taking advantage of the
symmetry ofG(3) we see: To anyfe (G(3)) there exists anf-minimal elimination ordering

(3)(depending onf) starting with vertex 142 [We83, Example 7.3]. For ,., {142} we compute
the B-partial elimination ordering 3’ := (157, 158, 144). Hence, we have proved: For
anyfe (G(3))

/3":=(142, 157, 158, 144)

is a starting sequence of an f-minimal elimination ordering of G(3) which satisfies
M(/3") N S" . Thus, for any fe o(G"),/3" is a starting sequence of an f-minimal
elimination ordering of G". The remaining graph G(4) G,, (Fig. 12) allows a B-elim-
ination ordering:

a"’= (124, 149, 123, 128,65,129,34,37,23,30,49,68,69,77).

i23 i27

I4 149

FIG. 11
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49 i23

128 i27

68 77

FIG. 12

Summarizing, we have proved that

.= ’+"+"
=(132, 135,169, 133, 142, 157, 158, 144, 124, 149, 123, 128,65,129,34,

37, 23, 30, 49, 68, 69, 77)
is an -minimal elimination ordering of G.

A further interesting example is the grid graph G (X, E) ofFig. 13. An o-minimal
elimination ordering of G is determined in [We83].

If k condition 4.2 (iii) may be canceled from the assumptions of Theorem 4.4.
A set of vertices S is called almost oftype T if it is type T except for condition 4.2 (iii).

THEOREM 4.5. Given a graph G (X, E) containing a set of vertices S which is
almost of type T. Then to anyf there exists an f-minimal elimination ordering a

ofG (depending on f) which satisfies

Y fori= l,
a(i)e Z fori=lrl+ 1,... ,IYl+lzI,

S fori--lYl+lZl+ 1, ..-,IxI.

The notation Y and Z are chosen according to Definition 4.3, respectively, Theorem 4.4.
A proof of Theorem 4.5 is given in [We83].

Xll

X12

X13

X14

X21 Xm

fX22 ’Xm2

FIG. 13
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It is interesting to consider Theorem 4.5 for the special case YI 1. It is easily
verified that the neighbourhood of a vertex of type B is almost of type Tl. Therefore, the
Initial Theorem is a straightforward corollary of Theorem 4.5. The Initial Theorem is
not involved in the proof of Theorem 4.5.

Now we turn to a third separation theorem which is weakening condition 4.2 (ii)
for k 2. Its assumptions are stated in two definitions again.

DEFINITION 4.6. Given a graph G (X, E), Y X, S X with S n Y ,
So s complete and IS\S0[ 2. Set {s, s2} := S\So, s 4 s2. The pair (S, So) is called
oftype -’2 relative to Y if:

(i) Adj (YIG) c S.
(ii) For all s, s’ e S, s 4: s’, it is true:

(s, s’)E There exist two disjunct (nontrivial) paths wi, 1,2,
from s to s’ satisfying Z(oi)c Y tO {s,s2}.

(iii) For all y Y there exist two disjunct paths og, 1, 2, from y to s satisfying
Z(o)i) c Y.

DEFINITION 4.7. Given a graph G (X, E), S X, So S complete and
IS\Sol 2. Set (s, s2} := S\So, s 4 s. The pair (S, So) is called of type T’2 if the
following conditions are satisfied:

(i) S splits G into two graphs G(Y) and G(Z) (not necessarily connected), where
X\S Y Z (i.e., G(X\S) G(Y) (?) G(Z)). The situation Y= 5, respectively,
Z is, in contrast to the definition ofa separating set ofvertices (by technical
reasons) also allowed.

(ii) (S, So) is of type z relative to Y and relative to Z.
(iii) For si, 1, 2, there exist rn (m := S[) disjunct paths Ws’, s’ S, s’ 4: si,

from si to s’ satisfying Z(ws,) Z.
If there is no doubt on the complete set So we simply speak ofS to be of type T. Figure
14 illustrates sets of type T2; paths are indicated by

We get the third separation theorem as follows.
THEOREM 4.8. Given a graph G (X, E) containing a set ofvertices S X oftype

T’2, for eachfe there exists an f-minimal elimination ordering a ofG (depending on
f) which satisfies

Y fori l, ,IYI,
o(i)6 Z for i- lYl + 1, ,IYI+IZI,

s fori-[Yl/lzl/,’",lXl.

A proof of Theorem 4.8 is given in [We83].

FIG. 14
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Yl Y2

SI S S

ZI Z2

FIG. 15

s 1,, s,s,
So {$3, $4 }.

Examples. (i) Consider the graph of Fig. 15. Obviously, (S, So) is the type T. As
described in 3, we get an -minimal elimination ordering

O (yl, Y2, ZI, Z2, SI, $2, $3, $4 )
of G.

(ii) In [We83], for the grid graph G (X, E) (Fig. 16), it is proved that the elimination
ordering

,= 3’ + 3" + c"

is -minimal, where

3’’-" (Xll,X14,X12,X21,X24,Xml,Xm4,Xm2,X(m-1)1, X(m-1)4);

3v’-- (XI3,X22,X23
Ol

tt’-- (X32,X33,X41,X44,X31,X34,X42,X43, ,X(m- 3)3,Xm3,.X’(m-

X(m-1)3,X(m-2)l, ,X(m- 2)4), where m is assumed to be odd.

If m is even a similar B-elimination ordering can be computed.

5. f-minimal elimination orderings of simplex graphs. In this section we consider
the problem ofdeterminingf, respectively, o-minimal, elimination orderings for a special
type of graphs, called simplex graphs. Simplex graphs are of interest in the field of load
flow calculation in power systems. In general the (nonlinear) network equations are
solved by means of Newton’s method, which involves a repetitive solving of a system of
linear equations, the Jacobi matrix equation [St74]. During the (repetitive) solution process
the zero-nonzero pattern of the matrix remains fixed; only its entries change. In general
those systems are not positive definite but large experience shows that diagonal pivots
are appropriate from the numerical point of view. Since the Jacobi matrix is symmetric
in its zero-nonzero pattern, the graph-theoretical model of the Gaussian elimination

X X21 X31

lXl3 I;13 IX33
FIG. 16

Xm

m>__6
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process is feasible. The zero-nonzero pattern of the Jacobi matrix is represented by a
simplex graph. Simplex graphs arise also in the field of structural analysis [Sch80].

DEFINITION 5.1. A graph G (X, E) is called a simplex graph, if there is a partition
X X1 t] t] Xn, n e N, of the set of vertices which satisfies:

(i) G(Xi) is complete for 1, n.
(ii) If Adj (XiIG) f3 X 4: for 4: j then G(Xi tO X) is complete.

The sets Xi are called blocks of G, the number dim (Xi) := xil is denoted as dimension
of the block Xi. If dim (Xi) r for all 1, n, we call G r-simplex graph.

Evidently, every graph is a 1-simplex graph. Furthermore it is easily verified that
an r-simplex graph is a r’-simplex graph if r’ divides r. But we are not interested in that
kind of question and assume for the rest of this section that the partition belonging to a
simplex graph is always fixed and well known; especially, all notation and considerations
are referred to that partition.

Another method to introduce simplex graphs is a constructive one. It in-
volves the ’global structure’ inherent in a simplex graph. In this section, for a graph
G (X, E) along with a valuation d of its vertices (meaning a map d X- N), we write
G=(X,E,d).

DEFINITION 5.2. Let G (X, E, d) be a graph with a valuation of its vertices. A
simplex graph G* (X*, E*) is derived from G in the following manner:

For each x e X let x* be a set of d(x) distinct vertices; for two distinct vertices
x, y e X the corresponding sets x* and y* are defined to be disjunct. The total
of the vertices of G* becomes X* := tOxx x*.
The set of edges E* of G* is defined by: For any u, v e X*, u 4: v, with u e x*
and v e y* we set:

(u, v)e E* :. (x y V (x, y)e E).

G* is called simplex extension of G. Evidently, dim (x*)= d(x) for all x eX. If
d(x) r for all x X, we call G* the r-simplex extension ofG; in this case the valuation
d is omitted.

Intuitively, the simplex extension of a graph G (X, E, d) is constructed by
Replacing the vertices x X by cliques of size d(x);
"Connecting two distinct cliques completely" if and only if the corresponding
vertices are adjacent.

See Fig. 17 for an example. Obviously, every simplex graph ( is (respectively, can be
considered as) a simplex extension G* ofa graph G (X, E, d) with a suitable valuation

d* e*

a a*

c

G c*

FIG. 17
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d of its vertices. In this context G is called the skeleton of. Therefore, it is sufficient to
consider simplex extensions only.

We are interested in f respectively, -minimal elimination orderings of simplex
graphs. Attacking this problem by means of 2, we see that the Initial Theorem is not
feasible because generally simplex graphs do not contain vertices oftype B. This is easily
demonstrated by the small example given above (Fig. 17). In the following a more general
Initial Theorem, appropriate for simplex graph, will be developed. But first we provide
some notations and "rules of computation" for handling simplex extensions.

PROPOSITION 5.3. For a graph G (X, E, d) and the corresponding simplex extension
G* (X*, E*),

(Gx)* (G*)x. for all xX.

Proof. The proof is obvious.
DEFINITION 5.4. Given a graph G (X, E, d), [XI =: n, along with the corresponding

simplex extension G* (X*, E*), n* [X*[. An elimination ordering a of G* is called
eliminating block by block if the following condition is satisfied for -_< j =< n*:

a(j)ex*/M(a(j+ 1, n*)) CIx* 4 a(j+ 1)6x*.

Every elimination ordering a eliminating block by block can be represented
by a =/31 + +/3n, where/3i denotes a partial elimination ordering which eliminates
exactly one block of G*. Furthermore we remark that for any f6 (G*) the number
f(D(alG*)) does not depend on the internal order of elimination of the fli. We prove
this property for only; the general case is easily concluded by induction. Let
a(1) 6 x* {vl, vc}, c dim (x*) and without loss of generality set a(1, c)
/31 (vl, v). By definition, for a simplex graph, d(vlG*) d(vilG*) for

c. Furthermore we get d(v2lG* ,) 2,,,) d(v,lG*) d(v3[Gvl ): d(v IG*
and so on until d(VclG*(,, ,c-,)) d(vlG*) (c- 1). This shows that a is equivalent
to each elimination ordering (v<l), V<c)) + a(c + 1, n*), where r denotes any
permutation of the numbers 1, ..., c. According to the property proved above any
elimination ordering of G* which eliminates block by block can be interpreted as an
"extension" a* of an elimination ordering a of G. More exactly, a* is defined by a*
(a(1)*) + + (a(n)*)of G*, where (a(i)*)denotes any fixed ordering ofthe vertices
a(i)*, yet this ordering is not of interest in detail.

In order to determine an f-minimal elimination ordering of a simplex graph it is
sufficient to consider only elimination orderings which eliminate block by block. This is
guaranteed by the following proposition.

PROPOSITION 5.5. Let G (X, E, d) be a graph with a valuation of the vertices,
G* (X *, E*) is the corresponding simplex extension. Then, to any elimination ordering
a of G* there exists an elimination ordering a’ of G* which dominates a and which
eliminates block by block.

Proof Let x* be that block of G* which contains a(1). According to the definition
of a simplex graph, Adj (x* \{a(1)}lG*) t_J (x* \{a(1)}) is complete in G*(1). Therefore,
there exists an elimination ordering of a’ of G* which dominates a and which satisfies
M(a’(1, d(x))) x*. The proof is accomplished by induction. [3

Now we state an initial theorem for simplex graphs.
DEFINITION 5.6. Given a simple extension G* (X*, E*) along with the corre-

sponding graph G (X, E, d). A block x* of G* is called of type B* if the following
conditions hold:

(i) G(Adj (x[G)) is a forest of bushes. We set W to be the set of roots, B to be the
set of peaks and B(w), w e W, to be the set of peaks belonging to the root w.
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(ii) d(w) dim (w*) -< dim (x*) d(x) for all w W.
(iii) For each root w W it is true: For at least one v w* there are disjunct paths

Oc c t-JbB) b*, in G* from v to c with Z(oc) fq (Adj (x*lG*) tO x*) .
THEOREM 5.7. Given a simplex extension G* (X*, E*) along with the corre-

sponding graph G (X, E, d) and a block x* ofG* oftype B*. Then to each elimination
ordering a’ ofG* there exists an elimination ordering a ofG* which dominates a’ and
which satisfies M(a(1, d(x))) x* (meaning that the blockx* is eliminated at the beginning
ofo).

Theorem 5.7 yields the next theorem directly.
THEOREM 5.8 (Initial theorem for simplex graphs). Given a simplex extension

G* (X*, E*) along with the corresponding graph G (X, E, d) and a block x* ofG*
oftype B*. Then to each f6 (G*) there exists an f-minimal elimination ordering a of
G* (depending on f) with M(a(1, d(x)) x*.

The proof of 5.7 is given in Appendix A5.
Remarks on Theorem 5.8. (1) If condition 5.6 (iii) is satisfied for one v w* it is

satisfied for all v w*.
(2) In [We83]f respectively, , minimal elimination orderings are determined for

a lot of simplex graphs using Theorem 5.7 only. The examples have been chosen from
the field ofload-flow calculation in power systems. The problem offinding disjunct paths
(condition 5.6 (iii)) has been treated as a flow-problem.

(3) The following counterexample demonstrates that the additional condition 5.6
(ii) (compared to Definition 2.1) cannot be removed from the assumptions of Theorem
5.8. Consider the simplex extension G* of G (Fig. 18). We compare the two elimination
orderings a* (a*, b*, c*, d*) and * (b*, a*, c*, d*) of G*. The elimination
ordering a* eliminates successively blocks of type B*. In contrast, for B* condition 5.6
(ii) does not hold in the first step of elimination. Calculating fz(D(a*[G*)) 4 + 3 +
4+3+2+ 17andfl(D(*lG*))=4+5+4+3+2+ 1- 19 shows thatB*is
notfz-minimal.

(4) For an r-simplex extension G* ofG the following two statements are equivalent:
x is of type B in G;
x* is of type B* in G*.

(5) By a suitable interpretation of 5.6 (iii) the property of a block to be of type B*
can be defined in terms of the generating graph G (X, E, d). Condition 5.6 (iii) must
be modified to:

For each root we W, for each b B(w) there exist paths o
d(b) (not necessarily disjunct) from w to b with Z(o)) f3 (Adj (xlG) to {x})

a

G G*

FIG. 18
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Every vertex z e X\(Adj (xlG) {x}) belongs to at most d(z) of these paths.

This condition guarantees that the corresponding simplex extension contains the paths
claimed by condition 5.6 (iii).

The rest of this section deals with the determination off, respectively, , minimal
elimination orderings of r-simplex extensions. This problem can be treated by considering
the corresponding skeleton only.

PROPOSITION 5.9. Given a graph G (X, E), n := IX I, along with the corresponding
r-simplex extension G* (X*, E*). Furthermore let a be any elimination ordering of
G; a* is the corresponding r-simplex extension ofa. Then for allfe (G*),

where

and

f(D(a*lG*)) (f )(D(aIG)),

v(a) (r. a + r- j)__ l, ,r

f u" qn__ , (f u)(a, an)"= f(u(a), u(an)).

Especially" f G ).
Proof It is easily verified that the equality d(x*[G*) (r.d(x[G) + r -j)j= , ,,

holds true for any block x* of G*. Thus

f(D(a*lG*)) f(d(a(1)*lG*), ..., d(a(n)*lG*,,,,_ ).))

f(((r, d(a(i)lG,(,i- )) + r- j)j.= 1,-.. ,r)i= I,... ,n)

(f v)(D(alG)).

Therefore, the first part of Proposition 5.9 is proved. Since r > 0 we have: a =< b
u(a) <= u(b) (for each entry), respectively, (a, an) <= (b, bn) f(u(al),
u(an)) -< f(u(b), u(bn)). The symmetry of criterion functions implies the symmetry
off v. Altogether it is proved thatf u is a criterion function.

Remark on Proposition 5.9. For readers who are interested in the special criterion
function fz andfe, we calculate fc u andfo u explicit:

fcu=r2, fz+n.r.(r 1)/2, (fzfoe(G*),fcfoe(G)),
fou=r3, fo+r2.(r 1). fz+n.(r- 1).r.(2r- 1)/6.

From Proposition 5.9 we get the following.
COROLLARY 5.10. Ifwe use the notation ofProposition 5.9 then it is true that
(i) a (f u)-minimal . a* fminimal;
(ii) a (G)-minimal a* (G*)-minimal.
According to Corollary 5.10 the determination of an f respectively, minimal,

elimination ordering of a simplex graph ( is reduced to the construction of an (f u)-
minimal, respectively, (G)-minimal, elimination ordering of a skeleton of (. There
are several methods to attack this problem. In this context a question arises which is
interesting especially from the practical point of view: Are there two distinct skeletons
ofan r-simplex graph, one which is suited for the determination ofa jZminimal elimination
ordering and the other which is not? From the example given at the beginning of this
section, this situation appears quite possible. But the following proposition guarantees
that the skeleton is an invariant of a r-simplex graph.
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PROPOSITION 5.11. All skeletons ofan r-simplex graph are &omorphic to each other.
Proof A proof is given in [We83].

Appendix AI. Definitions, statements and "roles of computation" for handling elim-
ination graphs. Let G (X, E) be a graph with IX n. By definition, for each sequence
(x, Xk) of distinct vertices the elimination graph G(x,, ,xk) is well defined. In
[Be72, Proof of Thm. 2.6.1] it is shown that, for the edges (a, b) belonging to

G(x, ,xk) (a, b X\{x, Xk }, a 4: b),

(a, b)e E(x,...,x)" There exists a path w in G from a to b with
(AI.1)

Z(w) {x,,
Therefore, the elimination graph G<x,,...,x) does not depend on the order ofelimination
ofthe vertices x, , xk. Consequently, for any setA {a, , ak } ofdistinct vertices
of G the elimination graph G (Xa, En) := G<a,...,a) is well defined. G is called the
A-elimination graph of G. From (AI.1) it follows that for x, y X\A, x 4: y,

(A 1.2) (x, y)6 EA = (X, y)eE V (xe Adj (AIG) /X ye Adj (AIG)).
Another trivial but useful conclusion from (AI.1) is

For every connected set A cX(i.e., G(A)-connected) the neighbourhood
(A1.3) Adj (AIG) is complete in Ga (i.e., GA(Adj (AIG))-complete).

The modification of the neighbourhood of a vertex x X caused by the elimination of
a set of vertices A c X, x g A, is derived from (AI.1) too [Be72, Thm. 2.6.3]:

(A1.4) Adj (x[G) Adj (x[G)\A 0 Adj (AIG)\{x}.
i=1

x Adj (AjIG)

where the sets of vertices of the (connected) components of G(A) are denoted by A. For
A { y} (and y 4: x) (A 1.4) reduces to

f Adj (x[G) for (x, y)gE,
(A1.5) Adj (xlGy) [,Adj (x[G)\{ y} U Adj (y[G)\{x} for (x, y)eE.

This shows that

d(xlG) for (x,y)E,
(A1.6) d(x[Gy)

d(x[G)+d(y[G)-2-[Adj (x[a)fAdj (y[a)[ for(x,y)6E.

Therefore,

(A1.7) d(xlG) d(y[Gx) for (x,y)E.

From (A1.5) and (A1.6) we derive

(A1.8) d(xlGy)<d(xlG)(x,y)E and Adj (y[G)\{x}cAdj (xla)\{y} and

d(xlGy) d(xlG)- 1.

LEMMA A 1.9. IrA X and x e X\A then

Adj (x[G) complete Adj (x[G) complete.

Proof The proof is obvious.
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The following three lemmata deal with paths in elimination graphs; we set G
(X, E) to be a graph and A c X.

LEMMA A1.10. For x, y X\A, x :/: y, thefollowing statements are equivalent:
(i) In G exists a path o from x to y;
(ii) In GA exists a path ’from x to y.
The proof ofA 1.10 is straightforward. It allows us to prove a more extensive state-

ment: For every path w in G (from x to y) there exists a path 0’ in GA (from x to y) with
Z(o’) Z(o)\A. Along with this remark, Lemma AI.10 shows the following.

LEMMA AI.1 1. Given distinct vertices x, y, y X\A (k N) along with
disjunct paths oi, 1, k, from x to Yi. Then there exist disjunct paths w’i in GA,

1, k, from x to Yi with Z(w) Z(oi)\A. The converse is not true.
LEMMA A1.12. Given distinct vertices x, y, .., yk ofG along with disjunct paths

wi, 1, k, from x to Yi. Then,
(i) For any a Adj (xlG)\( y, Yk } there exist disjunct paths w’i in Gxfrom a

to y with Z(o’) Z(wi)\(a).
(ii) For any Yi andfor any

beAdj (yIG)\ { y, ,y,x} U I,..J Z(a)
j=l
jl

There are disjunct paths oo in G,, j 1, k, from x to for j i, respec-
tively, from x to b forj i, with Z(oo}) Z(w)\{b}.

Proof. (i) Let a e Adj (xlG)\{ Yl, Y }. We define other paths o’, _-< _-< k: If
a Z(oi), set o’ := (a) + wi which may be considered as the extension of oi to a." In
the other case (a e Z(o)) o’ denotes that part of o which leads from a to y; this occurs
for at most one i. Evidently, we have got paths from a to Yi, -< =< k, which satisfy

Z(o’[) fq Z(w’) {x} for 4 j;
a, yj Z(wT) for 4 j;
z(’)\{x} z()\{a}.

By elimination of x the paths w7 changes into disjunct paths w} of Gx, <= <= k, with
Z(w}) Z(w’[)\{x} Z(wi)\{a}. Therefore, (i) is proved.

(ii) Given any Yi and any b 6 Adj (yi]G)\( ). Again we consider other paths
0}’, =< j =< k" Set w}’ := oj for j 4 i. In the other case we set: If b c=_ Z(wi) let w be that
part of wi leading from x to b. If b Z(wi), w7 denotes the extension of wi to b, i.e.,
w wi + {b}. We get disjunct paths w: from x to yj, for j 4 i, respectively, from x to
b, for j i. Elimination of Yi preserves the paths w}’, j 4 i, unchanged; w}’ is possibly
contracted by Yi (if b Z(o)i)), but it remains a path from x to b. So (ii) is shown.

Appendix A2. An elimination ordering is dominating if and only if it is -mini-
mal. Ranking elimination orderings by criterion functions is compatible with the quasi-
ordering "dominates" (Definition 1.2) in the following manner:

dominates a’f(D(alG))<=f(D(a’lG)) forallfeo.
Therefore, each elimination ordering which dominates anjZminimal elimination ordering
(re #’) isf-minimal too. Especially, a dominating elimination ordering is #’-minimal.
To show the converse a special criterion function, defined below, is used. In addition,
the following example demonstrates that #" contains very complicated samples.

Example A2.1. Given positive real numbers g, gn. The functionfdefined by

f(al,’’" ,an): E gi’a(i),
i=1
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where r is a permutation (depending on al, , an) ofthe numbers 1, ..-, n satisfying

a(1) =< a,(2) --< =< atn),
is a criterion function.

Proof First we show the following statement:
For all al, an, bl, bn - IN with ai <- bi and for two corresponding per-
mutations r and v of the numbers 1, n which satisfy a) _-< a2) --< --<
and b(l) =< b(2) <= <= bt,) it is true: ati) -< b,) for =< =< n.

We assume that there is an io, <= io <-- n with btio) < a,o). Thus, b,,ti) < a,(j) for
=< _-< io and io =< j =< n (.). Obviously, to each i, <= <= io, there exist j e N with

v(i) r(j). Since bto >= at), we get with (.) (for the chosen j): j < io. Thus

v({keqlk <= io}) r({keqlk <= io})
which is a contradiction to the bijectivity of r and v. From the statement it follows
directly that f is well defined, symmetric, monotone and therefore a criterion func-
tion. []

PROPOSITION A2.2. An elimination ordering is -minimal ifand only ifit is dom-
inating.

Proof The "if" part is obvious. For the "only if" part let a be a o-minimal and
a’ be any elimination ordering of G. We employ certain samplesf ofthe criterion function
defined above; set f to be that function with gi and gj 0 for 4 j, =< =< n.
Furthermore we introduce the following abbreviations: di := d(a(i)lG,l,i-1)) and
d; := d(a’(i)lG,,(1,i-1)) for 1, n; thus D(a[G) (dl,’", dn) and D(a’IG)
(d’, d;,). Moreover, set 7r and v to be permutations of the numbers 1, n with
dr(l) --< d(2) --< --< d,(n)and d’,(1) --< d’,(2) --< --< d’,(n). According to the -minimality
of a we get: d,(i) f(D(alG)) <= f(D(a’[G)) d’,(i) for =< -<_ n. Thus, a dominates the
(given) elimination ordering a’ and the proof is complete, ff]

The proof above shows furthermore that a is -minimal if and only if a is
f-minimal for 1, n. Thereforef/-minimality for only a finite number of(suitable)
criterion functions is sufficient to guarantee -minimality.

