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THE ALGEBRAIC GEOMETRY OF MOTIONS OF
BAR-AND-BODY FRAMEWORKS*

NEIL WHITEt AND WALTER WHITELEY#

Abstract. This paper generalizes and extends previous results on bar-and-joint frameworks to bar-and-
body frameworks: structures formed by rigid bodies in space linked by rigid bars and universal joints. For
a multi-graph which can form an isostatic (minimal infinitesimally rigid) bar-and-body framework, a single
polynomial—the pure condition—is found which describes those bad positions of the bars for which
infinitesimal rigidity fails. (The proof is much shorter than the previous derivation for bar-and-joint
frameworks and the condition is linear in the variables.) The pure condition is used to describe the infinitesimal
motions of a 1-underbraced framework in terms of the screw centers of motion of the bodies. The factoring
of the polynomial condition is given by the lattice of isostatic blocks in the framework, with at most one
irreducible factor for each block. For frameworks realized at generic points of an irreducible factor the
infinitesimal motions and the static stresses are also given by the factoring and the lattice. (These results
are much sharper than the corresponding results for bar-and-joint frameworks.) The theorems are presented
in terms of k-frames—a simple generalization of bar-and-body frameworks which also has applications to
scene analysis and other types of frameworks.
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ible factor, lattice of blocks
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Introduction. The traditional bar-and-joint frameworks have been generalized to
bar-and-body frameworks, in which large rigid bodies are tied together with rigid bars,
each attached to a pair of distinct bodies by universal joints. Several factors make
these structures important:

(i) a number of critical problems in 3-space are unsolved for bar-and-joint
frameworks in 3-space;

(ii) the analogous problems are solved in all dimensions for bar-and-body
frameworks;

(iii) the results for bar-and-body frameworks apply directly to hinged panel

structures which are commonly built in 3-space.
In particular, the problem of characterizing the graphs of isostatic (minimal
infinitesimally rigid) bar-and-joint frameworks is unsolved for n =3 [23], while the
characterization of the multi-graphs for isostatic bar-and-body frameworks has recently
been solved for all dimensions (see § 2.4 and [21], [23], [29]).

In our first paper [25] we described the pure condition for the graph of an isostatic
bar-and-joint framework in n-space—a single polynomial in the coordinates of the
joints whose zeros identify the special realizations of the graph which are not
infinitesimally rigid. These conditions were used to investigate the static behavior of
overbraced frameworks, and preliminary work was done on the factoring of the
conditions.
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Here we present the much simpler pure condition for the multi-graph of an isostatic
bar-and-body framework—a single polynomial which is now linear in the variables
for each bar. These conditions are derived in § 2, along with a technique for their
computation based on work of Rosenberg [16] and an application to the characteriz-
ation of the graphs of isostatic frameworks. In § 3 the pure conditions are used to
describe the screw centers for the infinitesimal motions of the bodies in a 1-underbraced
bar-and-body framework. This work uses the projective algebra of screws which dates
back to the last century [11] but has also been revived for work in invariant theory
[1], [5] and in robotics [9], [13], [20].

For the multi-graph of an isostatic framework the isostatic subpieces (or blocks)
form a lattice and these blocks correspond precisely to the factoring of the pure
condition of the graph: each irreducible factor is associated with a unique such block,
and no block has more than one factor (Theorem 4.12). Each edge is associated with
the lowest block in which it occurs, and this partition describes which edges lie in the
static stress at any generic point of an irreducible factor (namely those edges in blocks
at or below the block of the factor (Proposition 4.6)) and which edges join bodies in
motion relative to each other at a