Appendix A3. Proof of Theorem 2.6.
LEMMA A3.1. Given a graph F (Y, L) whose complementary graph F is a forest

ofbushes. Then for the root w ofany bush ofF andfor one ofits peaks b"
(i) (w, y) L for all y Y\(B(w) {w}), where B(w) denotes the set ofall peaks

ofthe bush with root w.
(ii) (b, y) Lfor all y Y, y 4: w, y 4: b.
Proof The proof is obvious.
For the following five lemmata let G (X, E) be a graph; x and z are set to be

vertices both of type B and adjacent to each other. Elimination of z may destroy the
property B of x. This situation is considered in Lemmata A3.3-A3.5.

LEMMA A3.2. With the assumptions made above it is true" d(xlG) d(zlG).
Proof From Lemma A3.1 and Definition 2.1 we conclude that d(zlG) >= d(xlG),

where we have to consider the two situations, z is a root, respectively, z is a peak of a
bush of G(Adj (xlG)), separately. By symmetry we get d(xlG) <= d(zlG) too.

LEMMA A3.3. In addition to the assumptions made above let z be a peak ofa bush
ofG(mdj (xlG)). Then x is (also) in Gz oftype B.

Proof Let w be the root belonging to z. Then: (,) There exists one and only one
v mdj (ziG), v 4: x, with v Adj (xlG). To verify (,) we set

A Adj (zlG)\(Adj (xlG) tO {x})
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and prove IAI 1. Lemma A3.1 (ii) shows Adj (x[G)\{w, z} c Adj (zIG)\(A t..J {x}) and
therefore d(x]G) 2 <= d(zlG) ]A[ 1. With Lemma A3.2 we derive [A[ -< 1. IfA

we get Adj (zlG)\{x} Adj (x[G)\{z, w}, respectively, d(z[G) <<- d(x[G) 2,
which is a contradiction to Lemma A3.2. Summarizing we have proved that [A[ 1.
Subsequently, it is shown that Gz(Adj(x[Gz)) is a forest of bushes. To prove this we
employ the map F Adj (x[G) -- Adj (xlGz) defined by F(z) := v and I’(u) := u for u
z. Since Adj (xlGz) (adj (x[G)\{z}) U {v}, I" is surjective; v a Adj (xlG) shows I’
injective. Furthermore, (a, b) e E (I’(a), I’(b)) Ez for all a, b e Adj (xlG), a 4: b. To
verify this statement, let (a, b) e E and (without loss of generality) set b z. Since
(a, z) e E and (z, v) e E we get: (a, v) (F(a), I’(z)) Ez. Therefore, I’ is an isomorphism
between G(Adj (x[G)) and a subgraph of Gz(Adj (xlGz)). Consequently, G(Adj (xlGz))
is (more than ever) a forest of bushes, where v is either a peak belonging to the root w
or a root of a trivial bush. Note, that v cannot be a root, respectively, a peak, of any
other bush (one with a root unequal to w). Considering in addition Lemma A1.12 (ii),
we have proved that x is in Gz of type B.

LEMMA A3.4. In addition to the assumptions made above let z be the root of a
trivial bush ofG(Adj (xlG)). Then x is in G oftype B.

Proof From Lemmata A3.1 and A3.2 we get: Adj (xlG)\{z} Adj (zlG)\{x}.
Since Adj (xlGz) Adj (zlG)\{x} is complete in Gz, x is of type B in Gz. Therefore,
Lemma A3.1 is proved.

LEMMA A3.5. In addition to the assumptions made above let z be the root ofa bush
ofG(Adj (xlG)) with at least two peaks. Then, the map I’ X\{x} -- X\{z} defined by
I’(z) := x and U(u) := u for u z is an isomorphism between the graphs Gx and G.

Proof Set b, b, to be the peaks belonging to z (r >= 2). Furthermore set
A := Adj (zlG)\(Adj (xlG) t_J {x}). Then

Adj (zIG)k({x} UA) Adj (x[G)\ { z, b, br}.

From Lemma A3.2 it follows that IAI>_- r. Therefore, x is the root of a bush of
G(Adj (ziG)) with at least two peaks (.).

Now we prove:

(u,v)eEx.(F(u),F(v))E forall u,vY\{x},ug=v.

"" Let (u, v) Ex. If (u, v) E and u z (the case u, v 4 z is trivial) then: (x, v)
(I’(z), I’(v)) Ez (note: (z, x) e E). If (u, v) E then (u, x) e E and (v, x) e E. Since x is
of type B we set (without loss of generality) u to be the root and v to be a corresponding
peak ofa bush ofG(Adj (xlG)), especially v 4 z. We distinguish between u 4 z, respectively,
u z. If u 4 z then Lemma A3.1 shows: (u, z) e E and (v, z) E. Therefore (u, v)
(I’(u), I’(v)) e Ez. If u z we conclude with (v, x) e E that (r(u), r(v)) (x, v) 6 E.

"" Follows directly from "" by considering the inherent symmetry and (,).

Lemmata A3.3, A3.4 and A3.5 take all possible situations for z e Adj (xlG) into
consideration. The case, z is the root of a bush with exactly one peak, is comprised in
Lemma A3.3. We summarize in Lemma A3.6.

LEMMA A3.6. With the assumptions made above, either x is in Gz oftype B or Gx
is isomorphic to Gz.

With the aid of Lemma A3.6 the statement of Theorem 2.6 can be reduced to a
statement onto partial ordered sets; the notation which is used is taken from [Bi67]. We
set

:= {G[- is a B-partial elimination ordering of G }.



THE GENERAL MINIMUM FILL-IN PROBLEM 737

Since the empty elimination ordering can be considered as a B-partial elimination or-
dering, G is contained in ///. Elimination graphs which are isomorphic to each other (_)
are identified by an equivalence relation

F H c,. F_ H(F,H ).

The classes of this equivalence relation are denoted by [F], F e , the totality of these
classes by 3U. Onto off a partial ordering is defined by

[F] -< [H] : There is a B-partial elimination ordering , ofH with F_H.
Any B-partial elimination ordering

>_- [Ga]. Especially, [Ge] is a minimal element in ifand only if/3 is not continuable.
Thus, to prove Theorem 2.6 (ii) we have to show that og contains one and only one
minimal element. But this follows directly from Lemma A3.7 because the following
condition holds for the partial ordered set (, -<):

For any two [F], [HI JU, [F] 4: [H] which are covered by any class there exist a
class which is covered by [F] and [H].

This is easily verified: Let [K] be the class coveting [F] and [H]. Then there are two
distinct vertices x, z of K, both of type B, so that (without loss of generality) F Kx and
H Kz. Since F is not isomorphic to H, z is in F of type B and x is in H of type B
(A3.6). Therefore [K(x,z)] is covered by [F] and [H]. Altogether Theorem 2.6 (ii) is proved,
and 2.6 (i) is a simple consequence of (ii).

The following lemma remains to be proved.
LEMMA A3.7. A finite partial ordered set (M, <=) satisfying thefollowing conditions

contains one and only one minimal element.
(i) There exists a largest element a M.
(ii) To any two x, y M, x 4: y, which are covered by any u M there exists v M

which is covered by x and y. (x covers y ifand only ifx >= y and there is no other z M,
z 4 x, z 4 y, satisfying x <= z <-_ y.)

Proof The existence of a minimal element is obvious. Furthermore we need the
following statement, which may be proved by induction over l where (ii) is to apply:

Let c Xo >= x >= -> xt b be a maximal chain from an element c to a minimal
element b. Furthermore given some c’ which is covered by c. Then there exists a
maximal chain c’ Yo >- Y>-- >= Ye- b from c’ to b.

Set b, b’ to be minimal elements ofM. Since a >- b and a >- b’ there are maximal chains
a Xo > x >= >= xe b and a xb >= X’l >= >= x, b’. Set k to be the maximal
subscript satisfying Xk X’s for some s, 0 =< s --< g’. Without loss of generality we assume
for the chain from a to b: For all (other) maximal chains a Zo >= z >= >= Zr b
from a to b holds: If zi x’j. for anyj, 0 =< j =< g’ then =< k (.). According to the statement
made above we see: If k < g then there is a maximal chain xs+ Yk/l Yk/ 2

> ye= b from..= xs+tob. Thusa=xo>=X_>... >=x>=yg+>=... >=ye=bisa
maximal chain from a to b. But this is a contradiction to (.). Therefore, only k g,
respectively, b b’ is possible.

Appendix A4. Proof of Theorem 4.4. First some lemmata necessary for the proof
of Theorem 4.4 are introduced.

LEMMA A4.1. Let G (X, E) be a graph, Y c X, S X, S f-) Y , So c S
complete and (S, So) oftype Zk relative to Y (notice: Definition 4.2 (iii) is necessary only).
Set Adjr (TIG) := Adj (TIG) Y. Thenfor each set ofvertices T S\So with ITI <- k
and ITI <--IYI,

IAdj(TIG)IITI.
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Proof(without loss of generality set T 4: 3). We assume [Adjr (TIG)I < ITI =:
q (,). Since IT[ -< [Y[ there exists x e Y with x Adjy (TIG). According to Definition
4.2 (iii) there are q nontrivial paths 0t, e T, from x to with Z(ot) c Y. Therefore,
IAdjr (TIG)I -> q which contradicts (,).

We remark that the notation Adjr (T[G) is used for any set Y of vertices of G.
Furthermore we introduce dy(xlG):= IAdjy (xla)l.

LEMMA A4.2. Let G (X, E) be a graph, Y c X, S X, S fq Y , So S
complete and (S, So) of type rk relative to Y. Furthermore let T S\So with IYI --<
ITI =: q <= k. Then thefollowing statements are true:

(i) To each vertex y Y there exists s T with (y, s) E.
(ii) For any two distinct vertices s, s’ S,

(s, s’) gE (For all ye Y: (s, y) eE A (s’, y) eE) A (I Y k).

(iii) For any two distinct vertices y, y’ Y there exist s, s’ T with

((y, s)6E/ (s, y’)6E) V ((y, s)6E/ (s, s’)6E/ (s’, y’) E).

(iv) For any y Y and any s S it is true

(y,s)E There exists s’ e T with: (y,s’)eE / (s’,s)eE.

IflY[ < k then for Gr,
(v) Adj (yIGr) is complete (in Gr)for all y Y.
(vi) To anyfe (GT) and any set ofvertices V X\(Yt_J T) which is complete in

Gr there exists an f-minimal elimination ordering a of Gr, which eliminates
Y at the beginning and V at the end, i.e., a(i) Yjbr 1,-.., YI and
a(i) Vfor IXTI Vl / , ..., Ix I.

Proof (i) We assume that there exists y e Y with (y, s) a E for all s e T. Then
according to Definition 4.2 (iii) there are q disjunct and nontrivial paths wt, T,.
from y to with Z(ot) Y\{y}. Therefore, IY\{Y}[ >-- q. But this is a contradiction to
IYl<=q.

(ii) If (s, s’) q E then Definition 4.2 (ii) guarantees that there exist k disjunct and
nontrivial paths wi, 1, k, from s to s’ with Z(oi) c Y. Thus, [Y[ >= k. Considering
YI =< k we get YI k. Hence, to every path wi there exists one and only one Yi Y with

09 (S, Yi, S’). This proves (ii).
(iii) According to (i) there are s, s’ e T with (y, s) e E and (y’, s’) e E. If s s’ V

(y, s’) E V (y’, s) E, there is nothing to prove. Now we consider the converse case:
s 4: s’ A (y, s’) E A (y’, s) E. According to (ii) this is possible only if (s, s’) e E.
Therefore, (iii) is proved.

(iv) This follows directly from (i) and (ii).
(v) Given any y e Y, from (ii) it follows ([YI < k) that S is complete in G(,).

Therefore, Adj (TIG) is complete in GT (i.e., Gr(Adj (TI G)) complete) (**). With (A1.4)
and (i) we get: Adj (ylGr) Adj (ylG)\T tO Adj (TIG)\{y}. With Definition 4.2 (i),
(ii) and (,) we conclude: Adj (yIG)\T (r t,J S)\(T (y}) c Adj (T[G)\{y}. Since
Adj (ylGr) Adj (T[G), (**) guarantees that Adj (ylGr) is complete (in Gr).

(vi) This follows directly from (v), where Theorems 1.4 (Final Theorem) and 1.3
are employed.

LEMMn A4.3. Let G (X, E) be a graph, Y X, S X, Y f3 S , So S
complete and (S, So) of type r relative to Y. Furthermore set IYI <= k, T S\So with
IT[ IY[, Y, f T with 17[ [I?[, y y\ and s T\ f. Then the following
inequality holds:

d(slGru ) <= d(yiGru ).
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Proof First we show:

(.) B Adj (slGru #)\(7 U (S\T)) c Adj (yIGTu )\(2U (S\T))

where T\(U {s}) and l? Y\(IT" U { y}). Given any x B, especially x Y and
x S, using Lemma A4.2 (ii) we see that S is in Gr complete; thus s Adj (TIGr).
Therefore, with (A1.4) we get x Adj (slGr)\f or x Adj (7]Gr)\{s}. Consequently
x Adj (t0]Gr) for any to 6 1? U {s}. Applying (A1.4) again we get x Adj (to[G)\Y or
x Adj (Y[G)\{to}. Since x S and Adj (Y[G) c S only the case x Adj (tolG)\Yis pos-
sible. Lemma A4.2 (iv) guarantees that (y, to) E or (y, to) Et for any T. There-
fore, we get (y, x) 6 ET, respectively, (y, x) E-u 2 which proves (.). Since S is com-
plete in Gr we see: 7 U (S\T) c Adj (s[Gru#). Lemma A4.2 (iii) and (iv) guarantee
U (S\T) Adj (y[GTui,). Since in addition [7U (S\T)[ [ITU (S\T)[, the state-
ment of Lemma A4.3 follows from (.). E]

LEMMA A4.4. Let G (X, E) be a graph, S X, So c S complete and (S, So) of
type Tk. G is split by S in G(X\S) G(Y) G(Z). Furthermore set x X\S,
T S\So, [Y[, IZ[ >= IT[ and IT[ <-_ k. Then

d(xlG) <- d(xlG).

Proof Without loss of generality let x Y. Furthermore let T, 1, l, be the
sets of vertices of that connected components of G(T) which satisfy x Adj (T[G); set

J= Ti and To {s a T l(s, x) E }. We see To c ]P. Lemma A4.1 guarantees:
Adjz (f" [G)[ >= [f [. Finally we conclude with (A 1.4):

d(xlGr) d(xIG)-[To] + [Adj (f’lG)\(Adj (xlG)tA {x})l

>= d(x[G)- ITo[ + IAdjz(f’[G)l

>= d(xlG)- ITol + I1 >= d(xlG).

LEMMA A4.5. Let G (X, E) be a graph, S X, So S complete, (S, So) oftype
Tk and x X\S. Then (S, So) is (respectively, remains) in Gx oftype Tk.

Proof The proof is straightforward by Remark 2 on Definition 4.1, Lemma A 1.1
and Lemma A4.6.

LEMMA A4.6. We have a graph G (X, E) and two distinct vertices a, b ofG with
(a, b) E. Furthermore, we have k disjunct paths oi, 1, k, from a to b. Thenfor
any x X, x 4: a, b, thefollowing condition holds:

(a, b) E There exist k disjunct paths w;, 1, k, in Gx, from a to b
with Z(w) Z(oi)\{x}.

Proof The proof is obvious.
For the rest of this proof we introduce the following notation.
Notation. Tof o set 93fto be the set of all J:minimal elimination orderings a of

G which satisfy So M(a(n j + 1, n)) S for at least one j q, _-< j =< n [X[. For
each a fthe number

/(a):= max {jq[SoM(a(n-j+ 1,n))S}
is well defined. Further we write down two trivial identities which are used in the following:

Ic(n- g + 1, n)sl g for g l(cO

I(1, j)sl / [c(j + 1, n)sl sI- m
and

forj 1, ,n.

Now we are able to prove the statement of Theorem 4.4.
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Proof Without loss of generality we assume k > 0, Y 4:, Z 4 . Letfe and
?I 92f. Theorem 1.4 (Final Theorem) guarantees 92 4: . If l(a’) rn IS] for at least
one a’ e 92 the statement of Theorem 4.4 follows directly from Theorem 1.4. Therefore,
we assume for the rest of this proof that

(1) l(a’)<m for all a’ 92,

which will result in a contradiction. Since 92 4: there exists a 92 satisfying: l(a) >-
l(a’) for all a’ 6 9. For (that) a,

(2) g:=l(a)>=m-k.

To prove (2) we assume that g < m k, i.e., [a(1, n g)s[ > k. Thus, there exists
j q, _-< j < n g, satisfying la(1, j)sl k and a(j) S. Set := a(1, j)s and
G’ := G,(I,j)-. For , M(r) c M(a(1, n l)s) S\M(a(n + 1, n)) c S\So. Since
S is in G (and especially in G’) reducible to a complete graph by elimination of any k
vertices out of S\So we see that S\M() is complete in G’ G,(,j). According to
Theorem 1.4 there exists an f-minimal elimination ordering a’ of G which eliminates
S\M(r) at the end. Since SoS\M(r) we get a’92, where l(a’)= [S\M(a)[
m k > g. But this is a contradiction to the minimality of g. Therefore, (2) is proved.

Now, for the elimination ordering a chosen above, we set p to be the maximal
number so that one of the following two conditions holds:

(A) la(p + 1, n)r[ la(1, P)sl A la(p + l, n)zl > [a(1, P)s[,

(B) Ic(p + 1, n)z[ [a(1, P)s[ A I(p + 1, n)l >= 1(1, p)s[.

In order to prove that p e q, -< p _-< n g, exists we consider the three maps -[a(i + 1, n)r[, - [a(i + 1, n)z[ and - [a(1, i)s[. The first and the second are mono-
tonely decreasing, the third is monotonely increasing. Their values at O, respectively,

n g, are: [a(1, roy [YI > 0, [a(n e + 1, n)yI [< >i 0, [a(1, n)z[ IZ[ >
0,[a(n-g+ 1, n)z[=[( >[=0,[a(1,0)s[=0and[a(1, n-g)s[=m-g>0. Since
X Y0 S 0 Z, the transition from to + causes exactly one ofthese maps to change
its value (increase, respectively, decrease) at an amount ofone. This guarantees that there
exists p e N which satisfies 13 or the following condition:

(A0) [a(p + 1, n)r[ la(1, P)sl A la(p + 1, n)zl >= [a(1, P)sl.
Since A0 V B is true (for p) if and only ifA V B is true (for p), we have proved that there
exists p q, =< p _-< n g, satisfying one of the conditions A or B. Especially, there
exists p which is maximal.

Set qo := [a(1, P)s[. Since qo =< [a(1, n g)s[ m g we derive from (2):

(3) qo <= k.

Since l(a) is maximal the inequality q0 =< m g yields an upper bound for the map 1(
defined on 2[:

(4) l(a’) <- m qo for all a’ 92.

Now we state: There exists af-minimal elimination ordering a’ of G which satisfies one
of the following two conditions:

la’( 1, P)s[ q0 la’(p + 1, n)yI,

a’(i)e Yfor i=p+ 1, ,P+qo,
(5’)

la’(i,n)z[ >=qo for i= 1, ,P+ qo,

a’ eliminates So at the end,



THE GENERAL MINIMUM FILL-IN PROBLEM 741

I’(1,P)s[ qo i’(P + 1, n)zl,

(5")
a’(i)6Z for i=p+ 1, ,P+qo,

[a’(i, n)v[ >-- qo for 1, ,p + q0,

a’ eliminates So at the end.

We remark that Y, respectively, Z, are entirely eliminated "from position p + qo + 1."
To prove the statement above we consider the two cases that conditions A and B hold,
respectively.

Case A. p satisfies condition A.
Set := a(1, P)s, G,(1,p)- --: G’ (X’, E’), Y’ := Y N X’ and f’ :=

According to Lemma A4.5, (S, So) is in G’ of type rk relative to Y’. Furthermore,
]Y’] q0. We consider the two cases q0 < k, respectively, q0 k, separately: the case
q0 > k is excluded by (3). If q0 < k, then Lemma A4.2 (vi) guarantees that there
exists a f’-minimal elimination ordering 3" of G’ G(,,p), which eliminates So at the
end and Y’ at the beginning. Therefore, the elimination ordering a’ := a(1, p)+ 3" is
f-minimal and satisfies condition (5’). Now let qo k, hence g =< rn k. Considering (2)
we get g rn k and therefore ]a(p + 1, n g)s] 0. From ]a(p + 1, n)v] k > 0
and ]a(n g + 1, n)r] 0 we have: M(a(p + 1, n g)) 4: . Altogether, for a(p + 1)
only the two cases a(p + 1) 6 Y and a(p + 1) 6 Z are possible. If a(p + 1) Z, we de-
rive from condition A and from the fact that p is (especially) maximal relative to condi-
tion A: ]a(p + 2, n)z[ k. Therefore p + satisfies condition B. But this is a contradic-
tion to the maximality ofp. Thus, a(p + 1) 6 Y is possible only. Analogously to the case
q0 < k there exists an fz,p + )la)-minimal elimination ordering 3’ of Gl,p+ ) which
eliminates So at the end and Y’\ {a(p + 1)} at the beginning. Consequently, the elimi-
nation ordering a’ := a(1, p + 1) + 3" is f-minimal and satisfies (5’).

Case B. p satisfies condition B, can be treated analogously because conditions A
and B are (nearly) symmetric.

Now we set a to be any elimination ordering satisfying one of the conditions (5’),
respectively, (5"); we abbreviate q := q0. According to the statement proved above such
a exists. We remark that a should not be mixed up with the elimination ordering intro-
duced at the beginning of this proof. In the following we show that a is dominated by
the elimination ordering

/3:= 3" + a(p+ 1,p+q)++c(p+q+ 1,n),

where

:= a(1,p)s and 3" := c(1,p)- .
According to the symmetry of (5’) and (5") it is sufficient to consider only the case that
a satisfies (5’). If q 0 there is nothing to prove. Therefore, let q > 0. In order to simplify
the presentation we abbreviate (Sl,’", so), where sj. := a(rj) and _-< rl < r2 <

< rq <-_ p; for a(p + 1, p + q) we set: a(p + 1, p + q) (Yl,’", Yq) with yj :=
a(p + j),j 1, q. Additionally, remember that a 6 93 and M() c S\So. We begin
the proof that/3 dominates a with

(6) For any s2 a(r2), =<j_-< q- 1, there exists sM(a(r2 + 1, n)s) with
Sj s) Ea(1, r

TO verify (6) we assume: There exists at least one s, _-< j _-< q with: (s, s)
Eo(1,rj-1) for all s M(a(rj + 1, n)s). Consequently, the set of vertices M(a(r + 1, n)s) is
complete in G(1,r). Therefore, there exists an f-minimal elimination ordering a’ of G
which eliminates M(a(r + 1, n)s) at the end. Since So M(a(r + 1, n)s) we see a’ e 1.
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For l(a’) we get: (a’) >- IM(a(rj + 1, n)s)l m [a(1, rj)sl m -j >= m q + >
m q0. Yet this is a contradiction to (4).

Subsequently, we consider the degrees of the vertices sj in the corresponding elim-
ination graph G,(l,rj- l)"

(7’) d(sjlG,(l,rj- 1)) >= m + k-j for j 1, q- 1,

(7") d(s,lG,,r- l)) >- m.

To verify (7’) set a’ a(1, r 1)s for any (fixed)j =< q 1, Go(1,r-l)-,’ =: G’
(X’, E’), Y’ X’ A Y, Z’ X’ fq Z. (S, So) is in G’ of type rk relative to Y’ (Lemma
A4.5). Condition (6) guarantees: (s, s) E’ for at least one s M(a(r.i + 1, n)s). There-
fore, we conclude with Definition 3.2 (ii): dr(s.ilG’)>= k. Definition 4.3 (v) guarantees
dsu z,(siG’) >= m 1. Altogether, we get d(si[G’) -> m + k because Y’ f) (S tA Z’). Now we set T {si M(o")l(si, sj) e. E’ }, ITI =: t. In G’,, Gotl,r.-l) it is true:

d(slG,_ )) >= m + k- t.

Since =< la’l j 1, the proof of (7’) is complete. For the case j q we set G’, Y’, Z’,
T and as above. Lemma A4.1 shows dy,(T I._J Sq} ]G’) >- + 1, condition 4.3 (v) guaran-
tees dsuz,(sq[G’) >= m’ 1. Analogously to the case j < q we derive d(sqlGol,rq-l)) >=
m + + m. Therefore, (7") is proved too.

Applying (7’) and (7") we get a first comparison between a and /.

(8) d(slG,r- )) >- d(ylG + .<p+ ,.+- )) for _-<j =< q.

G’= (X’, E’) for any j, < j < q,In order to prove (8) we set G +p+ l,p +j- l)

and Y’ X’ f Y. It is sufficient to show: d(ylG’) =< m + q -j (,). Since (in G’) Y’ is
split offby S we see: Adj (yj.[G’) c S tA (Y’\{yj}). This proves (,) because IY’\{yAI
q-(j- 1)- =q-jandIS[=m.

A second comparison between a and/3 follows directly from Lemma A4.4:

(9) d(a(i)lG.,_ 1))>=d(a(i)[G(l,i l)-.) for all a(i)6M(a(1,p)- a).

Another comparison is:

(10) d(ylG.<l,p+j-1))>-d(s:lG.+.<p+ l,p+q)+a(l,j-1)) for <-j<=q.

Inequality (10) follows directly from Lemma A4.3 (with G G), where we have to
consider that Ga(l,p+j- l) G + ++ l,+j- 1).

Since M(a(1, p + q)) M(3’ + a(p + 1, p + q) + ) we see that

(11)
d(a(i)[Gl,i-1)) d(a(i)[G+(p+ 1,p+q)+a+a(p+q+ 1,i-1))

for all i,p+q+ <=i<-n.

Altogether, from (8)-(1 1) it follows that/3 dominates a (Fig. 9 illustrates this for q 2;
the corresponding comparisons are denoted by their numbers in the proof). Obviously,
isjZminimal and S is complete in G+(p+ l,p+ q). Consequently, there exists anf-minimal

elimination ordering a" of G which eliminates S at the end. But this is a contradiction
to (1). Thus, if condition (1) holds there is no f-minimal elimination ordering a 92
satisfying (5’). Analogously it can also be verified that there is nof-minimal elimination
ordering a 92 satisfying (5"). Altogether Theorem 4.4 is proved. [3

Appendix A5. Proof of Theorem 5.7. The following proof of Theorem 5.7 requires
some additional notation: To each set A of vertices of G, A+ :- {a*la A} denotes the
corresponding set ofblocks (of G* ); the set of vertices (of G* belonging to A/ is denoted
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.,z1+3 ,.>

indicates erasing of sj, j 1, 2.

FIG. 19

by A* UaeA a*. Consequently, Adj (x[G)+ is the set of blocks and Adj (xlG)* is the
set of vertices "adjacent" to x*; especially Adj (xlG)* Adj (x*lG*).

Adjacency between two blocks a*, b* is written in a symbolic manner as
(a*, b*) e E*. An extension of an elimination ordering a of G has been defined by

In order to save brackets we denote the orderings (a(j)*) (which are not of
particular interest) by a(j)* too; a confusion between the two meanings of the symbol
a(j)* is not to be expected. Special sections a(i, j)* are defined by a(i, j)* a(i)* +
a(i + 1)* + + a(j)*. Given a block x* (v, v) of G*, c := dim (x*).
The vector d(x*lG*) := (d(vi)lG(o,, ,vi_,))i= , ,c combines the degrees of vertices
of x* which arise during the elimination (one by one) of x*. Remember that d(x*[G*)
is independent of the employed (internal) ordering. An inequality d(a*lG*) <= d(b*lG*)
between two of such vectors is considered to hold for pairs of corresponding entries;
note that dim (a*) dim (b*) is necessary.

Proofof Theorem 5.7. Given any elimination ordering a’ of G*. Furthermore set
S := mdj (xlG), So := { y e SI y is a peak of G(Adj (xlG))}, m := IS[, n := Isl. To a’
there exists an elimination ordering a* satisfying:

a* is eliminating block by block;
a* dominates a’;
S c M(a(n m + 2, n)*) S* (i.e., a* eliminates m blocks of S* at the end;

especially, S is eliminated at the end).
This is easily verified by Theorem 2.3. In detail we have to take into consideration

that
S is a clique in G*;
The elimination of a block y*, where y is a root of

G(mdj (xlG)) (y* S+\Sg),

causes that the set of vertices S*\y* becomes a clique in G. (Lemma A3.1).
If a* even satisfies

(1) S M(a(n-m+ 1, n)*)S*

(meaning that a* eliminates the entire set S* at the end) then Theorem 1.5 guarantees
that there is an elimination ordering which starts with x* and which is equivalent to a*,
respectively, which dominates a’. Otherwise

Let y* be the unique block which is not eliminated at the end of a*. Note that
y* corresponds to a root of G(Adj (x[G)):
k and g are defined by a(k)* y* and a(g)* x*;
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x* (Xl,’", xc)is split into two distinct blocks u* := (xl,’", xs) and
v* := (Xs + 1, xc), where c := dim (x*) and s := dim (y)*. Note: Definition
5.6 (ii) guarantees s _-< c.

We have to consider the two cases < k resp. > k. If g < k (meaning that a* eliminates
x* before y*) the elimination ofx* causes S* to become a clique in G(l,e),. Consequently,
there exists an elimination ordering which eliminates S* at the end and dominates a*.
Therefore, there is an elimination ordering starting with x* and dominating a’. In the
other case ( > k) we define the elimination ordering

/3:= a(1, k- 1)* + u* + a(k+ 1, e- 1)* +y* + v* + a(g + 1,n)*

and prove subsequently that /3 dominates a*. Since G(Adj (v*lG,*(l,k-l).+u.)) is a
clique the elimination ordering 3’ := a(1, k- 1)* + u* + v* + a(k + 1, g 1)* + y* +
a(g 1, n)* dominates/3 (Theorems 2.3 and 1.5). Again, there exists an elimination
ordering starting with x* and dominating a’.

To complete the proof we have to verify that/3 dominates a*. We abbreviate: ( :--
G(1,k-1).. A first comparison between a* and fl is given by

(2) d(u*ld) <-_ d(y* Id),
which is easily proved by comparing corresponding entries of d(u*lG) and d(y*lG):
Definition 5.6 (iii) guarantees d(xl[0) dl =< d2 d(yll). Consequently, d(xzlx,)
dl _-< d2 d(yll(y,), d(x3[(x,,x2)) =dl 2 _-< d2 2 d(y3[((y,,y2)) and so on.
Another comparison between a* and/3, is prepared by the following statements:

Given any set of blocks A+ with A+ N (S+ to {u*, v* }) . Set (A* =: H-
(Y, L) :=. Then for any block z* A+ tO S+ tO { u*, v*} it is true:

(3) Adj (z*lH,.)\y* cAdj (z*lHy,)\u*,

(4) y* cAdj (z*lHu.), u* cAdj (z’lily.),

d(z*lH,.) < d(z*lHy.).

To prove (3) let (w*, z*) 6 Lu., w* 4: y*. If (w*, z*) L there is nothing to show. In the
other case ((w*, z*) g L) we have (w*, u*) 6 L and (u*, z*) 6 L which contradicts
z* g S+. To verify (4) let (y*, z*) Lu.. If (y*, z*) L we get (z*, u*) Ly. because
(y*, u*) 6 L. Otherwise ((y*, z*) g L) we have (y*, u*) L and (u*, z*) L, especially
(u*, z*) e Ly.. Now let (u*, z*) Ly.. Since z* a S+ we get (u*, z*) L. Therefore
(u*, y*) L and (y*, z*) L; especially (y*, z*) 6 Lu.. Obviously, (5) follows directly
from (3) and (4).

The second comparison between a and/3,

(6) d(a(j)*],,. +

can be derived directly from (5) by setting a(j)* z* and 0(+ 1,j-1). H. A third
comparison,

(7) d(y*ldu. +<+ l,e-l)*) d(u*ld. +<+ l,e-l)*),
follows from (A1.7), respectively, from its generalization to simplex graphs. Finally, (2),
(6) and (7) guarantee that 3 dominates a*. Therefore, Theorem 5.7 is proved. V3
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MIXING RATES FOR A RANDOM WALK ON THE CUBE*

PETER MATTHEWSf

Abstract. For a simple random walk on the cube a coupling and a strong uniform time are given. The
coupling gives an upper bound on the variation distance between the distribution after k steps and the uniform
distribution that is almost the best possible. The strong uniform time is used to calculate the variation distance
and the separation. The coupling and strong uniform time are intimately related to a hitting time for the
Ehrenfest chain and the time taken by a random graph to become connected, respectively.

Key words, coupling, strong uniform time, random graph, Ehrenfest chain
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1. Introduction. The N-cube is the group Zv. It will be convenient to think of the
group elements as vectors of zeros and ones of length N. The group operation is then
coordinatewise addition modulo two. If z Z, z(i) denotes the ith coordinate of z. The
random walk {Xk, k 0, 1, } considered here takes independent steps with distribution
putting mass

N+I
(1.1)

N+I

on (0, ..., 0),

on each of(l,0, ,0),(0, 1,0, ,0), ,(0, ,0, 1).

At each step, either one coordinate changes or nothing happens, all with equal probability.
It will frequently be advantageous to think ofa fictional (N + 1)st coordinate that moves
each time Xdoes not. This random walk on Zv+ will be denoted X*. Let mk(X*) denote
the coordinate in which X_ andX differ.

Starting at X0 (0, 0), the distribution of the position Xk of the random walk
after k steps is the k-fold convolution #k.. As k -- , #k. converges to the uniform
distribution U on Z. Two measures ofthe rate ofconvergence are the variation distance

(1.2) d(#k*, U)= max I#k*(A)- U(A)I

and the separation

(1.3) 2N[1- )s(k* U) max #k*(z)
zZf 2N

This example is fairly unusual in that fairly precise calculations of (1.2) and (1.3)
can be given. For (1.2) first note that the distribution #k, is invariant under permutations
of the coordinates. Let Izl denote the number of ones in z, for z e Zv. It follows that
#k*(z) depends on z only through Izl, so attention can be restricted to a simpler Mar-
kov chain 0, IXll, I&l, This is essentially the classical Ehrenfest chain. Let K
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(N/4)(log N + c). Then the classical analysis of the Ehrenfest chain as in Kemperman
[6], the more modem Fourier version ofthe analysis as in Diaconis [4], or a Poissonization
argument shows that

(1.4) X is alproximately binomial N, --]
The number of ones in a uniformly distributed member of Zv is binomial (N, ). It
follows easily that for c fixed, as N m

(1.5) d(u*, U) 2(Ie-c/2) + o(1).

For the separation (1.3), the same analyses show that the maximum occurs at
z (1, 1). Let J (N/2)(log N + b). Then for b fixed, as N

(1.6) s(*, u) e-e- + o( ).

Both (1.5) and (1.6) exhibit threshold behavior as discussed in Aldous and Diaconis
]; there are drastic drops in variation distance and separation from about to about 0

near (N/4) log N and (N/2) log N, respectively. The drop-off points differ by a factor of
two, the largest possible [2]. Also, the behaviors as functions of b and c differ; 1.6) drops
like an extreme value (log x) tail probability in b, while (1.5) drops like a log x{ tail
probability in c.

Modern methods ofbounding d(*, u) and s(*, u) (see [4]) include coupling and
strong uniform times. In the present context a coupling is X along with another process
Yand a coupling time T such that Y0 is uniformly distributed, Y has the same transition
probabilities as X and X Y if k T. For any coupling

(1.7) d(*, U)P(T> k)

and there is a coupling that attains equality in (1.7) for all k [5]. A strong unifo time
is a randomized stopping time T such that

P(X zl T k) P(X zlT k) for all z, k.

Strong unifo times are useful because for any strong unifo T

(1.8) s(*, u) P(T> k),

and there is a strong uniform time attaining equality in (1.8) for all k [2].
As discussed in Aldous and Diaconis a coupling and a strong uniform time from

which (1.5) and (1.6), respectively, can be obtained as upper bounds are unknown. These
shocomings place the practical usefulness ofthese techniques in some doubt. This paper
hopes to paially rescue these techniques by giving a coupling and a strong unifo time
that give results like (1.5) and (1.6) via (1.7) and (1.8).

Section 2 gives the coupling construction and the result

(1.9) d(*,U)N2O -1+o(1) asN.

This Nves the same threshold as (1.5) and an upper bound that is off only by a factor of
for large c. The coupling is non-Markovian; {X, Y } is not jointly a Markov process.

Nonetheless, the coupling and the calculation of (1.9) are straightfoard. The coupling
time is closely related to the time taken by the Ehrenfest chain to reach equilibum.
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The strong uniform time is given in 3. It is precisely the time taken by a random
graph with N + vertices, adding an edge randomly at each step with duplicate edges
possible, to become connected. Results on random graphs as in Bollobas [3] give the
upper bound

(1.10) s(l.t’*,U) 1--e-e-b+O(1) asN--oo.

Separation is typically not of interest in its own right, but rather as an upper bound
on variation distance, since d(uk*, U) <= s(#k*, U) [2]. In this example, from (1.5) and
(1.6) it is clear that a strong uniform time cannot give a good upper bound on the
variation distance. However there is often a lot of structure to a strong uniform time. In
many practical examples a strong uniform time T is the last in a sequence of stopping
times T, TM. The distribution of Xk, given that T, Ti have occurred, has
some property that makes it almost uniform. This additional structure can sometimes
be used to calculate bounds on d(tk*, U). Matthews [8] uses this technique to get a lower
bound on variation distance for a random walk on the symmetric group generated by
random transpositions. Here the strong uniform time will be used to give the result (1.5).

The coupling and strong uniform time used here are applicable to more general
symmetric and some nonsymmetric random walks. The computations become more
difficult but may still be useful. No random walks other than the simple one mentioned
above will be discussed here.

2. The coupling. The coupling time T is given in an unusual way. The process Y,
started in the uniform distribution, is used to define T. Then the sample paths of Xk,
k 0, T, are constructed from those of Yk, k O, T. X will be shown to have
the proper marginal distribution. What X does at time k, given k =< T, will depend on
what Y does up to time T, making the joint process {X, Y } non-Markovian.

Let Y0 have the uniform distribution on Zv. Create a mythical (N + 1)st coordinate
that moves at the kth step if Yk Yk- 1o Denote the new process on ZTM by Y*. If IY01
is odd, let Y(N + 1) 1. Otherwise let Y(N + 1) 0. Thus IYI is even. LetA denote
the set of coordinates for which Y(i) 1. Let T be the first time k for which exactly
half of the A-coordinates of Y ?, are zeros. T is the stopping time of interest.

Now X must be constructed. Let A (Ao) be the set of A-coordinates for which Y
is (0), listed in order of increasing coordinate index. Note that IAI IAol. Make a list
of pairs of coordinates consisting of the first coordinates of Ao and A, the second co-
ordinates of A0 and A1, etc. Then at step k, if Y?, is obtained by moving coordinate i,
then X is obtained by moving coordinate if k > T or, if k =< T,

(2.1) ifiAc,
j if eA and andj are paired.

Call this transformation of coordinates ft. Note that ff k-.
PROPOSITION 2.2. T as given above is a coupling.
Proof First note that X* and Y*, and hence X and Y, match from time T on. X *

and Y* always match in the AC-coordinates of Y*. At time T, Y r is on A and 0 on

Ao. Thus Yr Y is 0 on A and on A0. Since the Al-coordinates ofX* move in the
same way as do the Ao-coordinates of Y*, X r is on A1 and, similarly, 0 on A0. Therefore
X Y r. By (2.1) after time T, X* and Y* move the same coordinates, so X Y?,
given k >- T.

Y* has the proper marginal distribution by definition, so all that remains is to show
that X *, and hence X, has the proper marginal distribution.
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Define a new process W* by

w =(0, ,0),

if k=< T ink(W*) ink(Y*),

if k> T mk(W*)=(mk(Y*)).

W* has the same distribution as Y* Y’. It also agrees with Y* Y’ up to time T.
After time T, the moves of Y* are permuted to obtain the moves of W* by a transfor-
mation that depends only on the past up to time T. Since moves are chosen indepen-
dently and uniformly at each step, W* is clearly a simple random walk on ZTM

To show X* is a simple random walk on Zv+ 1, it suffices to show that for any
K> 0 and i, ,iK {1,2,---,N+ 1}

(2.3) P -J mk(X*) ik P mk(W*) ik
k=l

X* and W* are related in a simple manner; if W moves coordinate then X?, moves
coordinate k(i). Thus (2.3) is equivalent to

(2.4) P [.-.J mk(W*)=k(ik) =P m(W)=ik
k=l =1

Recall that A is the set of coordinates in which Y is one. Let S denote a subset ofA of
cardinality IAI/2. Note that T is the first time k such that W has IAI/2 ones in its
A-coordinates.

Condition on T T*, A A* and {Ao S} LI {A S }. Given this, k is determined,
and by the symmetry of W* it is clear that P(Ao S) P(A S) 1/2. There are exactly
as many sample paths leading to A0 S as to A S and they can be put into one-to-
one correspondence via b. Thus

P [,.J mk(W*)=P(ik)lT T*,A=A*, {Ao=S}t_J{A=S}
k=l

Summing over all possible values of T*, A* and S yields (2.4), hence (2.3), and X*
is a simple random walk on Z2u+

Now consider the distribution of T. Let Zk denote the number of ones in the
A-coordinates of Y?,. T is the first time k is such that Zk Zo/2. The first time x?l
(N+ 1)/2 for N+ even is an important hitting time for the Ehrenfest chain. Kemperman
[6] gives the distribution of this hitting time; it is much like the result (1.5).

Given Z0 and T =< k, the distribution of Zk is symmetric about Zo/2. Given Zo and
T > k, the distribution of Zk is concentrated to the fight of Zo/2. Thus

(2.5) P(T<= kiZo) P(Zk Zo/21Zo) + 2P(Zk < Zo/2IZo).

Let X 1/4(log N + c) and let r be Poisson ((N + 1),). At time r each coordinate has
moved a Poisson () number of times, independently of how many times the other
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coordinates have moved. So each A-coordinate has probability

e-XX 1( e-c/2)-’ i! =- 1-
1,3,5--- VI

ofbeing a 0 (moving an odd number oftimes) independently. Thus given Z0, the number
ofzeros in the A-coordinates of Y* is binomial (Z0, 1/2(e-C/2/V)). A normal approximation
to the binomial and (2.5) give

(2.6) P(T>,Zo)=2,(e-/2 /) + 0(1).

The left side of (2.6) is

P(T> k]Zo)P( k).
k=0

The facts that P(T > klZo) is a nonincreasing function of k, that the Poisson ((N + 1),)
puts asymptotically all its mass in the interval (N + 1)/4(log N + c) _+ Vlog N, and that
the fight side of (2.6) is unchanged when X is changed by O(log N/-) imply that

P(T> K,Zo)= 2b(e-C/2 Z) + o(1).

Finally, consider the distribution of Zo. Z0 is approximately normal (N/2, N/4), so
as N -- , Z0 is between N]2 V log N and N/2 + f log N with probability going
to 1. Thus

P(T> K)= 2(e-/z/f) + o(1),

verifying (1.9).

3. The strong uniform time. Consider the random walk X* on Zv+ as before and
think of the N + coordinates as the vertices of a graph. At each step of the random
walk an edge will be added to the graph. The first time, T, the graph is connected will
be the strong uniform time of interest.

Edges will be assigned by the following mechanism. At time 0 there are no edges.
Before step k, set up an N+ N+ matrix pk with rows summing to and nonnegative
entries, such that p/k/_ 0 for all and P/ P/for all i, j. The matrix chosen can depend
on the past moves of the random walk only through the edges on the graph at time
k 1. Then if the random walk moves coordinate i, pick another coordinate j with the
probability distribution (p/k, p/kw+ )" Draw an edge connecting and j. Since our
interest is in whether the graph is connected, multiple edges may be ignored. Note that
P (edge ij drawn at time KIX {, ..’, X

_
,) (Pko. + P)/(N + 1) 2P/(N + 1). Also,

(3.1) P(coordinate moved[edge ij drawn)

P(coordinate j movedledge ij drawn) 1/2.
This property will make T a strong uniform time.

PROPOSITION 3.2. T is a strong uniform timefor X.
Proof. The proofuses induction on k. Let Gk be the graph at time k and let E,

Ek be the sequence of edges added to make Gk. Finally let zi Z+ have a in each



MIXING RATES 751

coordinate that is a vertex ofthe edge Ei and zeros elsewhere. It will be shown by induction
that

(3.3) P(X, Z]El Ek) P(X?, z + zi]El Ek)

for all _-< k and z Zv+ i. Repeated application of (3.3) shows that the distribution of
X?, is invariant under addition of arbitrary combinations of zl z.

First note that (3.3) will imply the result. IfG is connected, then zl z generate
the subgroup Z+ ofZV+ consisting of all members of Z2N+ with an even number of
ones. The conditional distribution of X?, given Ge connected is thus invariant under
addition of members of ZeN+ 1. This implies that the marginal distribution of the first N
coordinates ofX, those making up Xk, is conditionally invariant under addition of all
members of Z2N, and hence conditionally uniformly distributed on ZzN.

Result (3.3) is easily shown by induction. At time 0, there are no edges, so (3.3) is
trivially true. Suppose (3.3) is true at time k and edge E is added at step k. Given
G_ and Ee, m(X*) is equally likely to be either of the two coordinates connected by
Ek from (3.1). Thus the conditional distribution ofX ?, given G_ and that E is invariant
under addition of z. By induction the conditional distribution of X_ is invariant
under addition of zi for < k. Since Zv+l is abelian, the conditional distribution of
X?, given E1 Ek is invariant under additions ofzl zk. So (3.3) is true by induction
and Proposition 3.2 follows.

Intuitively one would like to choose the matrix Pe to give as much probability as
possible to connecting disjoint components of G_ 1. However a simpler approach
is sufficient to obtain (1.10). It is enough to let P/j- 1/N for all 4:j for all
k. This corresponds to choosing two vertices at random at each step and connecting
them. Each pair of vertices is chosen with probability 1/(N2+ 1) at each step. After J
(N/2)(log N + b) steps, the expected number of distinct edges is at least

N J //N+I 1 N
(3.4) (log N+ b)- , i/\} ( og N+ b)- O(log2 m).

i=0 2

Thus, as N - , with probability approaching 1, there are at least

(N/2)(log N+ b-N-1/2)

distinct edges at time J. Theorem VII.3 of [3] implies that

P(T>J) 1--e-e-b+o(1),
which gives the upper bound (1.10).

As discussed in the Introduction, separation is often mainly of interest as
an upper bound on variation distance. Using the structure of a random graph with K
(N/4)(log N + c + o(1)) edges, we can deduce the result (1.4) and thus calculate the
variation distance as in (1.5). The following is a sketch of the necessary calculations.

Consider the components of the graph at time K. Theorems 2 and 4 (Chapters
and 7, respectively) of Kolchin, Sevast’yanov and Chistyakov [7] imply that the number
of isolated vertices at time Kis approximately binomial (N, e-C/2 f). Also, as in Theorem
VII.2 of Bollobas [3], there are Op(log N) coordinates in small components of the
graph, and the remainder are in the giant component. These Op(log N) coordinates can
be ignored; their being all zeros or all ones will not affect the results. Also ignore one
coordinate ofthe giant component. Then, as in the proofofProposition 3.2, the remaining
coordinates of the giant component are 0 or with probability 1/2 each, independently.
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For these coordinates and the isolated vertices, to generate essentially the same distribution
of number of ones, it would suffice to let each coordinate be one with probability
1/2(1 e-C/2/1/).

From this a result similar to (1.4) sufficient to derive (1.5) follows.
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AN ALGEBRAIC CONSTRUCTION OF SONAR SEQUENCES
USING M-SEQUENCES*

RICHARD A. GAMESf

Abstract. An algebraic construction of sonar sequences that is based on the properties of q-ary M-sequences
for q a prime power is presented. Sonar sequences give two-dimensional synchronization patterns that have
two-dimensional spatial aperiodic autocorrelation functions with minimum out-of-phase values. The best sonar
sequences with length qm =< 128 that are obtained from the construction are tabulated. Based on a comparison
with the limited number of known optimal values, the construction performs quite well, producing optimal
sonar sequences in the majority of applicable cases.

Key words. M-sequences, sonar sequences, two-dimensional synchronization
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1. Introduction. This paper describes an algebraic construction of sonar sequences
that is based on the properties of q-ary M-sequencesmmaximum period linear recursive
sequences over GF(q) for a prime power q. An M by N sonar sequence al, a2, an
has integer values in the range 0 to M- and satisfies the synchronization property: for
each k from to N- 1, the list of differences (ai+ k ai: 1, 2, N- k) contains
distinct entries.

A sonar sequence can be pictured as an 3//by Nsonar array (with rows and columns
numbered 0 to M- and to N, respectively) in which column has a single dot in
row ai. The synchronization property is equivalent to the fact that any horizontal
and/or vertical shifted copy of the M by N array will agree with the original in at most
one dot [5]. In other words, the two-dimensional spatial aperiodic autocorrelation function
ofthe array has out-of-phase values of at most 1. Figure shows a 4 by 8 sonar sequence
and array.

In applications, the sonar sequence corresponds to a sequence oftransmitted tones;
a horizontal shift of the array corresponds to elapsed time; a vertical shift corresponds
to a Doppler shift in frequency. The synchronization property guarantees that out-of-
phase shifts result in "correlations" of at most one, which is small compared to the
matched value ofN. See [2], [5], [6] for more on these and other related two-dimensional
synchronization patterns.

The fundamental problem for sonar sequences is to determine for fixed Mthe largest
value of N for which there exists an M by N sonar sequence. It is not hard to see that
with M rows, the maximum number of columns is at most 2M. However the following
known optimal values, given in [8], indicate that as M increases the maximum value of
N is probably closer to M than 2M: 2,24,36,48,59,6 11,7 12,
8 13,9 14, 10 16, 11 17 and 12 18.

This paper contains an algebraic construction that produces for q a prime power
and m a positive integer, a sonar sequence with qm columns. Initially, the sonar sequence
produced has qm rows; however, the sequence satisfies a stronger synchronization
property that allows the rows ofthe sonar array to be rotated cyclically while still preserving
the synchronization property. Thus, a better sonar sequence for this case can be obtained
by rotating empty rows to the top (or bottom) and deleting them. The decrease in the

Received by the editors February 18, 1986; accepted for publication (in revised form) June 8, 1987. This
work was supported by the MITRE Sponsored Research Program. A version of this paper was presented at the
IMA Conference on Cryptography and Coding, Cirencester, England, December 15-17, 1986.

f The MITRE Corporation, Bedford, Massachusetts 01730.
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SONAR SEQUENCE: 3 0 3 0 0 2 3

3

2

0

2 3 4 5 6 7 8

FIG. 1. A 4 by 8 sonar array.

number of rows from qm that can be obtained depends on the primitive polynomial
used in the construction. A further decrease, which depends on two strong-synchronization
preserving transformations, is sometimes possible. The parameters of the best sonar se-
quences obtained from the construction are listed in Table 2 for all cases q and m with
qm <= 128. Based on a comparison with the limited number of known optimal values,
the construction performs quite well, producing optimal sonar sequences in the majority
of applicable cases.

2. M-sequences and shift sequences. The construction for sonar sequences is based
on the properties of q-ary M-sequences. A q-ary M-sequence s of span n and period
q" is determined by choosing a primitive polynomial f(x) over GF(q) of degree n.
The sequence is formed by choosing initial conditions So, Sl, Sn-l and generating
the sequence using the linear recursion that has characteristic polynomial f(x). The se-
quence is denoted by s (So, sl, Sq,_ 2), and s is identified with its qn cyclic
shifts Eks, k 0, 1, ..., q" 2, where E is the sequence shift operator; i.e., Es is the
sequence with ith term (Es)i si / i. Each cyclic shift ofs corresponds to a distinct choice
of initial conditions.

It is well known [1 ], [7] that if m divides n (so that q’ divides qn 1) and if
the sequence s (So, Sl, Sq,_ 2) is arranged in a (qm 1) by v (qn 1)/(qm 1)
array:

SO S So-

A(s) so so + S2v-

S(qm_ 2)v S(qm_ 2)v + S(qm_ l)v-

then each column ofthis array is either identically zero or a shift ofthe same M-sequence
of span m. If the column sequence is denoted by t, then the ith column ofA(s) is either
identically 0 or has the form Eet for some integer ei with 0 =< ei <= qm 2. Using the
convention that Et 0, i.e., ei if column is identically zero, we obtain the
corresponding sequence (e0, el, eo-l) for the M-sequence s.

A sequence e of period qn is defined by the array

eo el eo-

A(e)= eo- el- eo-l-

eo-(qm_ 2) el- (qm_ 2) eo- --(qm_ 2)

Here we use the convention . For example, the entries in row 2 of A(e)
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correspond to the shifts of the column sequence involved in the array A(EVs). The finite
elements ofA(e) are regarded as elements of Z/(q 1), the integers modulo qm 1, to
obtain entries in the range 0 -<_ ei -<- qm 2. For a fixed integer m dividing n, the sequence
e of period qn is determined, up to cyclic shifts, by the primitive polynomial f(x)
and is called the shift sequence associated with f(x) and m. The difference properties of
this shift sequence are used in the sonar sequence construction.

3. The sonar sequence construction. Let q be a prime power and let m >=
be an integer. The construction uses a q-ary M-sequence of span 2m. In this case
1) (q2m_ 1)/(qm_ 1)= qm+ 1. Let f(x) be a primitive polynomial of degree 2m
over GF(q), and let e (e0, el,’", eq-m_2) be the associated shift sequence. For
a Z/(q 1), we use the convention that a a .

The following facts are special cases of results proved in [4]. (The results in [4] are
stated for the case q 2; however, the proofs remain valid for q any prime power.)

FACT 1. In any v consecutive terms of e, there is exactly one [4, Thm. ].
FACT 2. For fixed k6 Z/(qm- 1), k 0(rood v), the list of differences

(ei + k ei: 0, 1, v 1) contains each element of Z/(q 1) exactly once
[4, Thm. 2].

If e (e0, el, eq2m_ 2) is the shift sequence associated with a primitive polynomial
over GF(q) of degree 2m, then e can be shifted so that e0 . Then Fact implies that
el, e2, eqm are all elements of Z/(qm 1). Furthermore, Fact 2 implies that the
sequence e, e2, eqm has the synchronization property, since certainly, for =< k =<
qm 1, the differences (ei+ k ei: 1, 2, qm k) being distinct modulo qm
means they are distinct as integers. Thus e, e2, earn forms a (qm 1) by qm sonar
sequence.

However, more is true. Consider the sequence f e- 1, J e2-1,-..,
Lm eqm--1, where each entry is considered modulo qm_ 1. The differences
(f/ k f: 1, 2, qm k) do not change modulo qm 1, and so j], J, fq
is also a (qm 1) by qm sonar sequence, which corresponds to the sequence EVs. The
new sonar array is formed by cyclically rotating the rows ofthe former sonar array down
by one. This, of course, can be repeated.

In general, the sequence a, a2, aN of integers in the range 0 to M- satisfies
the strong synchronization property if for each k from to N 1, the list of differences
(ai+ k ai (mod M): 1, 2, N- k) contains distinct entries. As has already been
seen, a sonar sequence with the strong synchronization property can be "rotated" to
yield another sonar sequence. In general, this is not the case. If an M by N sonar array
with the strong synchronization property has d consecutive empty rows, then an improved
M d by N sonar array can be obtained by rotating these empty rows to the bottom
and deleting them. The resulting array can no longer have the strong synchronization
property.

Example 1. q 2, rn 3.
The polynomial f(x) x6 + x + x2 + x + is primitive over GF(2). Starting with

the state (0, 0, 0, 0, 0, 1) the following binary M-sequence s is obtained (arranged as a 7
by v (26 1)/(23 1) 9 array):

-0
0

A(s) 0

0 0 0 0 1-
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0
0 0 0 0
0 0 0
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The column M-sequence is 0010111 (taken from the first column). The shifts of
this sequence occurring in the other columns determine the first 9 terms of the shift
sequence:

0, o, 6, 0,0, 2, 5, 2, 1.

The remaining terms of the shift sequence continue as

16, c, 5, 6,6, 1,4, 1,015, ,4, 5, 5,0, 3,0,614, c,3, ....
Shift the term to the beginning and the next 8 terms form the 7 8 sonar sequence:

6,0,0,2,5,2, 1,6.

The differences for this sequence are:

-6 0 2 3 -3 -1
-6 2 5 0 -4
-4 5 2 -1

-1 2 4
-4 6

-5 6

5
4

The array corresponding to this sonar sequence is shown in Fig. 2. Figure 3 shows
the sonar array obtained by rotating the empty rows to the bottom and deleting. The
corresponding sonar sequence is 1, 2, 2, 4, 0, 4, 3, 1. To obtain the best sonar sequence
for this case, all primitive polynomials of degree 6 over GF(2) must be considered. The
next section describes how this can be done by just considering decimations.

4. Sonar sequences obtained from decimations. All q-ary M-sequences of span n
can be obtained from a single q-ary M-sequence of span n by decimating by integers r
with (r, q" 1) 1. For a fixed integer m dividing n, the associated shift sequences can
be obtained by decimations along with one additional multiplication. For a sequence
s (So, s, sqn_ 2) and an integer r, the r-decimation of s is denoted by s[r] and has
ith term (s[r])i Sri.

ai
6 0 0 2 5 2 6

6

2

0

2 3 4 5 6 7 8

FIG. 2. A 7 by 8 sonar array.
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ai
2 2 4 0 4 3

4

3

2

o

2 3 4 5 6 7 8

FIG. 3. A 5 by 8 sonar array.

THEOREM 1. Let rn be an integer dividing n and let e (eo, el, eq,_ 2) be the
shift sequence associated with rn and a primitive polynomialf(x) over GF(q) ofdegree n,
equivalently, with the M-sequence s (So, sl, Sq,_ 2) generated by f(x). If r is an
integer with (r, q" 1) 1, then the shift sequencef (fo, f, fq,-2) associated
with rn and the M-sequence s[r] satisfies

fi r-eri(mod qm_ 1).

Proof Since qm_ divides q’- 1, (r, q’- 1)= implies (r, qm_ 1)= 1, and so
r-(mod qm 1) exists. If s is shifted so that So 4: 0, then the first column ofA(s) can be
taken as the column sequence for A(s). This sequence is (to, t, tqm_ 2) with jth
term tj Sjv. The first column ofA(s[r]) is (Sot, Sw, s2, Scum-2)r), which is t[r].

By definition of the shift sequence Ee’(si, &+ &+ 2, Si+(qm-2)v) t, i.e., for
i=0, 1, ,qn-2, j=O, 1, ,qm--2,

Sjv Si + (j + ei)v Si +jv + eiv

The proof involves writing the indices in (1) in terms of the decimation value r. For
fixed i, j and el, since (r, q" 1) (r, qm 1) 1, i’, j’ and f/, can be determined so
that ri’(mod q" 1), j rj’(mod qm 1) and ei rf,(mod qm 1). Note that
{i’: 0, 1, ..-, qn 2} {0, 1, "’", q" 2} and {j’: j 0, 1, ..-, qm 2}
{0, 1,--" qm 2}. So for ’= 0, 1, ..-, qn 2, j’= 0, 1, qm 2, substituting
into (1),

Svrj’ Sri’ + vrj’ + vrfi, Sr(i’ + v(j’ + fi’))

or equivalently

t[r] E fi’(Sri, Sr(i’ + v), Sr(i’ + 2v), Sr(i’ + (qm 2)v))

E’(s[r]i’,s[r]i +v, ,s[r]i, +(qm--2)v).

Thusf= (J,)], ,fq,-2) is the shift sequence for s[r] where for 0, 1, .--, q" 2,
f r-Zeri(mod qm 1). [

Theorem can be used to obtain sonar sequences for each re Zm-1
{i: 0 <= <-- q2m 2, (i, q2m 1) }. Actually, it suffices to decimate by a set of
representatives ofthe cosets of Z:m_ 1/{ 1, q, q2, q2m }, since elements ofthe same
coset correspond to the same primitive polynomial. Example 2 illustrates the process for
the sequence considered in Example 1.
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Example 2. q 2, m 3.
From Example 1, the shift sequence of the primitive polynomial f(x) x6 + x5 +

X2 -- X -I-- is

A(e) - 6 0 0 2 5 2 6-
5 6 6 4 0 5
4 5 5 0 3 0 6 4
3 4 4 6 2 6 5 3
2 3 3 5 5 4 2

2 2 4 0 4 3
0 3 6 3 2 0

To obtain other examples, decimate by r 6 Z3. The cosets of Z3/{ 1, 2, 4, 8, 16, 32}
are as shown in Table 1. The sequence e[ 11] begins

, 1,0, 1,5,0,0, 3, 1, ,
so that the shift sequence (11-1)e[11] 2e[11] begins

,2,0,2,3,0,0,6,2, , .-..

The sonar sequence is 2, 0, 2, 3, 0, 0, 6, 2, which also results in a 5 8 sonar array when
the two consecutive empty rows are rotated to the bottom and deleted. Decimating by
5, 13, 23 and 31 similarly produce 5 8 arrays, although in general some decimation
values will result in a different number of rows.

5. Two strong-synchronization preserving transformations. There are two trans-
formations that can be applied to a sequence which preserve the strong synchronization
property: multiplication and sheafing. The observation that sheafing could be useful in
this context is due to O. Moreno.

If al, a2, aN is an M by N sonar sequence with the strong synchronization
property and r is an integer with (r, M) 1, then ra, ra2, ran(mod 34) also has the
strong synchronization property. Multiplication by r simply permutes the rows of the
sonar array and the differences in the difference triangle. The multiplied sequence can
correspond to a sonar array with more consecutive empty rows, and a better sonar array
can be obtained for this case.

Example 3. q 2, m 3.
The sonar sequence 2, 0, 2, 3, 0, 0, 6, 2 of Example 2 when multiplied by r 2

becomes 4, 0, 4, 6, 0, 0, 5, 4. This latter sequence corresponds to a sonar array with
empty rows at 1, 2 and 3. Thus a 4 by 8 sonar sequence, which is optimal, can be obtained
in this case. This sonar array is pictured in Fig. and can be computed directly using
the shift sequence of the primitive polynomial f(x) x6 -- x -- with multiplier
r=2.

TABLE

Cosets Representative r r-(mod 7)

1, 2, 4, 8,16,32}
5, 10, 20, 40, 17, 34} 5 3

11, 22, 44, 25, 50, 37} 11 2
{13, 26, 52, 41, 19, 38} 13 6
{23, 46, 29, 58, 53, 43} 23 4
{31, 62, 61, 59, 55, 47} 31 5
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Unlike the multiplication transformation, which simply permutes empty rows, the
sheafing transformation [6] can increase the number of empty rows. If a, a2, aN
is anMbyNsonar sequence with the strong synchronization property, and s is an integer
with 0 =< s _-< M- l, then the sheared sequence a, a2 + s, aN + (N- 1)s(mod M)
also has the strong synchronization property. Sheafing by s adds the constant s to each
term of the difference triangle, permuting these entries (mod M).

Example 4. q 2, m 3.
The sonar sequence 1, 0, 0, 5, 2, 5, 6, ofExample when sheared by s 2 becomes

l, 2, 4, 4, 3, l, 4, 1. This latter sequence corresponds to a sonar array with empty rows
at 0, 5 and 6. Thus a 4 by 8 sonar sequence, which is optimal, can be obtained in this
case. It is the mirror image of the sonar array pictured in Fig. 1.

6. The best sonar sequences obtained from the construction. When tabulating the
best sonar sequences obtained from the construction, the next theorem implies that only
polynomials over GF(p), p a prime, need to be considered.

THEOREM 2. Let m and r be positive integers and q pr,,p a prime. Let e
(eo, eL, eq2,_ 2) be the shift sequence associated with m and a primitive polynomial
f(x) over GF(q) of degree 2m. Then there exists a primitive polynomial g(x) over
GF(p) ofdegree 2mr such that e is the shift sequence associated with mr and g(x).

Proof In this case v qm + pmr + 1. The polynomial f(x) can be used to
construct GF(q2m) - GF (p2mr) where a root a off(x) can be taken as a primitive element.
Let g(x) be the minimal polynomial of a over GF(p); i.e., g(x) (x a)(x P)
(. 01. p2mr-1). Then g(x) is a primitive polynomial over GF(p) of degree 2mr. To see that
the shift sequence associated withf(x) and m is identical to the shift sequence associated
with g(x) and mr, the trace function definition ofM-sequences is used. The tracefunction

-1Tr GF(q) -- GF(q) is defined for x 6 GF(q") by Try(x) x + Xq "-]- -’1- Xqn

The M-sequence s (So, s,..., So’m-z) generated by f(x) is determined, up to cy-
clic shift, by si TrqZm(txi), 0, 1,’", qm 2. Similarly, the M-sequence u
(Uo, u,..., Up,mr-z) generated by g(x) is determined, up to cyclic shift, by ui
Tr2pmr(oti), O, 1, p2mr_ 2. However,

WrZpmr(x 2mTr,(Trp (x)),

and so u Tro(s), 0, 1, pzmr 2. In other words, the pmr by v array A(u)
is obtained by applying the function Trio" GF(q) - GF(p) to each term of the qm
by v array A(s). Thus, the column shifts involved in each array are identical; i.e., the
shift sequence associated with f(x) and m is identical to the shift sequence associated
with g(x) and rm. I--I

Table 2 contains the parameters of the best sonar sequences with 128 or fewer
columns that can be obtained from the construction. For each prime p and integer m
with p" _-< 128, a primitive polynomial over GF(p) of degree 2m, a multiplier r and a
shear factor s used to obtain a sonar sequence with these parameters are listed. Table 2
lists these parameters with the number of columns in increasing order.

The optimal sonar sequence parameters are known for 18 or fewer columns. For a
fixed number ofcolumns N, the minimum number ofrowsMpossible can be determined
from the results of [8] given in 1. There are 11 prime powers less than 18 for which
the present construction applies. Of these 11 cases, eight have optimal parameters
(1 2,23,24,35,47,48, 10 16, andll 17), while the remaining
three cases have only one extra row (6 9, 7 11 and 9 13).

7. Conclusion. An algebraic construction of sonar sequences with qm columns, q a
prime power and m an integer, was presented. The construction was based on the prop-
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TABLE 2
Parameters ofthe best M N sonar sequences obtainedfrom the construction; N _-< 128.

q m M N q’ N- M Primitive polynomial r s

2 2 0
3 2 3 2 0
2 2 2 4 2 0 0
5 3 5 2 2 0
7 4 7 3 3 0
2 3 4 8 4 0 0 0 0 2 0
3 2 6 9 3 0 0 2 0

11 7 11 4 7 0
13 9 13 4 11 6 0
2 4 10 16 6 0 0 0 0 4 0
17 11 17 6 8 6 3 0
19 13 19 6 11 3 0
23 16 23 7 22 19 9 0
5 2 19 25 6 0 2 3 5 0
3 3 21 27 6 0 2 0 2 9 0

29 22 29 7 7 2 9 0
31 23 31 8 24 17 11 0
2 5 24 32 8 0 0 0 0 0 0 2 0

37 28 37 9 31 15 13 13
41 32 41 9 32 7 19 0
43 34 43 9 10 5 19 0
47 38 47 9 19 22 21 0
7 2 40 49 9 3 3 2 3 23 0

53 44 53 9 30 33 3 0
59 49 59 10 49 11 15 0
61 51 61 10 3 54 7 25
2 6 54 64 10 0 0 0 0 0 0 0 0 17 0

67 57 67 10 4 2 5 0
71 60 71 11 14 42 29 32
73 62 73 11 48 31 19 0
79 67 79 12 54 63 31 0
3 4 71 81 10 2 0 2 2 0 2 9 0

83 72 83 11 3 24 27 0
89 77 89 12 15 58 17 0
97 85 97 12 52 39 17 0
101 88 101 13 28 63 27 0
103 91 103 12 39 86 29 0
107 94 107 13 33 97 25 0
109 95 109 14 2 40 29 34
113 100 113 13 30 54 33 0
11 2 109 121 12 3 2 10 2 43 0
5 3 112 125 13 3 4 3 0 3 2 59 0

127 114 127 13 2 23 41 0
2 7 117 128 13 0 0 0 0 45 0

erties ofthe shift sequence obtained from a q-ary M-sequence ofspan 2m. The best sonar
sequences obtained from the construction were tabulated for the number of columns
qm <_ 128. Based on a comparison with the limited number of known optimal values,
the construction performed quite well, producing optimal sonar sequences in eight out
of the 11 applicable cases and being off by in the remaining three cases.

A subject for future research is the asymptotic performance of the construction,
including a comparison with the parabolic construction of [3]. Also, the results suggest
that it should be possible to improve the upper bound of2Mon the numberNofcolumns
of an M N sonar sequence. H. Taylor [9] has reported progress on this problem.
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Abstract. The computational complexity of the group testing problem is investigated under the minimax
measure and the decision tree model. We consider the generalizations of the group testing problem in which
partial information about the decision tree of the problem is given. Using this approach, we demonstrate the
NP-hardness of several decision problems related to various models of the group testing problem. For example,
we show that, for several models of group testing, the problem of recognizing a set of queries that uniquely
determines each object is co-NP-complete.

Key words, group testing, decision trees, NP-completeness, #P-completeness
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1. Introduction. Many combinatorial search problems involve the minimization of
the heights of decision trees. Such problems can often be described as two-person query
games, where one player A selects an object x from a finite domain D and assumes the
role of an oracle while the other player B tries to identify the object x by making queries
to A about the object. Consider, as an example, the problem of group testing [3], [7], 14],
[23]-[26], [29]. The domain of the problem is the set On,a of all subsets of { 1, n}
that have size d. The player B tries to identify a set S ,_9n,d by making queries about
S. Each query is a subset T

___
{ 1, n } and its answer, provided by A, is either "YES"

if the intersection S fq T is nonempty, or "NO" otherwise. As another example, we may
consider the problem of sorting by decision tree as a two-person query game 16], in
which a domain consists of all permutations over { 1, n} and, to identify a per-
mutation a, queries of the form "a(i) < a(j)?" may be asked. An algorithm for such a
search problem is essentially a general procedure to produce, for each domain, a deci-
sion tree of which each path uniquely determines an object in the domain. An
optimal algorithm is one which produces, for each domain, a decision tree of the mini-
mum height. For example, for the problem of group testing, a decision tree may be de-
scribed as follows: Each node of the tree is a subset T

_
{1, n}, and has two

children, identified by answers YES and NO to the query T. Each path of the tree
consists of a sequence of queries (T,..., Tm) with their answers (al,’", am) such
that there is exactly one S On,a having the property that S CI Ti is nonempty if and
only if ai YES for 1, m.

Except for a very few simple search problems, the problem of finding an optimal
algorithm for a shortest decision tree problem appears to be intractable. For example, in
spite of extensive studies, the optimal algorithms for sorting and group testing problems
remain as open questions (cf. [20]). For the group testing problems, people have conjec-
tured that they are indeed intractable 12]; however, no formal proofs for these conjectures
have been found.
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In the study of computational complexity of combinatorial optimization problems,
a search problem is usually formulated as a decision problem so that the lower bound
results are easier to be developed (often through the reductions from known NP- or
PSPACE-complete problems). For the shortest decision tree problem, the associated de-
cision problem may be formulated as follows:

Given a domain D and an integer k, determine whether there is a decision tree
of height _-< k of which each path uniquely determines an object in D.

It is not hard to see that the above problem is often solvable in polynomial space. (For
given D and k, we may guess nondeterministically a decision tree of height k and verify
that for each of its path, there is only one object consistent with the queries and answers
of this path. Note that at any step of the computation, this algorithm needs only O(k)
space to store one path of the decision tree, although the complete tree contains about
2k many nodes.) On the other hand, the domain of the problem often has a very simple
form so that it is difficult to obtain a reduction from other (PSPACE-)complete problems
to it since such a reduction would usually require rich structures in the problem in
question (cf. [5], [8]). Indeed, it follows from the research in abstract complexity theory
that if the input to a problem may be defined by two integers (here, n and d), then the
problem cannot be PSPACE-complete unless P PSPACE [6]. So, in order to obtain
any completeness results on the shortest decision tree problems, we must reformulate
the problems to add more complex structures to the problem instances. A general approach
to this is to treat the problem as a special case of a more general problem whose problem
instances take more general forms. For instance, Even and Tarjan [5] have extended the
game Hex to general graphs and showed that the generalized Hex game, or the Shannon
switching game on vertices, is PSPACE-complete, while the complexity of the more
common version of Hex remained open. In this paper, we follow this approach to the
group testing problem and demonstrate several completeness results on the generalized
group testing problem.

We first introduce some terminologies about two-person query games. A query history
is a set of queries together with their answers. The solution space associated with a query
history H is the set of all objects in the domain which are consistent with the query
history H. In other words, let ANSx(y) denote the answer given by player A to the query
y when x is the object to be identified. Then, the solution space associated with a
query history H {(Yl, al), (Ym, am)}, where yi’s are queries and ai’s are corre-
sponding answers, is the set {x e domainlANSx(y) a for 1, m). The initial
solution space is simply the given domain. A shortest decision tree problem may thus be
rephrased as the problem ofusing the minimum number ofqueries to reduce the solution
space from the given domain to a singleton space.

We note that while the initial solution spaces often have simple structures, the
solution spaces associated with arbitrary query histories may have complex structures.
For example, it was pointed out in 18] that many researchers have conjectured that, for
the sorting problem, the problem ofdetermining the size ofthe solution space associated
with a query history is #P-complete. The first two problems considered in this paper are
concerned with the structure of the general solution spaces associated with given query
histories. The first asks whether a given query history is consistent (or, whether the player
A has been cheating), and the second asks what the size of the solution space associated
with a given query history is.

CONSISTENCY PROBLEM. Given a domain D and a query history H, determine
whether the query history H is consistent; i.e. whether the solution space associated with
H is nonempty.
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COUNTING PROBLEM. Given a domain D and a query history H, determine the size
of the solution space associated with H.

Our third problem is concerned with the nonadaptive query games. In a nonadaptive
query game, the player B must present a set of queries before he/she gets any answer
from the player A 15]. Again, the goal here is to find a smallest set of queries which
uniquely determines each object in the domain. The following problem asks a simpler
recognition question of such a determinant set of queries.

DETERMINACY PROBLEM. Given a domain D and a set Q of queries, determine
whether each set of answers to the queries in Q uniquely determines an object in the
domain.

We will study the above questions in the context of the group testing problem. We
consider several variations of the original group testing problem, derived from different
domains and different oracles. In the following, for each set S, let IsI denote the size of
S; for each n and d, let 6’ denote the set of all subsets of ( 1, n} and ff’n,d the set
of all sets S in 5’ with ISI d. For each pair of objects x and y, ANSi(y) is the answer
given by player A to query y when x is the object to be identified.

MODEL Ak (k >_- 1). Given a domain On and an answering function ANSs (as the
oracle) of the type

determine the set S.

if lSfq Tl <k,

iflSfqTl>=k,

ifSfq T= ,
if Sf3 T4: and Sf3 T4: ,
ifSf) T= ,

MODEL/lc (k >_- 1). Given a domain ff’n,d and an answering function ANSs of the
same type as in Model Ak, determine the set S.

MODEL B. Given a domain ff’n and an answering function ANSs (as the oracle) of
the type

0

ANSs(T)

2

where { 1, n} S, determine the set S.
MODEL B’. Given a domain n,d and an answering function ANSs of the same

type as in Model B, determine the set S.
MODEL C. Given a domain On and an answering function ANSs of the type

ANSs(T) IS fq T l,

determine the set S.
MODEL C’. Given a domain tn,d and an answering function ANSs of the same

type as in Model C, determine the set S.
We remark that Models A and A’ are the original group testing problems [3], [7],

[14], [23]-[26], [29]; Models Ak and A,, with k > 1, have been considered in [2], [9],
[11], [13], [21], [27]; Models B and B’ have been considered in [10]; and Models C and
C’ are a classical combinatorial search problem [1], [4], [19].

The main results of this paper may be summarized as follows.
THEOREM 1. (a) The consistencyproblemfor ModelA is polynomial time solvable.
(b) The consistency problems for all other models (i.e., for Models A, k > 1, for

Models A’k, k >= 1, andfor Models B, B’, C and C’) are NP-complete.
THEOREM 2. The counting problems for all models (i.e., for Models Ag and A’k,

k >= 1, andfor Models B, B’, C and C’) are #P-complete.
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THEOREM 3. (a) The determinacy problemsfor all models are in co-NP.
(b) The determinacy problem for Model A is polynomial time solvable.
(c) The determinacy problem for Models Ak, A’, k >= 4, and for Models B, B’,

C and C’ are co-NP-complete.
The question of whether the determinacy problems for Models Ak, k 2, 3, and

for Models A,, k =< 3, are co-NP-complete remains open.

2. Consistency problems. We first restate the consistency problems for the models
of group testing problem defined in 1. In the following, Consistency-X denotes the
consistency problem for Model X, where X {A, A’, B, B’, C, C’lk >= }.

CONSISTENCY-X. Given an integer n (or, two integers n and d) and a set H
{(T, aj)lj 1,..., m}, with Tj. 0%, a {0, 1,..., n} forj 1, ..., m, determine
whether the set C {S o(n (or, O%,a)IANSs(T) aj, j 1, m} is nonempty.

It is interesting to observe the similarity between the group testing problem and the
satisfiability problem (SAT) [8], where each query of the group testing problem may be
regarded as a clause of variables for SAT. Therefore, our main tools for proving Theorems
1, 2 and 3 are variations of the satisfiability problem. For the proof of Theorem 1, we
will use the following NP-complete problems.

VERTEX-COVER. Given a graph G (V, E) and an integer k =< Iv I, determine
whether there is a set V’

_
V of size k such that each edge e E is incident on some

t V’.
ONE-IN-THREE-SAT. Given a set U of variables and a set of clauses, with each

C containing exactly three variables from U, determine whether there is a truth
assignment on U such that each clause C in contains exactly one TRUE variable.

NOT-ALL-EQUaL-SAT. Given Uand as in One-in-three-SAT, determine whether
there is a truth assignment on U such that each clause C in contains at least one
TRUE variable and at least one FALSE variable.

Remark. The original versions ofOne-in-three-SAT and Not-all-equal-SAT, as stated
in [8], allow a clause C in to contain both negated and nonnegated literals. The
NP-completeness ofour versions stated above can easily be proved from Schaefer’s proof
of the NP-completeness of the Generalized-SAT problem [22].

Now we apply these NP-complete problems to prove Theorem 1.
MODEI AI. Let an instance (n, H {(T, aj)lj 1, m}) of Consistency-Al be

given, where for each j 1, m, T 9% and a {0, }. Define

I= {jll <-_j<=m, a=O},
and J {j[1 =< j =< m, a 1}. Also let X UI T and Y {1, ..., n} X. Then, it is
easy to check that

H is consistent iff for each je J, T f3 Y4: .
This characterization of consistent query histories provides a simple polynomial-time
algorithm for Consistency-Al.

MODEL Ak, k > 1. We show that if k > 1, then One-in-three-SAT is polynomial-
time reducible to Consistency-A.

Let an instance (U, c) of One-in-three-SAT be given, where U {Xl, Xp},
( {CI, Cq, Cj U and C[ 3, forj 1, q. Define an instance

(n,n= {(T., aj)lj 1, ,m})
of Consistency-A as follows:

n’=p; m:=q;

for each j 1, m, let T := XiC: Cj} and a := 1.
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For each assignment on U, let St := {i[t(xi) TRUE}. Then, the mapping from
to St is a natural one-to-one correspondence between the set of truth assignments on
U and the set 5n. Furthermore, a truth assignment on U assigns exactly one TRUE
variable to each clause in cg if and only if [St N T[ for all j 1, m. In other
words, the instance (U, ) has a solution (for the problem One-in-three-SAT) if and
only ifthe instance (n, H) has a solution (for the problem Consistency-Ak). This completes
the proof.

MODEI A’l. We show that the problem Vertex-Cover is polynomial-time reducible
to Consistency-A’.

Let (G, k) be a given instance of Vertex-Cover, where G (V, E) is a graph with
vertex set V (Vl, vp} and the edge set E {el, eq}, and k is an integer less
than or equal to p. Define an instance (n, d, H {(T, a.i)[j 1, m})ofConsistency-
A’l as follows.

n:=p; m:=q; d:=k;

for each j 1, m, let Tj := {i[vi e} and a := 1.

For each V’ c_ V, define a set Sv, e 5 by Sv, { ]vi V’ }. Then, this is a one-to-
one correspondence between subsets of V of size k and sets in 5n,a. Furthermore, V’ is
a vertex cover ofE if and only if Sv, rl Tj 4: for all j 1, m. This shows that the
mapping from (G, k) to (n, d, H) is a reduction from Vertex-Cover to Consistency-A’l.

MODEL A, k > 1. We show that if k > 1, then Consistency-A’ is polynomial-time
reducible to Consistency-A,.

For a given instance (n, d, H {(Tj, a)lj l, m}) of Consistency-A’l, define
an instance (n’, d’, H’ {(T}, a)lj 1, m}) of Consistency-A, as follows:

n’:=n+k- 1; m’:=m+k 1; d’:=d+k 1;

for each j 1, m,

if aj 0 then let T := Tj and a 0,

if a then let Tj- := Tj U {n + 1, ..., n + k- and a k;

for each j m + 1, m + k- 1, let r}’= {n +j m} and a} := 1.

Assume that (n, d, H) is consistent for Model A’I and 5’ 59,, satisfies the condition
that for all j 1, m, S f) Tj 4: if and only if aj. 1. Define

S’=SU{n+I, ,n+k- 1}.
Then, S 60,,,a,. Also, for all j 1, m,

if a 0, then [s’rl T}[= [S rl Tjl 0 a}, and

ifaj 1, then IS’NTI=ISnTI+(k- 1)>=k= a;
and, for allj=m+ 1,...,m+k- 1,

IS’N rj-I a}.

So, (n’, d’, H’) is consistent for Model A,.
Conversely, if (n’, d’, H’) is consistent for Model A),, then there is a set

S’c_ {1, ,n+k- 1}

such that ANSs,(T}) a} for j 1, rn + k- 1, where the answering function



GROUP TESTING AND NP-COMPLETENESS 767

ANSs, is of the type of Model A. Let S S’ f3 { 1, m}. We claim that S f) T
if and only if aj 0 for allj 1, m.

First, if aj 0, then T) T and aj 0. So, S’ fq Tj- and hence S N Tj. .
Next, if aj. 1, then ANSs,(Tj.) aj k implies IS’ 71 Tj-I >= k. Since

Is’n {n+ ,... ,n+k- 1}l=<k 1, IsnTl=lS’nT)n{,... ,n}l>= .
This completes the proof for Model A,, k > 1.

MODEL B. We show that Not-all-equal-SAT is polynomial-time reducible to Con-
sistency-B. The reduction is similar to the reduction from One-in-three-SAT to Consis-
tency-A2.

Let an instance (U, ) of Not-all-equal-SAT be given, where U {Xl, xp},
( {C1, Cq}, Cj U and ICl 3, for j 1, q. Define an instance

(n,g= {(T,aj-)lj 1,... ,m})
of Consistency-B as follows:

n:=p; m:=q;

for each j 1, m, let Tj := {ilxie Q} and a := 1.

Similarly to the reduction from One-in-three-SAT to Consistency-A2, there is a
natural one-to-one correspondence between the set of truth assignments on U and the
set On. Furthermore, a truth assignment on U assigns at least one TRUE variable and
at least one FALSE variable to each clause in if and only if _-< ISt fq Tjl --< 2 for all
j 1, m, where St is the set in On corresponding to t. This shows that the mapping
defined above is a reduction from Not-all-equal-SAT to Consistency-B.

MODEL B’. We show that Vertex-Cover is polynomial-time reducible to Consis-
tency-B’.

Let (G, k) be a given instance of Vertex-Cover, where G (V, E) is a graph with
the vertex set V {Vl, "", vp} and the edge set E {el, eq}, and k is an integer
less than or equal to p. Define an instance (n, d, H {(T, aj)lj 1, m}) of Con-
sistency-B’ as follows:

n:=p+q; m:=q; d: k;

for each j 1, m, assume that e { v,, v2 }, and

let Tj := {jl,j2,p+j} and aj. := 1.

Let V’
_
V be a vertex cover for G of size k. Then the set

Sv,= {ill <=i<=p, vie V’}
has the property _-< ISv, fq Tjl --< 2 for all j l, m. Also, ISv, d. So, (n, d, H)
is consistent.

Conversely, let S
_

{ 1, n}, IsI a, be a solution to the instance (n, d, H).
Define V’ := {viii e S, <= <= p} U {v.i, lp + j e S}. Then, Ir’l _-< d k because ]SI
d. Also, V’ is a vertex cover for G: for each j 1, q, ifp + j S then jl or j2 is in S
and hence )Jl or )J2 is in V’; ifp + j e S, then vj e V’. This completes the proof.

MODEL C. The reduction from One-in-three-SAT to Consistency-A2 is actually also
a reduction from One-in-three-SAT to Consistency-C, because the output instances from
the reduction always have aj < 2.

MODEL C’. We show that Consistency-C is polynomial-time reducible to Consis-
tency-C’.



768 DING-ZHU DU AND KER-I KO

Let an instance (n, H {(T, a)lj 1, m}) of Consistency-C be given. Define
an instance (n’, d’, H’ {(T), a’j.)lj 1, m}) of Consistency-C’ as follows:

n"= 2n; d ’’= n; m"= n + m;

for j 1, m, let T Tj. and aj aj, and

forj=m+ 1, ,m+n, let Ti’={j-m,n+j-m} andaj 1.

If S e 9n is consistent with H, define S’ S U {k + nil -< k =< n, k g S }. Then,
S’ e 9n,.d,, and

1S71TI iS’ f’l T)I for j 1, m,

IS’ fq Ti] forj=m+l,...,m+n.

This shows that S’ is consistent with H’.
Conversely, if S’ 59n,,d is consistent with H’, then S S’ fq { 1, n} satis-

fies the condition that for all j 1, m, IS f) TI IS’ fq T[, because for all j
1, m, T)_= {1, n} and so IS’fq TjI IS’ Tfq {1, n}l IS TI. This
completes the proof.

3. Counting problems. We restate the counting problems for Model X, where
X {A,,A’, B, B’, C, C’lk >- 1}.

COUNTING-X. Given an integer n (or, two integers n and d) and a set H
{(T, a)lj 1,..., m}, with T e Sf,, aj e {0, 1,..., n} forj 1,..-, m, deter-
mine the size of the set C {S e Sfn (or, ,n,a)IANSs(T) a, j 1, m}.

It is easy to see that for any model X, the problem Counting-X is in #P because the
problem Consistency-X is in NP. (For the definitions ofthe class #P and #P-completeness,
see [8] and [28].) In this section, we show that the counting problems for all models are
#P-complete. We remark that this type of #P-completeness results has been conjectured
for the sorting problem 18] and has been proved for a simplified Mastermind game 17].
The following #P-complete problems will be used in the proof of Theorem 2.

MONOTONE-#2SAT. Given a set U of variables and a set c of clauses, with each
Ce cff containing exactly two variables from U, determine the number oftruth assignments
on U such that each clause C in cg contains at least one TRUE variable.

ONE-IN-THRFE-#SAT. Given (U, qq) as in One-in-three-SAT, determine the number
of solutions to (U,

NOT-ALL-EQUAL-#SAT. Given (U, ctf) as in Not-all-equal-SAT, determine the
number of solutions to (U, ).

Monotone-#2SAT has been shown in [28] to be #P-complete. We first establish the
#P-completeness of One-in-three-#SAT and Not-all-equal-#SAT. We note that a counting
problem is not a decision problem and hence the polynomial-time many-one reductions
are not necessarily applicable to them. Instead, the polynomial-time Turing reductions
are usually used to prove the #P-completeness results, although the notion of many-one
reductions preserving the number ofsolutions (or, parsimonious reductions) does provide
a stronger definition of #P-completeness (cf. [8]). In this section, we refer to #P-com-
pleteness as the one with respect to the polynomial-time Turing reductions.

LEMMA 1. One-in-three-#SAT is #P-complete.
Proof The fact that One-in-three-#SAT is in #P is clear. We show that Monotone-

#2SAT is polynomial-time Turing reducible to One-in-three-#SAT.
Let an instance (U, ctf) of Monotone-#2SAT be given, where U {Xl, xp},

( {C1, Cq} and for each j 1, q, Cj
_
U and [Cjl 2. Define an instance
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(V, ) of One-in-three-#SAT as follows:

g:= U U{uj, vj, wjlj 1,’.. ,q}U{yl,y2,y3,z};

for each j 1, q, assume that C {x,, xh} and let

Cj, := {Xjl, blj, Yl }, Cj,2 := {xj2,1)j, yl }, Cj,3 := { blj, l)j, Wj}’

let D := {Yl, Y2, Z}, D2 := {Y2, Y3, z}, D3 :=

={Cj,klj 1, ,q;k 1,2,3}ID{D1,D2,D3}.
Assume that is a truth assignment on U such that for each j 1, q, there is

a variable x in C with t(x) TRUE. Define a truth assignment t’ on V as follows:

for each 1, p, t’(xi) t(xi);
t’(yl) t’(y2)= t’(y3):= FALSE; t’(z):= TRUE;
for each j 1, q, assuming that C {Xjl xj2},

Case 1. if t(x)= TRUE, t(x:)= FALSE
then t’(u) t’(w) := FALSE and t’(v) := TRUE;

Case 2. if t(x) FALSE, t(x:) TRUE
then t’(v) t’(w) := FALSE and t’(u) := TRUE;

Case 3. if t(Xjl t(xj2 TRUE
then t’(uj) t’(v) := FALSE and t’(w) := TRUE.

It is easy to check that t’ assigns the value TRUE to exactly one variable in each
clause in . Therefore, each solution of (U, off) is mapped to a solution t’ of (V, ),
and the mapping is one-to-one.

Furthermore, we note that if t" is a solution of (V, @) then, to assign exactly one
TRUE value to each ofD, D and D3, t" must assign TRUE to z and FALSE to Yl, Y2,

Y3. Furthermore, for each j 1, q, t" cannot assign the value TRUE to both ua. and
v; this implies that one of Xjl and x must be TRUE. Finally, for each j 1, q, if
two solutions t and t2 of (U, c) agree at xj- and x and/I(Y) t2(Yl) FALSE, then
they must agree at u, v and w. The above observations show that the mapping defined
above (from to t’) is a bijection between the solutions of (U, eft) and the solutions of
(V, ). This completes the proof.

LEMMA 2. Not-all-equaL#SAT is #P-complete.
Proof Again, it is clear that Not-all-equal-#SAT is in #P, and we show that Mono-

tone-#2SAT is polynomial-time Turing reducible to Not-all-equal-#SAT.
Let an instance (U, off) of Monotone-#2SAT be given, where U {x, xp},

cg {C1, Ca} and for each j 1, q, Cj
_
U and [G[ 2. Define an instance

(V, ) of Not-all-equal-#SAT as follows:

V := U U { u, vlj 1, q} l,.J { yl y2, y3, z}
for each j 1, q, assume that C {Xjl, x_} and let

Cj, :- {Xjl

Cj,3 :-- {Xjl,Xj2, LIj}, G,4 :--

Cj,5 :-- { uj, l)j, y2 }
let D := Yl, Y2, Y3};

={QIj= 1, ,q;k= , 6} {D}.
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We first note that if t’ is a solution of (V, ) (i.e., t’ is a truth assignment on V such
that t’ assigns at least one TRUE value and at least one FALSE value to each clause in
), then t’(uj) 4: t’(vj) forj 1, q, because t’(y), t’(y2) and t’(y3) cannot be all equal.

Now, assume that is a solution of (U, ). Define a truth assignment t’ on
V- { Yl, Y2, Y3} as follows:

t’(z) := FALSE;
for each i:= 1, p, t’(xi) := t(xi);
for each j 1, q, assuming that Cj- {Xl, x2},

Case 1. if t(x,)= TRUE, t(xj2)- FALSE
then t’(uj) := FALSE and t’(v) := TRUE;

Case 2. if t(Xl) FALSE, t(x2) TRUE
then t’(uj) := TRUE and t’(v) := FALSE;

Case 3. if t(Xjl t(x2) TRUE
then t’(u) := FALSE and t’(v) :-- TRUE.

We then extend t’ into truth assignments on V such that t’(y), t’(y2), t’(y3) are not
all equal. There are six such extensions. It is obvious that each of these extensions is a
solution of (V, ). Next, for each of such extensions t", define t"(w) to be the negation
of t"(w) for all w V. We get six more truth assignments which are solutions of (V, ).
(For the problem Not-all-equal-SAT, the negation of any solution is itself a solution.)
We note that all these assignments are distinct. Furthermore, two distinct solutions
t and t2 of (U, qf) define two disjoint sets of solutions of (V, ). To see this, if a solu-
tion t’{ of (V, ) derived from t is equal to a solution t of (V, ) derived from t2,
then t(z) t2(z). Hence, either t t’{Iv Iv t or 1 Iv vt t’ =tl =2, whereT
and t are the negations of t and tz, respectively. So, we get

12.(# of solutions of(U, c))__< # of solutions of(V, ).

Now, if t" is a solution of (U, c) then, as shown above, t"(uj) 4 t"(v) for all
j 1, q. Assume that t"(z) FALSE. Then, to assign at least one TRUE value
to both C, and C,2, at least one of t"(Xl and t"(x) must be TRUE. Thus, t"[visa
solution of (U, c), and t" must be one of those 12 assignments defined by t"Jv. Sim-
ilarly, if t"(z) TRUE, then t"] v is a solution of (U, ) and t" is one of the 12 assign-
ments defined by t. So, this shows that the number of solutions of (V, @) is exactly 12
times the number of solutions of (U, c). This completes the proof.

With Lemmas and 2, Theorem 2 is easy to prove. First, we show that for each
model X, with X {A,, B, CIk > }, the problem Counting-X is polynomial-time Turing
reducible to Counting-X’.

LEMMA 3. Let X {A,, B, CIk >-_ }. Then, Counting-X is polynomial-time Turing
reducible to Counting-X’.

Proof Let (n, H) be an instance of Counting-X. Then, the number of sets S in
which are consistent with H is the sum of the number of sets S’ in 59n,d which are
consistent with H (with respect to the same type of answering functions) as d ranges over

{0, ,n).
MODELA 1. We show that Monotone-#2SAT is a polynomial-time Turing reducible

to Counting-A.
Let an instance (U, cd) of Monotone-#2SAT be given, where U {x,
{C,’.’, Cu} and for each j 1,..., q, C_ U and [Cj.[ 2. Define an in-
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stance (n, H {(T, aj)[j 1, m}) of Counting-A1 as follows:

n:=p; m:=q;

for each j 1, m, let T. := {ilxi C} and aj. := 1.

Then, there is a natural one-to-one correspondence between truth assignments on
U and subsets St in On, defined by St { ilt(xi) TRUE}. This mapping also preserves
the solutions of the two instances (U, c) and (n, H). Thus, the number of solutions of
these two instances are equal. This completes the proof.

MODEL Ac, k > AND MODEL C. In 2, it is proved that if k > then One-in-
three-SAT is polynomial-time (many-one) reducible to Consistency-Ak (and to Consis-
tency-C). A close inspection ofthe reduction shows that the reduction actually preserves
the number of solutions of the two problems. Thus, it also serves as a reduction from
One-in-three-#SAT to Counting-Ak (and to Counting-C).

MODEL B. The polynomial-time (many-one) reduction from Not-all-equal-SAT to
Consistency-B, as proved in 2, also preserves the number of solutions. Thus, it also
serves as a reduction from Not-all-equal-#SAT to Counting-B.

MODELS A,, k >= 1, MODEL B’ AND MODEL C’. The #P-completeness of Counting-
X’, for X {A, B, CIk >- }, is established through Lemma 3 and the #P-completeness
of Counting-X.

4. Determinacy problems. We restate the determinacy problems for Model X, where
Xe {A,A’,B,B’, C, C’lk >= 1}.

DETERMINACY-X. Given an integer n (or, two integers n and d) and a set Q
TIj 1, m}, with T e 5, for j 1, m, determine whether, for any two

sets $1, $2 in On (or, in 6tn,a), S1 4 $2 implies ANSsI(Tj-) 4 ANSsz(Tj) for some j
1,...,m.

We will call a set Q of queries determinant for Model X (with respect to size n) if
the above problem Determinacy-X has an affirmative answer for input (n, Q). It is easy
to see that for any model X, the problem Determinacy-X is in co-NP. We show, in this
section, that most of them are actually co-NP-complete. Our main tools are the
NP-complete problems One-in-three-SAT and Not-all-equal-SAT. Their precise defini-
tions were given in 2.

MODEL A1. We give, in the following, a simple characterization of determinant sets
Q of queries for Model A l. This characterization provides a polynomial-time algorithm
for Determinacy-A l.

LEMMA 4. A set Q is determinant for Model A1 with respect to size n ifand only if
for every 1, n, the singleton set { } is in Q.

Proof The backward direction is obvious, because the set { } distinguishes between
two sets Sl and $2 whenever $1 $2.

For the forward direction, we consider two sets S1 { 1, n } and $2 S { }.
Then, the only set T that can distinguish between S1 and $2 is T {i} so that
ANSs,(T) and ANSs2(T) 0.

MODFL B. We show that Not-all-equal-SAT is polynomial-time reducible to the
complement of Determinacy-B, and hence Determinacy-B is co-NP-complete.

Let an instance (U, off) of Not-all-equal-SAT be given, where U {xl, xp},
( {C1, Cq} and for each j 1, q, C

_
U and ]C[ 3. Define an instance



772 DING-ZHU DU AND KER-I KO

(n, Q) of Determinacy-B as follows:

n:=p;

for each j 1, q, let T,o := { i] xi C}, and

for each k 1, ,p, let T,k := T,o U {k};

let Q= {T,klj= 1, ,q;k=0, ,p}.

(Note that for each j, there are exactly (p 2) TZk’S; however, the total number of T,k’S
in Q varies, depending on the set .)

Assume that is a truth assignment on U such that for every j l, q, t does
not assign equal values to all three variables in Cj.. Define S {ilt(xi) TRUE} and
$2 { 1,... n} $1. Then, for each j 1,... q, Sl f Tzo 4: , and $2 (’ Tj,o. This implies that for all j 1, q and for all k 0, n, ANSs,(Tz)
ANS&(T,k) 1. So, Q is not determinant for Model B.

Conversely, assume that Q is not determinant and there are two sets &, $2
_

{ 1, ..., n} such that S 4:$2 and ANSsI(T,k) ANS&(Tzk) for all j 1,.-- q, and
k 0, p. Then, we claim that ANSs,(Tz0) must be equal to for all j 1, q.

Suppose, otherwise, that for some j, ANS&(Tzo) 0 or 2. If ANSs,(T,0) 0, then
Tz0 N SI ,o N $2 . This implies that for any k 1, p,

xeS = T,k71S 4 ,, ANSs,(T,)

* ANS&(T,k) = T,f3 $2 4

or, S $2. Similarly, if ANSs,(T,0)= 2, then Tzo
_

$1 and T,o_ $2. So, for any
k=l,...,p,

Xk S1 rj,k S1 ANSs,(Tj.,k) 2

=> ANS&(T.,) 2 => T,k
_
$2 =>xe $2;

or, $1 $2. Both cases lead to contradictions. So the claim is proven.
Now, define a truth assignment on U by t(xi) TRUE if and only if Sl. The

claim that ANSs,(Tzo) 1, for all j 1, q, implies that assigns at least one TRUE
value and at least one FALSE value to each C in q. This completes the proof.

MODEL B’. We show that Determinacy-B is polynomial-time reducible to Deter-
minacy-B’.

Let an instance (p, Q) of Determinacy-B be given such that Q { T.Ij 1, q}
and each T is in 5ep. Define an instance of Determinacy-B’ as follows:

n: =2p; m:=2q; d: =p;

for eachj= 1, ,q, let Wj.:= {i+p]ieT.};

let Q’ := {T, Wj.Ij 1, ..., q}.

If Q is not determinant for Model B, then there are S, $2 60p such that S1 $2
and for each j l, q, ANSs,(T) ANS&(T). Define $3 := SI U {i + pli SI } and
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$4 := S U {i + pli $2}. Then, 5’3 4:$4 and IS3I Is41 p. Furthermore, for each
j= 1,...,q.

ANSs(T) ANSs,(T) ANSs(T) ANSs,(Tj.), and

ANSs(W) 2 ANSsI(T) 2 ANSs2(T) ANSs,(W).
So, Q’ is not determinant for Model B’.

Conversely, if Q’ is not determinant for Model B’, then there exist $3, $4 6’, such
that $3 4:S4 and for each j 1, ..., q, ANSs3(Tj)--ANSs4(Tj) and ANSs3(Wj)=
ANSs4(W). Since $3 4: $4, either $3 N {1,..., p} 4:$4 N {1,..., p} or $3 n
{p + 1,... 2p} 4:$4 N {p + 1, 2p}. In the former case, we define S := $3 N
{1, p} and $2 := $4 N {1, p}; and, in the latter case, S := {i[i + p $3} and
$2 := {ili + p $4}. Then, S 4:$2 but for each j 1, .-., q, ANSsI(T) ANSs2(T).
So, Q is not determinant for Model B.

MODEL C. We first simplify the problem.
LFMMA 5. Let Q= {TIj 1, ,m} be given such that Te 6t’n for allj 1,

m. Then, Q is not determinant for Model C, with respect to size n, if and only if there
exist S, $2 6 such that S U $2 4: , S1 N S2 and for each j 1, m,
Is, n n

Proof The backward direction is obvious. For the forward direction, we note
that if S’ and S are two sets in OQOn such that S’ 4: S and for each j 1, .-., m,
IS’l n TI ]S n Tj.]. Then, the sets S S’I S and S S S’ satisfy the re-
quired condition. []

We now show that One-in-three-SAT is polynomial-time reducible to the comple-
ment of Determinacy-C.

Let (U, cg) be a given instance of One-in-three-SAT such that U {x, xp},
((ff {Cl, Cq} and for every j 1, q, C

___
U and IGI 3. Without loss of

generality, we assume that every xi in U occurs in some Cj. in . Define an instance
(n, Q) of Determinacy-C as follows:

n:=p+9q+ 1;m:= 10q;
for convenience, for each j 1, q, and k 1, 2, 3, let

u(j,k):=p+9(j- 1)+k,

v(j,k):=p+ 9(j- 1)+ k+ 3,

w(j,k):=p+9(j- 1)+k+6;

also lety:=p+9q+ 1;
for each j 1, q, assume that C {xj., xj2, xj3 } (withj < j2 < j3), and define

T.o := { j, j2, j3, Y},

Tj,1 := { j2, j3, u(j, 1), v(j, 1)},

Tj,2 := { jl, ., u(j, 2), v(j, 2) },

Tj,3 := { j, j2, u(j, 3), v(j, 3)},
for each j 1, q, and each k 1, 2, 3, define

U,k:: {u(j,k),w(j,k)} and V,k: {v(j,k),w(j,k)};

let Q :: {Tzh, Uj,k, VzIj 1, q; h 0, 3; k 1, 2, 3}.
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Assume that is a truth assignment on U such that for each Cj e c6, assigns exactly
one TRUE value to the variables in C. Define two sets S1, $2 9n as follows:

S1 := {ill <-i<=p,t(xi) TRUE} to {u(j,k),v(j,k)lthe kth variable

xj. in C has t(xk)= TRUE} U {y},

$2 :- {ill _-< i<--p,t(xi) FALSE} U {w(j,k)lthe kth variable

x in C has t(x) TRUE}.

Obviously, St t,J $2 4 , St N $2 . We claim that for all R Q, [SI [") R[
[$2 71 RI. For each j 1, q, we check the following:

(i) IS1 Tz0l 15"2 f) Tz0[" Among { jl, j2, J3 }, one is in SI and two are in $2; and
y is in St.

(ii) For k 1, 2, 3, [S f’l T,k[ [52 f-I Tj-,kl" If t(x,) TRUE and t(xj2)
t(x3 FALSE, then u(j, 1), v(j, 1) are in S1. So, S1 C) Tj.,I {u(j, 1), v(j, 1)} and
S_ f’l T,I { jr, j2}; and s1 c r,2 SI c r,3 { jl }, $20 rj,2 { j3} and $2 fq T,3
{ j2}. The other two cases are similar.

(iii) For k 1, 2, 3, [St fq U,k[ [Sz (q U,k[ and [S N V,k[ [Sz V,k[" From the
definitions ofS and S, for any j 1, q and k 1, 2, 3, u(j, k) S , w(j, k)
$2 v(j, k) e S

Conversely, assume that Q is not determinant for Model C. Then, by Lemma
5, there exist S, $2 e On such that S U $2 4 , S fq $2 and for all R Q,
[St f) R[ IS2 f) RI. First note the following fact:

(iv) For allj 1, q and k 1, 2, 3,

u(j,k)eSl , w(j,k)eS2 v(j,k)eSt, and

u(j,k)eS2, w(j,k)eSl , v(j,k)eS2.

Next, we claim the following properties (v) and (vi).
(v) For anyj 1, ..., q, [St CI Tj,ol :/: 1.

Proof of (v). Assume otherwise that ISl T,o[ 1. Then IS2 fh T,ol 1. The
following case analysis shows that this leads to a contradiction.

Case 1. S1 f) T,o {jl }, $2 N Tzo {j}. Then, j2, j3 S, and j, j3 $2. So,
St CI Tj, St f"l {u(j, 1), v(j, 1)} and S fh Tj, {j2} to ($2 {u(j, 1), v(j, 1)}). By
fact (iv) and the fact that S 71 $2 , we can see that ISl fh Tzl] 4:[$2 Tj,[. This is
a contradiction.

Case 2. St T,o {jl }, $2 C’l T,o {y}. Then, j2, j3 S, and jl, j2, j3 $2. So,
St f Tj, {jl} tO (S1Ch {u(j, 2), v(j, 2)}) and $2 Tzz $2 N {u(j, 2), v(j, 2)}. Again,
a contradiction.

Other cases. All other cases are symmetric to either Case or Case 2.
(vi) { 1, p} c_ Sl tO 82
Proofof(vi). Assume otherwise that there is an i, _-< =< p, such that S1 tO $2.

Assume, without loss of generality, that x; occurs as the first variable in C for some
j 1, q; i.e., xi x.

Since jt St U S2 and S ("] $2 , IS1 [") Tj,ol IS2 Tj,ol 1. By claim (v),
S Tj,o $2 fh Tj,o ffS. So, y a St tO Sz. However, this implies that for all h 1,
q, ]Sl CI Th,o] 1S2 Th,0[ =< 1, and hence, by claim (v), Sl 71 Th,o $2 71 Th,o 25. This
implies that { 1, 2, ..., p} (St U $2) .

In addition, fact (iv) shows that for any h 1, q and k 1, 2, 3, ]Sl CI Th,l is
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either 0 or 2. Since IS A Th,kl 2 would imply that IS2 f3 Th,kl 0 and make

IS, f Zh,kl 4:IS2 f’) Th,l,

we must have S f) Th,, . As a consequence, S $2 . This is a contradiction,
and so (vi) is proven.

Now we complete the proof of the reduction. Since { 1, p}
_
S U $2, y must

be in S U $2. Assume, without loss of generality, that y S1. Define a truth assignment
on U by t(xi) TRUE if and only if e S1. Then, for each j 1, q, IS T,ol

IS2 ["] Tj,0[ implies that IS f3 T,0[ 2. Since y S1, IS f { j, j2, j3}[ 1. That is, there
is exactly one k 6 { 1, 2, 3} such that t(xjk TRUE. This completes the proof for
Model C.

MODEL Ak, k >_- 4. Assume that k >= 4 and that Q is a set of queries each of size <-
4. Then, Q is determinant for Model C if and only if Q is determinant for Model Ak,
because the answering functions for both models behave exactly the same on queries
ofsize _-< 4. In the above, for the problem Determinacy-C, we have actually shown a reduc-
tion from One-in-three-SAT to the complement of the following special case of Deter-
minacy-C.

DETERMINACY-C4. Given an integer n and a set Q of queries each of size _-< 4,
determine whether Q is determinant for Model C with respect to size n.

From the above discussion, this problem is also a special case for Model A. So, it
also proves that Determinacy-A is co-NP-complete.

MODEL C’ AND MODELA, k >_- 4. We can show that Determinacy-C4 is polynomial-
time reducible to Determinacy-C’ and Determinacy-A, for k >= 4. The reductions are
similar to the reduction from Determinacy-B to Determinacy-B’. The key point is that
for the answering functions for Model C and Model A, k >= 4, the following property
holds for all T of size =< 4:

ANSs(T) TI ANS#(T),

where S 1, n} S. This property allows us to carry out the reductions as in the
case for Determinacy-B’. We omit the details. (Note that the above property holds for
queries T of any size if we only consider Model C. However, for Model A, k >_- 1, it
only holds for queries T of size _-< k.)

5. Discussion. In the last three sections, we have demonstrated several NP-hardness
results on problems related to group testing. The NP-completeness of the consistency
problems and the #P-completeness of the counting problems show that the solution
spaces associated with arbitrary query histories have complex structures. The co-NP-
completeness of the determinacy problems shows that the recognition version of the
nonadaptive group testing problems is intractable. It is interesting to compare this problem
with the problem of finding a minimal determinant set for Model C, for which a poly-
nomial-time almost-optimal algorithm has been found by Cantor and Mills and Lin-
strSm 19].

While the complexity for the above three problems has been characterized precisely
for most models considered, we have left many more questions open. To name the most
important ones, we consider the following two problems concerned with the minimization
of the heights of decision trees in the generalized form.

MINIMUM TEST PROBLEM. Given a domain D, a query history H and an integer k,
determine whether there is a decision tree of height _-< k such that each path of the



776 DING-ZHU DU AND KER-I KO

decision tree uniquely determines an object in the solution space associated with the
query history H.

MINIMUM NONADAPTIVE TEST PROBLEM. Given a domain D, a query history H
and an integer k, determine whether there is a set Q of k queries such that each set of
answers to the queries in Q uniquely determines an object in the solution space associated
with the query history H.

In the above, the minimum test problem is the generalization of the basic shortest
decision tree problem we discussed in 1, and the minimum nonadaptive test problem
is the corresponding problem for the nonadaptive case. It is not hard to see that for
models considered in this paper, the minimum nonadaptive test problems are in Z, and
the minimum test problems are in PSPACE, where Z is the class oflanguages recognized
by nondeterministic oracle Turing machines in polynomial time relative to oracle sets
in NP [8], and PSPACE is the class of languages recognized by deterministic Turing
machines in polynomial space [8]. Furthermore, the proofs of the NP-completeness of
the consistency problems can easily be modified to show the NP-hardness ofthe minimum
nonadaptive test problems and the minimum test problems for the same models. In view
of the difficulty of getting optimal algorithms for these problems even for simple initial
solution spaces and the complex structure of general solution spaces, we conjecture that
the minimum nonadaptive test problems for most models are Z-complete and the min-
imum test problem for most models are PSPACE-complete.

Other interesting questions include the following:
(1) Instead of the query history, we may use different representations for a solution

space, for example, by listing its elements explicitly. What are the effects ofthese different
representations of solution spaces on the computational complexity of the questions
considered here?

(2) Do these NP-hardness results hold for the group testing problems with respect
to the average-case complexity?

(3) Can we prove completeness results for other searching problems which involve
the minimization of the heights of decision trees?
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SOFT DECISION DECODING ALGORITHM*
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Abstract. A recursive soft decision maximum likelihood Hadamard transform decoding rule for binary
code is derived. This algorithm, with computational complexity that varies inversely with the code rate for a
fixed code length, is efficiently applicable for decoding convolutional codes and high rate block codes. An even
more significant reduction in decoder complexity is obtained when the algorithm is applied for decoding product
codes and concatenated codes. This algorithm achieves the computational efficiency of the Viterbi algorithm.
In addition, its structural regularity simplifies the VLSI implementation of decoders.

Key words, maximum likelihood decoding, soft decision, Hadamard transform, error correcting codes
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1. Introduction. Let c be an (n, k) binary linear block code of length n and di-
mension k, and let g;, 0, 1, n 1, be the columns of the generator matrix G of

that represent the encoding, i.e., a message s GF(2)k is mapped onto c according
to c sG. Denote the real line by R. Assume that codewords with equal probability 2-k

are transmitted through a memoryless channel characterized by transition probability
densities j(v) f(vlj) where v 6 R and j GF(2). Let v (v0, I)1, l)n-1), /)i R
be the word observed at the output of the channel. Our aim is to find a codeword c

n-I
(Co, cl, Cn-l) qg that maximizes the probability density f(vlc) I-Ii=0 f(vilci).
As is shown in [1 ], we may instead seek s GF(2) that maximizes M(-) given by

n--I

(1) M(s) (-1)(s’g’)#(1)i)
i=0

where (., -) stands for inner product over GF(2) and #(v) log (fo(v)/f(v)). (In the case
ofa discrete output-alphabet, that replaces R, the same expression results except that the
log-likelihood ratio t(" is defined in terms of transition probabilities.) This procedure
requires (n 1)2 + (2- 1) n2k- addition-equivalent operations, where 2k-

accounts for the complexity of maximization. By slight modification becomes a Had-
amard transform, thereby allowing reduction of computational complexity with the aid
of a fast algorithm ].
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In this paper we assume that is generated by a k n matrix G which possesses
the following double-echelon structure:

(2) G

/

G(2)

--I

ql

G(l + l)

ql+

+/-

T
APl

G(N)

where N> (actually, N>> in most applications). Above and beneath each submatrix
G() of dimension k n are situated Pt, respectively, ql zero rows, where Ev= nl
n, p qN 0 and pl + kl + q k for all 1, 2, N. Furthermore, assume that

(3) p<pt+ <p+ kl, 1,2, ,N-

and

(4) q<q_<qt+kt, l=2,3, ,N.

Considering the replacement of (3) by pt -< Pt+ =< Pt + kt we observe that (a) elim-
ination of pt p+ by joining the submatrices involved decreases the complexity of
decoding (see (30)) and (b) p/ pl + kt implies that a segment of length Pt+ of the
message word and its remaining segment are encoded, and therefore may be decoded,
separately. Relaxation of (4) is abandoned for similar reasons. It proves useful to define
PN/ PN + kN k and q0 k + q k. By this convention and (3)-(4) all the
increments

APl=Pl+--p, Aql=q_--q, 1,2, ,N

are positive (ApN kN and Aq k).
A recursive decoding algorithm based on the Hadamard transform for a code with

generator matrix G given by (2) is developed in 3. In subsequent sections, application
to convolutional codes, high rate block codes and combined codes are discussed. A simple
example is provided in 7.
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In all the cases considered the algorithm has a pronounced structural regularity, a
feature particularly important for VLSI implementation. The Viterbi algorithm, when
applied to block and combined codes [6], [7], [9], [10], is less regular in general. On the
other hand, both the computational complexity and the memory requirement ofthe two
algorithms turn out to be equal.

Application of fast Hadamard transform for maximum likelihood soft decision de-
coding was introduced in [4] (see also [8] and [5, p. 419]), where first order Reed-Muller
codes are considered. In [2], a generalization to binary block and convolutional codes is
described. A more efficient utilization of the Hadamard transform for decoding block
codes with low to moderate dimensions, by exploiting the existence of certain kinds of
codewords, is presented in ]. This technique, applied to each G(l) in (2) may, in principle,
result in substantial savings at the expense of regularity. However, no such reduction of
complexity is apparently available for a typical code of the kind considered in 4-6.

2. Preliminaries. For any y (Yo, Yt, Yi-) GF(2) let b(y) Zj- yj2 j. The
all-ones vector oflength 2 is denoted Ei, and E is an all-ones vector ofunspecified length.
H; is the 2 X 2 naturally ordered ([5, p. 44]) Hadamard matrix, and (R) stands for the
Kronecker product.

Consider first the following partitioning of G:

(6) G--(GIG2 GN)

where G is a k nl submatrix; l 1, 2, N. Let {g} be the columns of Gl, and let

(7) u}
0, a}=

where A} {i: b(g) j} forj 0, 1, 2k 1. Denoting

2k-
l*

Z
j=0

where g* GF(2)k is defined by b(g*) j, (1) becomes M(s) v= Ml(s). Let

Ul=ulH, l 1,2, ,N

where

The following result is immediate.
LEMMA 1. For a code with generator matrix given by (6), M(s) given by (1) is

equal to thejth component, wherej b(s), ofU = U(
Now assume that G is partitioned as in (2), i.e.,

Gl= l) 1,2,... ,N

where the upper and lower 0 submatrices have pl and ql rows, respectively. Denote u(
(t) (1) (l) (l)(Uo u u,_ ), where u is defined similarly to u in (7) according to the columns
(l) (l) (l) (l)

gi } ofG and write U u H.
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LEMMA 2. U and Uq) satisfy thefollowing relationship:

U Eq () U(I)@ Ept.

Proof Write et for the vector with entry in its 0th (leftmost) location and zero in
its remaining 2t- locations. Obviously b(g) b(gt)) 2pt < 2kt+ m. Therefore, regardless
of Gq), Aj for allj 0, 1, 2k such that j :/: j’2p’ where j’ 0, 1,
2k 1. Thus, it follows that u eqt @ u(t) (R) %. Hence, by a known property of the
Hadamard matrix,

U= (eq,(R)u(R)%,)(Hq,(R) Hk,(R) Hpl).
Due to the associative law of the Kronecker product and the property

([5, p. 421 ]) it follows that

thus completing the proof.

(A (R) B) (C(R) D) (AD) (R) (BD)

U (eqlnql)()(u(l)nkl)()(eptnpt),

COROLLARY. M(S) given by (1) is equal to the jth component, where j b(s), of
N

(8) U Eq,() U(I)() Epl.
/=1

DEFINITION. Denote Kt {0, 1, }. For a positive integer v and a positive
divisor r thereof, let the operator of maxima evaluation over segments of length r,
Mer: R" "-* R"/r, be defined by

Mer(V) (Vj0, Vj,’’-, Vj(r]r) 1)

where

(9) V= max {Vi:i=lr, lr+ 1,... ,(l+ 1)r- 1}, l=0, 1,---,(v/r)- 1.

Also, let corresponding operators of locations designation Ldr*" R"’- gff and
Ldr" R" gr/r be given, respectively, by

Ldr* (V) (jo, j, Jo,/r)- ) and Ldr(V) Ldr* (V) (mod r),

where each jl satisfies (9) and is otherwise arbitrarily selected (in case the maximum is
attained at several locations).

For V of length v, Me,(V) is the value of a maximal component of V, and
both Ld* (V) and Ld,(V) represent the location of such a component. Also, Me(V) V,
Ld(V) 0 and Ld(V)= (0, 1, u 1). The following properties are easily verified.

(A) For a divisor r of v

(10)

and

Mer(E@ V) E@ Mer(V)

Ldr(E V) E Ldr(V).

(B) For positive integers r and r2 such that r r2 divides

(12) Merlr2(V) Merl[Mer2(V)],
and it is possible to resolve the arbitrariness of Ldr[Mer2()] and Ldr2(V) for a specified
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Ldr, r2(V) such that

(13) tdrlr2(V) Ldq[Mer2(V)].rg_ + {Ldr2(V)}Lr,[Mer2(V)l
where {X}z for any X e R" and Z e gr/r is given by

{X}z (Xzo,X + Zl, X2r + z2, ,Xl_r+ Z<,/r,-1)"
(C) For X and Z as above

{E (R) X}z {X}z(mod(14)

and

() {E(R)X}w(R)z E(R)({X}z).
Note that (13) is a useful expansion of Ldr, r2(V) whenever all possible resolutions

are equivalent. Computation of Mer(V) requires (,/r)(r- 1) additions. Since

---u (rl r2 1) L(r2 1) +(rl 1),
rr2 r2 rr2

evaluation ofthe two sides of(12) bear the same computational complexity. By induction,
maximization performed in several steps, at each step over segments of equal length that
constitute the whole vector, does not alter the complexity.

3. A recursive algorithm. For convenience we shall write

Me2, Mr, Ld, L?, Ld2, Lt.
Expressed in the new notation, propeies (10)-(14) retain their shape except for obvious
changes, such as products of subscripts being replaced by their sum.

LEMMA 3. Let V) R2a and V2) Rz where a b. Then for p b a and any
integer r such that p r b

(16) Mr(V(1)EvWV(2))=Mr_v(V(’)WMv(V(2))).
Furthermore,for a specked Lr(V) Ev + V2)) the arbitrariness ofLr_v(V1 + Mv(V2)))
and L(V2)) may be resolved such that

(17) Lr(V(’) Ev + V(2)) Lr_ v(V (’) + My(V(2))) 2v + {Lv(V(2))}L,_(v,)+ Mv(V2))).

Proofi According to (12)

Mr(V’)E+V% Mr_(M(V’)E+ V))).

It is straightfoard to check that

(18) M(V’) E+V2)) V’) + M(V2)),

yielding (16). By (13)

Lr(V() Ev + V(2)) Lr_v(Mv(V(’) Ev + V(2))) 2v

+ {L(VI)E+ V2))}r_V, r+

and (17) follows by (18) and

Lp(V(I)( Ep -]- V(2)) Lp(V(2)).
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ALGORITHM.
(a) Evaluate Mk(U) Mk(W(u)) with the aid of the forward recursion

(19) W) U),
Wt)= Ut)+Eut(R)Mt_(Wt- )), 1=2,3, ,N

and store the location vectors {La,(Wt))} (or {L*p,(Wt))}).
(b) Trace back for L(U) I using the recursion

(20) IN= Lku(Ww))’

Ii=Ii+ l’2zxPt-+ {LAp(w(l))}lt+(modZq-zxO, I=N- 1,N- 2,

and set s to be the k-bit radix-2 expansion of I. Alternatively, proceed according to the
following backward recursion:

(2 la) Ju-- Lcv(W(U)),

(21b) Jt= {L*pt(w(l))}jt+,(modZ,-a,), l=N 1,N-2, 1,

and write

(22) s=(s,s2, ,SN)

where s is the Ap bit radix-2 expansion of

(23) i Jt(mod 2’), l N, N- 1, ..., 1.

Proof Referring to (8), let

j=l

Obviously (u M(U). By writing

Y()=Mz,+ U()(R)Ept+ Eq-qt(U(J)()Ep
j=l

applying (16), the relationship q q (q q_ ) +/Xq and (10), it follows that Yet)
Mav(U) + Eau (R) Y-)). This yields an N-step recursive procedure for evaluating
M(U):

(24) Y) 0,
Yt)= Mp(U) + Eaq(R)Yt- )), l= 1,2, ,N.

Denote

(25) W)= U)+Exq()Y-), l 1,2, .--,N.

Then Y) Map(W)), concluding the proof of step (a). Now let

(26) It= L,_t, Eqj()U(J)()Epj_pt-l-Eqt_ ()Y(1-1) l= 1,2, ..-,N.
J

Then 11 L(U), the location of a maximal component of U. In view of the corollary,
s is thus obtainable by expanding 11 in radix-2. Proof of the recursion (20) is deferred to
the Appendix. Consider the partitioning (22) of s, where st has length Apt and let
it b(st). Since each component ofLAm(W(t)) is smaller than 2ap, it follows by (20) that
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(27)

and

(28)

Define

it: {LAp,(W t)) } 11 l(mod 2 kt- apt), l= 1,2, ,N-1

It It+ ’2aPt+ it, l= 1,2,-.. ,N-1.

N

(33) A 2 k’.
l=1

Furthermore, in this case the memory requirement, dominated by the length of the
longest vector in (19) and by the lengths of the location vectors in either (20) or (21), is
nearly

N-I

(34) B= 2(k--Ap)max-[ Z 2:1-APi
1=1

symbols, where (k Ap)ma max {k zXpt: l 1, 2, N- }. Evidently,

B < N. 2(g- AP)max N N- 2 kmax

and

(29) Jt {L*Ap,(Wt))}II ,(mod2kt-att), N- 1,N- 2, ...,
and Ju is given by (21a). Then (23) obviously holds; in particular iN Ju IN. By (27)
and (28)

It lit + 1" 2-1- al)l21- a. 2 ap+ Jt
and, due to (4), k_ Ap_ < kl. Consequently (21b) and (29) are the same, thus
concluding the proof.

Application of this algorithm is straightfoard and simple once the submatfices
are determined in a generator matrix of with double-echelon structure (2). This is
demonstrated in 7. Notice that the trellis-representation of a code, used for application
of the Viterbi algorithm, is also nonunique [6], [10].

The computational complexity A of the algorithm is dominated by (19); hence it is

ve closely

2

N

[ 2t_, ](30) A=k2*’+ kz2*’+ ah_i(2 ap’-’- 1) +(2ku- 1)
l=

addition-equivalent operations. Since G (2 am 1)/2 am < for all 1, 2,.-.
N- due to (3), the following tight bound is obtained:

N

(31) A < Z (kt+ 1)2.
l=1

Frequently n < k. Then direct, rather than fast, transfo evaluation ofU(/) is preferable,
allowing replacement of k2 in (30) by (n- 1)2 and even by (nl- 1)2nt (the latter
since entries in U(/) are repeated). Thus for the case n < kt, 1, 2, Nwe conclude
that

N

(32) A < nt2 k’,
l=1
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where kmax max {kl: 1, 2, N}. When fast Hadamard transform is used, then
the first term in the fight side of (34) has to be replaced by 2 kmax, and B < N. 2 kmax. In
summary, compared to the basic algorithm in [1 ], a computational complexity gain as
well as memory reduction of 0(2- max) is achieved.

It seems difficult to obtain a recursion expressed in terms of { it}. However assume,
for example, that kl < APl + APl+ + APl+ 2 for all 1, 2, N- 2. Then repeated
use of (28) and substitution into (27) yield

iN Lku(W(l)),

(35)

where

iN-1 (Lapu_t(W(N- l)}iN(mOd2kr-,-aPv-,),

it {Lap,(W(t))}jt, l=N-2,N-3,

jt it + 22 apt +’ + it + (mod 2t- Apt).

4. Decoding of eonvolutional codes. Let cg be the rth truncation of a binary (7, K)
convolutional code with memory m and polynomial generator matrix =0 Gixi. Then
a Kr by n(r + m) binary generator matrix of cg is given by

(36) G

Go G Gm

Go G Gm 0

0 Go G Gm
Go G Gm

and, assuming r > m + 1, it obviously admits the representation (2) with the follow-
ing parameters: N r- m; kt K(m + 1) for l 1, 2, N; nt r/for l 2, 3,
N- andn nL= r/(m+ 1); Apt= Kforl= 1,2,...,N- andAqt= Kforl=
2, 3,... N. In particular, (G(t))v= (GrmGm_lT G) for all 2, 3, N- 1,
where a superscript T indicates transposition. A time-varying convolutional code is rep-
resentable by a matrix structured similarly to (36), and consequently by the same values
of parameters, but G(t) varies with in general. Version (35) of step (b) is applicable if
m =< 2; otherwise a suitable generalization of it may be adopted.

According to (31)

A < (r- m)(Km + K + 1)2 (m ).

Typically for good convolutional codes, the memory m exceeds the inverse of the rate
K/r/. In this case, nt < kt for all 2, 3, N- and the following counterparts of
(32) and (33), respectively, are obtained:

(37) A < r(r + m)2(m+ ),

(38) A (r- m + 2)2(m+ )

where for obtaining (38) the zero-zones of G(l) and G(u) must also be exploited. The
complexity of the straightforwardly applied Viterbi algorithm is given approximately by
the fight-hand side of (37), but a closer look [3] at the trellis diagram reveals possible
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simplifications that lead to (38). The memory requirements ofthe Viterbi algorithm and
the algorithm derived here are also approximately equal.

5. Decoding of high rate block codes. Let c be a (n, k) binary linear block code
such that k < n < 2k 1. It can be shown that there exists (a generally nonunique)
equivalent code generated by

(39)

1X XX

1X" XX

lx... xx
lx... xl

where each x stands for either 0 or l, irrespective of the value of other entries denoted
by x. Such a matrix corresponds to a time-varying version of (36) with substituted for
both r/and r, k for r and n k for m. A time-invariant version results whenever is
cyclic.

Thus, aside from post-multiplication by a constant matrix (and pre-permutation of
labels), the complexity is given by

(40) A (2k- n + 2) k + .
Since nt 1, except for and 2k n, (40) is practically an equality. The algorithm.
derived in 10] has about the same complexity and memory requirement as the algorithm
presented here, but the latter is distinguished by a structural regularity not found in 10].
Regularity is particularly important for VLSI implementation. For high rate but rather
short codes the approach of may prove to be more efficient.

6. Decoding of combined codes. Consider first a product code with generator
matrix

(41) G Ga@ Gb
where Ga and Gb are, respectively, the generator matrices of a binary (na, ka) code
cg and a binary (rib, kb) code b- It is possible to use Algorithm A of [1 if 2kakb <=
nanb + 1, with complexity kakb2’’, whereas, if 2kakb > nanb + 1, we may resort to the
algorithm derived here, with complexity (2kakb nanb + 2)2"ane-’a’e + 1. However, as-
suming that ka < na < 2ka 1, select for Cga a generator matrix that possesses the
pattern of(39). Then G given by (41) has the double-echelon structure (2) with the follow-
ing parameters: N 2ka na; n rtN nb(na ka + 1) and nt nb for l 2, 3,
N- 1;kt=kb(na-ka+ 1) forl= 1,2,-..,N;Ap=kbforl= 1,2,--.,N- land
Aqt kb for 2, 3, N. Hence by (31)

A <(2ka-na)[kb(na-ka+ 1)+ 112 h’tn’-ka+l).

For the frequently encountered case where nb < kb(na--ka + 1) we obtain A
(2ga-na + 2)2 ko(na-ka+l). If b, rather than Ca, is a high rate code, then write
Ga @ Gb Pb(Gb (R) Ga)Pa where Pa and Pb are permutation matrices. Re-
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duced complexity thus results by adopting Gb Ga, a columns and rows permuted
version plGP21 of G, as generator matrix.

Now let (9a be an (na, ka) binary code with generator matrix G, and let b be an
(rib, kb) q-ary code, where q 2 k., with a binary kakb by kanb generator matrix Gb. Denote
Ga I (R) G’a where I is an nb-dimensional unity matrix. A binary (nanb, kakb) concatenated
code is generated by

(42) G GbGa.
The practically interesting case is: the inner code (9a is of lOW rate whereas the outer
code b has high rate, i.e., 2ka =< na + and 2kb > nb + 1. Then we may assume that
Gb has the pattern of (39). Hence, G given by (42) possesses the double-echelon structure
(2) with the following parameters: N 2kb nb; n nN na(nb kb + 1) and nt na
for l 2, 3, ..., N- 1; kt ka(nb kb + 1) for 1 1, 2, ..-, N; Apt ka for 1
1, 2, N- and Aqt ka for 2, 3, N. The computational complexity of
decoding, assuming Ha ( ka(rlb kb + 1), is approximately (2kb lib + 2)qnb- lob + .

Comparison of the results presented in this section with the corresponding algorithm
in [7] and [10] reveals nearly the same complexity and memory requirement.

7. An example. Consider a code generated by

ll01
ll01 0

(43) G 1101

0 111
1111

There are several ways of partitioning this matrix in conformity with the double-echelon
structure defined by (2). Let us adopt the following:

(44a) G(= 01101
00110

(44b) G(2)= (1)
(44c) G(3) ( 11111]100].
Then kl 3, k2 k3 2, Ap 2, Ap2 1, Ap3 2, Aq 3 and Aq2 Aq3 1.
Assume that application of the log-likelihood ratio (-) to each entry of the received
vector v yields the following values:

(45) (3, -4, 6, 2, -31519, -7, 1,8),

listed in an order identical to the order of the entries of v. The partitioning in (45),
indicated by vertical lines, corresponds to the partitioning ofG expressed by (44a)-(44c).
Now, by the definition that precedes Lemma 2,

ut)= (0, 3,-3,-4, 0,2, 6, 0),

I1(2) (0, 0, 0, 5),

u(3) (0, 0, 7, 2).
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Hence

According to (19)

U(1) u()H3 (4, 2, 6,- 12,- 12,-6, 14,4),

Ut2 ut2H2 (5, -5, -5, 5),

U (3) 11(3)H2 (9, 5,-9,-5).

W() (4, 2, 6,- 12,1-12,-6, 14,4),

Wt) (5,-5,-5, 5)+(, )(R)(6, 14)= ( ,91, 9),

Wt3) (9, 5, -9, -5) + 1, 1) (R) 11, 19) (20, 24, 2, 14),

where vertical lines mark the separation into the segments over which the maxima were
evaluated. Since L2(W()) (2, 2), LI(W (2)) (0, 1) and L2(W(3)) 1, it follows by (20)
that

/2 1.2 + {(0, 1)}l 3,

Ii 3"22 + {(2, 2)}3(rood2) 14.

Consequently,

(46) s (0, 1, 1, 1,0).

Noting that L’(W)) (2, 6), L’(W2)) (0, 3) and L{(W (3)) 1, the alternative inverse
recursion (21 yields

J3=l,

J2= {(0,3)} 3,

Jl {(2, 6)}3(mod 2)= 6.

Hence by (23) and (22)

s (OlllllO),

in agreement with (46).
We remark that, for the foregoing illustration, we deliberately selected a small code

with its generator matrix partitioned such that the decoding procedure exhibits a slight
structural irregularity. Notice, however, that this code is not of the types considered in

4-6.

Appendix.
Proof of (20). By (26) IN Lkv(W(N)). Due to pj Pt (Pj Pt+ l) + APt and

qt + Aqt

(NII= Lk-pt

_
Eq(R) U<J)(R) Ep-pt+ ,)(R) E,xpt+ Eq(R)(U(t) + EAqt(R)Y <t- l))

j=l+l

Thus by (14), (17) and (24)

II=Lk-pt+, ., Eqj@U(J)@Epj-pl+lWEqt@Y(t) "2AP+XI
j=l+l

II+ "2aPt+Xt
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where in view of (15) and (25)

X= {E#,(R) La,(W))},+ ,.
The result now follows by (14).
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ON ONE-SIDED JACOBI METHODS FOR PARALLEL COMPUTATION*
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Abstract. Convergence proofs are given for one-sided Jacobi/Hestenes methods for the singular value
problem. The limiting form ofthe matrix iterates for the Hestenes method with optimization when the original
matrix is normal is derived; this limiting matrix is block diagonal, where the blocks are multiples of unitary
matrices. A variation in the algorithm to guarantee convergence to a diagonal matrix for the symmetric eigenvalue
problem is shown. Implementation techniques for parallel computation, in particular, on the hypercube are
indicated.

Key words, parallel computation, one-sided Jacobi methods, Hestenes method, multiprocessors, hypercube,
singular values, eigenvalue problem
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1. Introduction. We recently became interested in one-sided Jacobi methods for
the parallel implementation of a program for finding the eigenvalues (and/or singular
values) of an n n (or r n) matrix on a hypercube. We had first considered using a
block, or "patch," distribution ofthe data among the nodes. However, in order to compute
both the left and fight rotations of a similarity transformation, we were faced with the
necessity of sending, for each rotation, small amounts of information both horizontally
and vertically across an array of processors.

After writing programs for both one- and two-sided procedures, we decided to in-
vestigate further the one-sided algorithm developed originally by Hestenes [6], and cited
most recently by Brent and Luk for which a "strip" distribution of data is possible.
The use of this strip data distribution of columns allows each processor to contain all
the information needed to determine and to perform a rotation. This computation is, in
addition, highly vectorizable. The columns of the matrix and the associated vectors may
then be sent to other processors to perform subsequent calculations; a substantial amount
of computation is thus performed in each processor before communication is necessary.

Hestenes was primarily interested in matrix inversion, but his biorthogonalization
technique was naturally applicable to the singular value problem, not the symmetric
eigenvalue problem. The Hestenes procedure, given a matrix A, finds an orthogonal
matrix V such that A V has orthogonal columns. Hence, (A V)t(A V) Vt(AtA)V is diag-
onal. We proceeded with an implementation to obtain eigenvalues, hoping that VtA V
would be diagonal for those matrices, A, which we believed likely to occur in the appli-
cations in which we were interested. We soon found a set of matrices, from the chemical
problem in which we were interested, for which this is not true. We investigate here the
form that VtA V does take in general.

As a result we find a new bound and proof of convergence, which includes an
ordering of the singular values in the limiting matrix, as well as the form of the limiting
matrix of VtA V when the original matrix is square and normal.

Finally, we present a slight change in the rotational parameter which, in the sym-
metric case, ensures convergence to the diagonal matrix of eigenvalues, and which is
amenable to implementation on multiprocessors, and on the hypercube in particular.

Received by the editors August 4, 1986; accepted for publication (in revised form) July 30, 1987.
Department of Computer Science, University at Buffalo, State University of New York, Buffalo, New

York 14260.
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Thus we are able to compute the actual Jacobi parameters at no greater cost than that
of the Hestenes procedure. Finally, this technique is available to any Jacobi procedure
which uses only local matrix information for the computation of the rotational angle,
as, for example, in the nonsymmetric case.

A number of papers, besides that of Hestenes, have referred to, or reinvented, this
one-sided Jacobi procedure over the years: Chartres [2], Eberlein [3], Kaiser [7], Nash
[8], and most recently, Brent and Luk ]. The motivation ofthe above-mentioned authors
is varied. Brent and Luk cite the "Hestenes" procedure as a potential one for the deter-
mination ofsingular values in the parallel setting ofa linear array ofprocessors. Chartres,
Eberlein and Nash recommended the procedure when external memory was a necessity,
i.e., when the problem size exceeded the internal memory of the machines available.
Kaiser appears to have believed that he had invented a new Jacobi-type procedure, the
"JK Method" (Jacobi-Kaiser?) for finding the eigenvalues ofa square symmetric matrix.
Both Nash and Kaiser seem to have assumed that VtAV would be diagonal when A is
symmetric. Ordering ofthe roots is mentioned by Eberlein, Kaiser and Nash as a byproduct
of regarding the procedure as an optimization problem.

The lack of interest in these procedures over the years is most certainly due to their
poor performance on serial machines, for which they are not recommended.

2. The algorithm reviewed. We review the "one-sided" Jacobi algorithm, and es-
tablish notation. We consider the case ofan r n matrix A for which the singular values,
or eigenvalues (r n), and corresponding vectors are to be determined. We consider the
sequence

Ai+l--AiRi,

where A0 A and R; is an n-dimensional plane rotation. We define an n-dimensional
plane rotation, R (ri,), by

rk,k rm,m COS b ,
(1) rm,k --rk, sin ok=s, <- k < m <= n,

ri,j ii,j for i, j 4: k, m, where 6i, is the Kronecker delta.

Because all operations we use involve the columns of A, we represent the matrix A in
terms of its columns: A (al, a2, an). We consider a single transformation A’ AR.
The multiplication of A on the fight by a rotation R affects only the columns of the
product A’. We have

(2)
ak’= ak "-[- Sam, vk’= Cvk -’l- SVm,
am’ --sak + cam, vmr --svk -i-- cvm.

Initially, we set V (v 1, vz, v n) =/, and thereafter, V’ VR, as above. The matrix
V is used to accumulate the product of rotations. (Note that the vectors a and v can be
updated as a single vector.) The Hestenes angle for the rotation R is chosen to annihilate
(AtA),,m as for the usual Jacobi method acting on the matrix AtA. We have

(3) tan 2th 2(ak, am)/(llakll 2- [laml[ 2)

where (ak, am denotes the inner product between the vectors ak and am, and Ilakll 2
(ak, ak). As is well known, the equation for tan 2 has two solutions for tan . Letting
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tan 2b 1/a, then the smaller (or the larger) of the two solutions may be found by:

ts := 1/(Io1 + V’( + az));

(4) if a < 0, then t := -ts;

if (Large angle desired) then tL --1/&;

C 1//(1 + 2) and s t*c.

Note that the same angle may be regarded as maximizing ak’[[ 2, provided that the smaller
or larger angle is appropriately chosen. The potential use of the larger angle has been
mentioned by Rutishauser [9], for sorting the eigenvalues, as well as by Eberlein [3] and
Nash [8].

3. Convergence proofs. We introduce a lemma, which gives us a new bound for
convergence in the theorem which follows.

LEMMA. LetA be an r n real matrix, r >- n, andR an n-dimensionalplane rotation
in the (k, m), <-_ k < m <-_ n plane. Let A’ AR, and let tan 4for the rotation be chosen
so that (ak’, am’) 0, and such that [[ak’[I 2 is maximized, i.e., if [lakll 2 Ilam[I 2 < 0, then
tz is used. Then

(llak’ll z- ak Z) >_- (ag, am)Z/max ([lakll z, Ilamll2).

Proof Because Ilakll 2- Ilamll = has the same sign as cos 24), straightforward com-
putation leads to

[[ak’[[ 2- 1/2[llakll2 / Ilaml[ 2 / (llakll 2- [[amll z) cos 2 + 2 sin 2 (ak, am)].
Using our choice of , we have

2(llak’[I 2 --I[akl[ z) Ilakll 2 + [lamll 2 + V[(llakll 2- Ilamllz)z + 4(ak, am)2] 2llakll .
Letting Q (ag, am) and p2 ilakllZ ilall21, we have

2(llak, ll2_ [lakll 2) ilakll, + Ilam[[2 + /(p4 + 4Q_)_ 2liakllZ
>= _e2 d- ](e4 d- 4Q2) 402/(Pz + ](e4 + 4Q2)),

because (_p2 + /(p4 + 4Q2)) (p2 + /(p4 + 4Q2)) 4Q2. Hence,

2(llak’ll 2- [lakll ) >_-- 4Q2/(1 I[akll z- Ilamll21 + /(llakll 4- 211akllZllamll 2 + Ilamll 4 + 4 (ag, am)2)),
and, using the Schwartz inequality, (ak, am) <- Ilall Ilamll, we obtain

(llaZll ’-- Ilall2)>_-2(a, am)2/( Ilall 2- Ilamll21 + Ilall 2 + Ilamll 2)
(ak, am)2/max ([[akll -, [[am[[2).

We use this lemma to prove the following theorem.
THEOREM 1. Let A be a real r X n matrix, and let Ai ARR2 Rg. If each

rotation is chosen to maximize the 2-norm ofthe kth column in Ag as described above,
and the pivot pairs, (k, m), <-__ k < m <= n, are chosen so that every possible pair occurs
in some regular order in every sweep, then the matrix A V, where V RR2 Ri,
converges to a matrix, say B, such that BtB VtAtAV diag (r2, tr2, a2n), the
singular values ofA, where r2 >= r >-_ >= r.

Proof Let S [Jail[ 2 + [[a2[I z + + [laJ[[ 2 for j, _-< j _-< n- denote the sum
of squares of column norms for iterate Ai. We omit notation for i, though it should
be understood. We will use the above lemma to show that each Sj. forms a bounded mono-
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tone increasing sequence, which approaches a limit in which (aj, am) 0, for all j :/: m,
<=j<m<-n.
We note first that any rotation R with pivot pair (k, m), k < m, changes the norms

ofonly the kth and mth columns. The kth column is increased as indicated in the lemma
while the mth column is decreased by the same amount. Since rotations are orthogonal,
the norm of the matrix AR remains unchanged and provides an upper bound for the S.

If j 1, then $1 is increased by any rotation with (k, m) (1, m) and remains
unchanged by any other. $2 is unchanged by the rotation R with (k, m) (1, 2), increased
by a rotation with (k, m) (2, m), and left unchanged by the remainder. Similarly Sj is
increased by rotations with pivots (j, m) where m > j; all other rotations leave S un-
changed. Hence, if all possible pivot pairs appear in each sweep, all the S are mono-
tone increasing and approach limits, in which, by the lemma, [(a, am)l approach zero
j < m =< n. Letting A V B, we have BtB is diagonal. All the lib: - also must approach
limits since S IIb -, s2 IIb = / lib2112 approaches a limit, and hence so does lib2112.
This is similar for the others. We also have IIbll 2 >_- 111)2112 >- >_- IIlll 2 because we
have chosen the larger angle whenever Ilall 2 < Ilamll z, for j < m. The theorem follows.

We note that in the above argument no special ordering of pivots is used.
We now assume that A is square and normal and ask if VtB VtAV assumes any

special form. In particular, we are interested in VtB VtA V when A is symmetric.
THEOREM 2. Let the hypotheses of Theorem hold but let A be a square normal

matrix. Then VtB VtA V is block diagonal, where the blocks are multiples oforthogonal
matrices.

Proof Let the matrix B A V. Because the columns of B are orthogonal we have
d2 >_ 2BB diag (,i), where d2, d2,2 > > d2,.. Assume for the moment that d2,. > 0,

and define P BD-. P is orthogonal since PP I. Now B PD, and A PDV. Since
A VDU, and A is normal, we have

AA (PDV’)(VDP) VDPt)(PDVt) AtA, or

pD2U VD2Vt.

Thus, (Vtp)D2 D2(VtP). Since the orthogonal matrix Vtp commutes with D2, we have

2 2V [)i,j(di,i- dj,j) 0 for all :/:j.

If all Idi2,il are distinct, then Vtp is a diagonal, orthogonal matrix, and VtB VtA V
VtPD is also diagonal. If the Idi,il are not distinct, then VtA V will be block diagonal, the
blocks being multiples of orthogonal matrices.

Suppose now that Idi, 0, r + n. The corresponding column norms of
B are zero, and hence the column elements themselves must also be zero. We proceed
as above except that we define P and D somewhat differently to avoid using D-. Define
D diag (di,i) diag (llb’ll Ilbrll, 0 0), and P (bl/dll br/dr,rO 0) so that
again, B A V PD. Now UP lr, bounded by zero elements. This change, however,
does not prevent the above proof from following exactly as before, and again we find
that Vtp commutes with D2. The corresponding conclusions follow.

We note in passing several points. If the pivot pairs are limited to =< k =< k’,
-< m -< n, (k < m), then we will obtain similar results for the k’ largest singular values

2(or eigenvalues), provided dk,,k, is distinct from d,/ ,k, / . To obtain the diagonal elements
in increasing order, we need only minimize the Sg instead of maximizing them. The
latter two remarks hold also for singular values of an r n matrix, r > n.

Nash [8] mentions that the one-sided method may be used for symmetric matrices
but that it may fail for singular matrices. We see no problem for singular matrices but
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rather for matrices having eigenvalues of equal absolute value. For example,

b -a 0 0 a 0 -b 0
0 0 -a b or

0 -b 0 a
0 0 b a b 0 a 0

We also mention a set of symmetric matrices, which appear in chemical applications,
which exhibit this property: these matrices are zero everywhere except on the subdiagonal
and superdiagonal, and in the (1, n) and (n, 1) positions, where they have entries of one.
When the above-described one-sided Jacobi algorithm is applied to these matrices, we
obtain unitary blocks of larger sizes.

For one of these matrices, when n is 8, after 26 rotations, we obtain a 2 2 block:

0.00 2.00/,
2.00 0.00/

a 4 4 block:

0.000000000 1.333649366 0.000000000 0.470509690
1.333649366 0.000000000 -0.470509690 0.000000000
0.000000000 -0.470509690 0.000000000 1.333649366
0.470509690 0.000000000 1.333649366 0.000000000

and two all zero rows. No problem occurs, although the matrix is clearly singular.

4. An algorithm for symmetric matrices. To implement a Jacobi procedure on the
hypercube or a linear array of processors, the one-sided Jacobi algorithm offers many
advantages over the block implementation. However, we wish to obtain convergence to
a diagonal matrix rather than a block diagonal matrix. A simple change in the choice of
angle makes this possible. We simply choose the classical Jacobi angle:

(5) tan 24 2(vk, am)/((vk, a) (I/m, am)).
Note that tan 2 is expressed entirely in terms of the kth and mth vectors ofA and

of V. As Rutishauser [9] points out, it is possible to order the eigenvalues by using the
larger angle of rotation; it is not clear whether or not this is a desirable thing to do.
Convergence may be slowed somewhat by so ordering, because of the concomitant cir-
culation of off-diagonal elements. On the other hand, for block Jacobi procedures, or
when only the largest (or smallest) eigenvalues are required, ordering may be necessary.

We briefly discuss one possible implementation of one-sided Jacobi procedures on
a hypercube. Suppose the columns of the matrix are distributed to the processors in
pairs, and unit vectors made in the processors to accumulate the rotations. Multiple pairs
of columns may also be distributed to the various processors depending on the sizes of
the matrix and the cube. The parameters for the rotations depend only on the data
resident in any processor; the columns may also be updated locally. After the n/2 rotations
have been performed in parallel, the columns of both the matrix and the vector matrix
are redistributed to neighboring processors. This may be done in a number ofways. See,
for example, [1], [4] and [5]. One communication pattern [10] to derive appropriate
rotations sets is illustrated for n 8 below. For each sweep, a complete collection of
rotation sets is obtained within a loop running from 0 to n 1.
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loop even
1--- 3

2 4

loop odd /,7temp

For n 8 the rotations sets are:

(1,2) (3,4)(5,6) (7,8)
2(1,4)(3,6)(5,8)7
(2,4) (1,6) (3,8)(5,7)
4(2,6)(1,8)(3,7)5
(4,6) (2,8) (1,7)(3,5)
6(4,8)(2,7)(1,5)3
(6,8) (4,7) (2,5) (1,3)
8 (6,7) (4,5) (2,3)
(8,7) (6,5) (4,3) (2,1),

which is equivalent to the first set. This rotation pattern, which has been shown [5] to
be equivalent to several others, has the advantage of having only one send and one
receive; also it assumes no direct connection between the first and last processors. Fur-
thermore, Luk and Park have proven convergence for this sequence of pivot pairs. How
best to determine the termination criteria for the iteration is unclear. Either a fixed
number of sweeps may be set, or global communication used to broadcast the size ofthe
off-diagonal elements. We have chosen to allow node zero to determine when Itan q[ is
sufficiently small for all pivots during one complete sweep (n(n 2)/2 rotations).

Another rotation pattern [4] is illustrated below; for this pattern convergence is not
guaranteed. These rotation sets have the advantage that all processors may be active at
every level and a sweep occurs after n rather than n steps. Again, the schema illustrated
alternate:

even steps odd steps
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Here the rotation sets are:
(1,2) (3,4) (5,6) (7,8)
(1,7)(2,4)(3,6)(5,8)
(1,4)(2,6)(3,8)(5,7)
(1,5)(4,6)(2,8)(3,7)
(1,6) (4,8)(2,7) (3,5)
(1,3) (6,8) (4,7) (2,5)
(1,8) (6,7) (4,5) (2,3)
(1,2) (8,7) (6,5) (4,3).

Some details for our implementation are available in 12], as are some initial timings
and speed-ups.

Barry and Sameh 11 have reported that one-sided Jacobi (using the Hestenes angle)
on an Alliant FX/8 outperformed "the most efficient" EISPACK routines for all orders
considered, (-<400) and LINPACK routines for the singular value problem 2-3 times.
Since our one-sided Jacobi is of identical complexity to theirs (see the definition of the
angles defined by (2) and (5)), we expect that the use ofJacobi algorithms on the hypercube,
as well as other multiprocessor machines, will be competitive when carefully implemented.
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AN EFFICIENT FACTORIZATION FOR THE GROUP INVERSE*
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Abstract. An efficient algorithm is introduced for computing the group inverse of a square,
singular matrix, in factorized form. The algorithm is based on the QR factorization with column
pivoting and uses a technique of inversion by partitioning. The factorization is used to compute the
group inverse solution of a singular system of equations. When only the solution vector is wanted,
the group inverse does not need to be computed explicitly.

Key words, group inverse, matrix factorization, singular equations
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Introduction. For a singular matrix of index 1, the generalized inverse of Drazin
(1958) is called the group inverse. As shown in Lamond and Puterman (1986), the
solution of certain singular systems of equations can be expressed in terms of the
group inverse of the matrix of coefficients. Such systems of equations are found, for
example, in Markov and semi-Markov decision processes in operations research (see
Veinott (1969) and Denardo (1971)). The numerical solution of these equations is
required in the policy evaluation step of the Policy Iteration Method for finding an
optimal policy.

In this paper, an algorithm of Wilkinson (1982) for obtaining a factorization of
the Drazin inverse of a general matrix is specialized to the case of a matrix of index 1.
This specialization gives the method of Robert (1968). By careful implementation of
a formula for the inverse of a partitioned matrix, the algorithm is then modified to
become nearly as efficient as the initial QR factorization of the matrix.

The modified algorithm, which is valid in general, is more efficient than the orig-
inal one when the matrix is nearly of full rank and when the number of different
right-hand vectors is small. These conditions are satisfied in the above applications.
The solution computed with the above factorization is equal to the one defined by
the group inverse of the matrix. The group inverse itself is never produced explicitly,
however.

The paper is organized as follows. In Section 1, the singular systems of equations
are defined and their solution is given in terms of the group inverse. In Section 2,
the algorithm of Wilkinson (1982) is described in the special case when the group
inverse exists. In Section 3, the modified algorithm is derived, to produce an efficient
factorization of the group inverse. Finally, in Section 4 it is shown how the factorization
can be used to compute the solution of the singular equations.

1. Statement of the problem. Let A be an n n matrix with real entries.
The index of A, denoted ind(A), is the smallest nonnegative integer t such that

rank(At+ 1) rank(At).
The Drazin generalized inverse of A is the unique matrix AD such that

AAD ADA,
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ADAAD AD,

ADAt+I At,
where t ind(A) (see Drazin (1958) and Campbell and Meyer (1979)). When A is
nonsingular, then ind(A) 0 and AD A-I, the ordinary inverse of A. We are
interested in the case when A is singular, but such that ind(A) 1. In this special
case, we write AD Act and we say that Act is the group inverse of A.

Now suppose b is an n-vector such that the singular system of equations

Ax=b (1.1)

has a solution Then b is said to be compatible with A and there are infinitely many
vectors x satisfying (1.1). One celebrated solution is the vector k such that

Atb, (1.2)

where At is the Moore-Penrose pseudo-inverse of A. Of all the vector x satisfying
(1.1), has the smallest t2-norm. Stable and efficient algorithms for computing
are well understood (see, e.g., Golub and Van Loan (1983)), and the corresponding
computer software is widely available.

There are situations, however, for which is not the most suitable solution. For
example, suppose bl, b2, ..., bk are given vectors and that we are interested in finding
some vectors xl, x2, ..., Xk such that the following system of equations is satisfied:

A 0 0 Xl bl
I A "’. x2 b2
0 I "’. "’. X3 b3

0 0 I A z b

(1.3)

where A is a singular n n matrix such that ind(A) 1. Such equations must be
solved for finding an optimal policy in a Markov decision process when the interest
rate is small (see Veinott (1969) and Lamond and Puterman (1986)). The solution
to (1.3) is completely characterized by the group inverse of the coefficient matrix A,
according to the following theorem from Lamond and Puterman (1986).

THEOREM 1.1. Suppose ind(A) 1 and b is compatible with A. Then the
system of equations (1.3) has a solution. Moreover, with xo 0 and bk+ arbitrary,
we have

xi A#(bi xi-1) -- Wbi+l, (1.4)

for i 1,...,k, where
W I- AACt. (1.5)

The matrix W is called the eigenprojection of A (see Rothblum (1981)), and it is
directly verified that AW WA 0. Hence Theorem 1.1 is a simple consequence of
the fact that a vector x is a solution of equation (1.1) if and only if

x Actb + Wy

for some (arbitrary) vector y (see Lamond and Puterman (1986)).
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The solution of equation (1.3) can also be expressed in terms of the Moore-Penrose
inverse At, but the formula is more awkward than equation (1.4). Let ITV I- AAt.
It is straightforward to show that the solution to (1.3) is

In general, the term I]VAt is not equal to zero. The consequence is that (1.6) does not
lead to an expression for x in terms of powers of At. Such an expression is derived
in Lamond and Puterman (1986) using the powers of A#, based on equation (1.4).

The object of this paper is to propose an efficient algorithm to obtain A# in
factorized form, and to use the factorization to compute the solution vectors Xl,..., xk
of equation (1.3). The algorithm is particularly efficient when m << n and k << n,
where A is n x n, rank(A) n- m and k is the number of blocks in (1.3). The
factorization can also be used to compute A# explicitly, but this step can be skipped
when only the solution vectors are needed.

Equations of the form (1.3) have to be solved in the Policy Evaluation step of
the Policy Improvement method for finding an optimal policy in Markov Decision
Processes (see Veinott (1969) and Lamond and Puterman (1986)). The algorithm
can also be used to solve the more complicated systems encountered in Semi-Markov
Decision Processes (see Denardo (1971) and Lamond (1985)), in which the subdiagonal
blocks of equation (1.3) are nonzero.

2. Factorization of the group inverse. The factorization algorithm is based
on the well known fact (see, e.g., Campbell and Meyer (1979)) that for an n n
matrix A with ind(A) 1, there exists a pair of nonsingular matrices S and B such
that

A-S( BO 00) S-I’ (21).

where S isnn and B is (n-m) (n-m), with rank(A) =n-m. The group
inverse A# is then given by

A#-S( B-IO 0)’-10 (2.2)

The algorithm of Wilkinson (1982), which is valid also when ind(A) > 1, uses
standard reduction methods to produce such a transformation in which S, S-1 and
B-1 are kept in factorized form. In Section 3, we will see how the matrix B can
also be kept in factorized form, leading to a substantial reduction in the amount of
arithmetic required, assuming m << n. Keeping this in mind, the former method will
be referred to as the slow algorithm, and the latter will be called the fast algorithm.

The following results are well known (see Robert (1968) and Campbell and Meyer
(1979, Lemma 7.7.2, Theorem 7.7.8)). They provide the mathematical basis from
which the computational algorithms are derived.

LEMMA 2.1. Suppose A is an n n matrix such that rank(A) -n- m, with
1 <_ m < n, and

A-S( Bl10 B12)S-10 (2.3)

for some nonsingular matrix S, where Bll i8 an (n- m) x (n- m) matrix. Then Bll
is nonsingular if and only if ind(A) 1.



800 B.F. LAMOND

THEOREM 2.2.
nonsingular. Then

Suppose A is an n n matrix satisfying equation (2.3) with

A#=S( B110 BllB11B2)S-O (2.4)

and

W-I-AA# =S( 0 -B11B12I ) s--l" (2.5)

To decompose the matrix A as in equation (2.3), two steps are required. In
the first step, the matrix is reduced to a simpler form (e.g., upper triangular) using
standard row transformations. In the second, the inverse transformations are applied
to the columns of the reduced matrix, giving (2.3). This second step is necessary
because (2.3) defines a similarity transformation.

One method that is both numerically stable and computationally efficient for the
reduction of a singular matrix is the QR factorization with column pivoting (see Golub
and Van Loan (1983)). It decomposes A as

A QRT, (2.6)

where Q is an orthogonal matrix (computed in factorized form), T is a permutation
matrix and

R-- ( RIO R12)0 (2.7)

with Rll a nonsingular (n- m) (n- m) upper triangular matrix. The number of
2 (n- m)3 flops (here a top, or ttoating-pointarithmetic operations is dominated by

operation, is defined as one multiplication plus one addition; see Golub and Van Loan
(1983, p. 32)).

Other reduction methods can be used instead of the QR factorization. For exam-
ple, in the special case when A I- P, where P is a stochastic matrix, the Gaussian
elimination procedure is known to be numerically stable (see Harrod and Plemmons
(1984) and Funderlic and Plemmons (1981)). Further, in this case rank(A) n-m is
known in advance because m is the number of recurrent classes of P. Since Gaussian
elimination requires only 1/2(n- m)3 flops, it is more economical than the QR factor-
ization. See Lamond (1985) for a description of the Gaussian elimination version of
the group inverse algorithms. Also, a more direct method that takes full advantage of
the stochastic matrix structure, but without using the group inverse theory, is given
in Veinott (1969).

On the other hand, if the matrix A is expected to be ill-conditioned, then both of
the above reduction methods can be numerically unstable. In this case, the preferred
reduction method is the singular value decomposition (see, e.g., Golub and Van Loan
(1983)). While it requires a larger amount of arithmetic for the reduction, the singular
value decomposition has guaranteed stability. It is a straightforward exercise to modify
the algorithms of this paper to use the singular value decomposition instead of the
QR factorization.

Now to convert equation (2.6) into the required form as in equation (2.3), observe
that

A QRT Q(RTQ)Q-1, (2.8)
with

RTQ=B- ( BllO B12)0 (2.9)
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as required, by (2.7). The slow group inverse factorization algorithm is given in

2(n-m)3 at Step 1, n2(n- m) at Step 2Figure 2.1. The amount of arithmetic is

and 1/2(n m)3 at Step 3, for a total of 2n3 flops (when m << n). This algorithm is a
specialization of the method of Wilkinson (1982). If singular value decomposition was
used for the reduction, this algorithm would be a specialization of Algorithm 12.5.1
of Campbell and Meyer (1979).

Step 1.

Step 2.

Step 3.

Step 4.

Compute Q, R and T such that A QRT
(Using QR factorization with column pivoting).
Compute B RTQ
(Applying T and Q to the nonzero rows of R).
Compute P, L and U such that Bll PLU
(Using Gaussian elimination).
If Bll is singular then "Error: ind(A) > 1"
else stop (we have all the necessary information).

FIG. 2.1. The slow group inverse factorization.

Note that at Step 3, ordinary Gaussian elimination is used (because Bll is non-
singular), to produce a permutation matrix P, a unit lower triangular matrix L
(in factorized form) and a nonsingular upper triangular matrix U, all of dimension
(n m) x (n m). The error exit, at Step 4, is provided by Lemma 2.1.

To illustrate the process, let us consider a numerical example with n 3 and
m-1. Let

A- 0 0 1
-1 1 0

Then the group inverse of A exists and is given by

1 -1
1 -1 2
-1 1 -1

Applying the QR algorithm to A, we obtain that A QRT, where

o
Q- 0 1 0

o

1 0 and T 0 0
0 0 0 1

Hence

0 1
and R12 0

From this, we get B RTQ, so that

0)

1
Bll- //2

and
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Finally, Gaussian elimination yields Bll PLU, with

0) 0)P=
0 1 x//2 1

and

From this, it is straightforward to verify that

X/-/2-1

Substituting into equation (2.4) with S Q and S-1 Q’, we obtain A# as given
above.

Observe that while the algorithm of Figure 2.1 produces all the building blocks
for computing the group inverse A#, it is not necessary to produce the matrix A#
explicitly. The algorithms of Section 4 will compute the solution vectors directly,
without computing the group inverse itself. This approach is analogous to the method
of forward and back substitution for solving nonsingular equations using the LU fac-
torization of the matrix of coefficients.

3. Factorization of the intermediate matrix. In this section, we introduce
a device by which the amount of arithmetic required at Steps 2 and 3 of the algorithm
of Figure 2.1 is reduced by an order of magnitude, when m << n. Hence the t"ast
algorithm so obtained requires a total of about n3 flops, which is basically the amount
of work performed in the initial QR factorization, at Step 1. This device is in fact a
careful implementation of a standard formula for inverting a matrix by partitioning.
The following lemma is derived in Faddeeva (1959).

LEMMA 3.1. Let X be a nonsingular n n matrix and Y its inverse. Suppose
that X and Y are partitioned such that

X__ (Zll Z12) and y_ (Yll Y12)X21 X22 YI Y2

where Xll i8 nonsingular. Then Y22 is also nonsingular and

Xl Vii Y12Y21y21 (3.1)

Of course, the idea here is to identify the above submatrix Xll with the (n-
m) (n m) submatrix Bll of equation (2.3). A factorization for the matrix Y will
be obtained such that Y2 can be produced in O(mn) flops. The reduction of
using Gaussian elimination, then takes only 1/2m3 flops. Both counts are negligible
compared to -n3.

This can be done as follows. Consider the upper triangular matrix R of equation
(2.7), which is produced at Step 1 of the algorithm of Figure 2.1. Now define a
nonsingular matrix D such that

D:( Rl10 R12)I (3.2)

where I is the m m identity matrix and Rll and R12 are as in (2.7). The inverse
of D can be written immediately as
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in which R-I itself does not need to be computed since Rll is upper triangular, so
that the product by R-I can be done by back substitution.

Now recall that B RTQ at Step 2 of the algorithm of Figure 2.1. Replacing R
by D, we have the desired matrix X DTQ, such that

where C- TQ is partitioned as

Bll B12) (3.4)X-
C1 C

Cll C12 )C
C21 C22

The matrix C is of no interest in itself. The important result here is that the submatrix
Bll of equation (2.9) is the same as that of equation (3.4). Further, the matrix
Y X-1 is directly available in factorized form, because

Y -X-1 Q-1T-1D-1, (3.5)

where Q-1 Q, is already factorized, T-1 is just a permutation matrix and D-1 is
given in (3.3).

THEOREM 3.2. Both Bll and Y22 are nonsingular if and only if ind(A) 1.
Moreover,

BT, Y, Y, y y

Proof. The proof is immediate from Lemmas 2.1 and 3.1. E!
Now if we actually compute the matrix Y directly from equation (3.5), we need

-(n- m)2n flops to compute D-1 plus n3 flops to do the product by T-1 and2
This is more work than for both Steps 2 and 3 of the slow algorithm. The key idea
here is that we need only to compute the submatrix Y22, which can be done as follows:

(Y12) (-RIIR12)Y22
=Q-IT-

I
(3.6)

where we used equation (3.3). The amount of work for computing Y22 by equation
(3.6) is then 1/2m(n m)2 flops for R1R12, and mn flops for the product by Q-1T-1.
This is negligible when m << n, by comparison to Step 1.

The fast group inverse factorization algorithm is given in Figure 3.1. Ag,ain, at
Step 3, ordinary Gaussian elimination is used, but now to factorize the m x m matrix
Y22 into a permutation matrix P, a unit lower triangular matrix L and an upper
triangular matrix U. In addition to being computationally efficient in terms of the
amount of arithmetic required, the fast algorithm is also very economical in its storage
requirements. In fact, it is possible to organize the computations in such a way that
the whole factorization overwrites the n n array containing the original matrix A.

Step 1.

Step 2.
Step 3.

Step 4.

Compute Q, R and T such that A QRT
(using QR factorization with column pivoting).
Compute Y22 as in equation (3.6).
Compute P, L and U such that Y22 PLU
(using Gaussian elimination).
If Y22 is singular then "Error: ind(A) > 1"
else stop (we have all the necessary information).

FIG. 3.1. The fast group reverse factorization.
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Let us apply the fast algorithm to the 3 3 example of Section 2. Step 1 is the same
as for the slow algorithm. At Step 2, however, we have

R-ll R12 0 01) ( 0V)=(;1 ),
so that

and

(1)
Y22

-Q 1T- 0 1
1 x//2

Hence Y2 (//2) so that its PLU factorization, at Step 3, is simply P L (1)
and V (//2).

Now let us verify that Theorem 3.2 gives the same matrix B-I as we found in
Section 2. We have Y2 (x/). Also, equations (3.3) and (3.5) give

(Vii) :Q-1T-1 (R) / 1/20
Y21 0

-1/2

so that
1/2 v/’/2) and Y21 (-1/2 V/2)Yl1: 0 0

Applying Theorem 3.2, we have

Bhl ( 1/20
_(o

V /e -v /e
0 )-( 1 )(f)(-1/2
-1

which is the correct value.

4. Solution of singular systems of equations. In this section, we show
how the factorization of the previous sections can be used to compute the solution of
equation (1.3), based on Theorem 1.1. Suppose A is decomposed as in equation (2.3),
so that A# and W are given by (2.4) and (2.5), respectively. Define

/ \
yi-S-lxi-|yl’i| for i-0,.., k,

\ ]Y2,i

and

ci=S-bi=( c’i)c2,i for i=l,...,k+l.

THEOREM 4.1. Suppose b is compatible with A. Then

Yl,i B11(Cl,i Yl,i-1 B12c2,i/l),
Y2,i c2,i+1

(4.1)
(4.2)

for i 1,...,k.
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Proof. By induction on i. The result is trivially true for i 0 if we define
cl,o 0 and yl,_ 0, because xo 0 and c2,1 0 since bl is compatible. Now
suppose y2,i- c2,i. Then equation (1.4) gives

Yl,i )Y2,i

and the result follows. El

( uTl10 U711BTllU12) (cl’i-yl’i-1)O0

<0 -BllB12) (1,i+1)+
0 I c2,i+l

If the matrix A was factorized using the slow algorithm, the solution vectors
Xl,"’,xk can be computed as in Figure 4.1. The products by Q and Q-l, at lines 1,
3 and 7 are done using the factorization for Q, and take n2 flops each. The product
by B2, at line 4, takes m(n- m) flops and the solution yl,i at line 5 is obtained
by forward and back substitution, in (n- m)2 flops. Hence the total work required
by the slow solution algorithm is (3k + 1)n2 when m << n. This is faster than the
fast solution algorithm that will be derived below. But with k << n, the amount of
arithmetic required for the solution is negligible by comparison to that required in the
factorization. Hence the labels slow and ast refer to the factorization employed.

1. Compute c Q-lbl and let yo 0.
2. For i- 1,...,k do:
3. Compute ci+ Q- bi+ 1;

4. Compute Vl Cl,i --Yl,i-1 B12c2,i+l;
5. Solve PLUyl,i
6. Set y2,i c2,i+
7. Compute xi Qyi.
8. Stop.

FIG. 4.1. The slow solution algorithm.

To illustrate the solution process, consider again the matrix A of Section 2 with
n 3 and m 1, and suppose we want to solve equation (1.3) with k 2,

b and b2 3
4

Since
1 0 1)W=I-AA#= 1 0 1
0 0 0

Theorem 1.1 gives the solution

xl-- 1
2

where we chose ba 0 arbitrarily.

and x2

Following the algorithm of Figure 4.1, we have, at lines 1 and 3,

Cl Q-1 and c2 Q-1 3
0 4
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Then at lines 4, 5 and 6, we have

(Oo)-( (_Ol),

and y2,1 (3xfl). Hence line 7 gives

Xl Q
3v/ 2

which is the correct value. Similarly, the second iteration gives C3 ---0,

Vl Yl,2 Y2,2 (0)

and

as required.
Suppose now that the matrix A was factorized using the fast algorithm. Then

the solution algorithm must be organized carefully since the intermediate matrices are
in factorized form. To get the product by B12, we proceed as follows. Suppose Bz
is required for some m-vector z. Then by equations (2.7) and (2.9), we have

(0)B12z2 Bll B12
z2

-(Rll R TQ ( O ) (4.3)

This product can be done in at most 2n2 flops.
To get the product by B-I, we proceed as follows. Suppose B-I

for some (n- m)-vector z. Then by Theorem 3.2, we have
Z1 is required

B11z (YllZl)- Y12Y21(Y21Z

By equations (3.3) and (3.5), the products YlZl and Y21Zl can be obtained simulta-
neously with

(g11)g21 Zl --Q-1T-1( R11z1 (4.4)

This can be done in at most nu flops.
Further, the product by Yx2 can be done as follows. If Y12z is required for some

m-vector z2, we can use

(Y12) (-RT11R12z2)Y22
Z2 Q-IT- (4.5)

Z2

which can be done with at most n2 flops (with m << n).
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2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Compute c Q-lb and let yo 0.
For 1,...,k do:

Compute ci+ Q- bi+ 1;

Compute w B2c2,i+ as in equation (4.3);
Compute v c,i y,i- w
Compute w Yvl and w2 Y2v as in equation (4.4);
Solve PLUz2 w2;

Compute z Y2z2 as in equation (4.5);
Compute yl,i w z
Set y2,i -c2,i+1;
Compute xi Qyi.

Stop.

FIG. 4.2. The fast solution algorithm.

Of course, the product by Y2 can be done using the PLU factorization of Y22.
The fast solution algorithm is given in Figure 4.2. It was obtained from the slow
algorithm of Figure 4.1 by replacing line 4 by lines 4 and 5 and line 5 by lines 6 to 9.
The amount of work is (7k / 1)n2 flops, which is negligible by comparison to that of
the factorization, when k << n.

Let us return to the numerical example. In the first iteration, lines 4 and 5 give

Wl- (Rll R12)TQ (
-(-0 01 0

and

which is what we had at line 4 of the slow solution algorithm. Then at lines 6 to 10
of Figure 4.2, we have

and y2,1 (3x/). This is precisely the same solution as with the slow algorithm. The
second iteration works similarly.
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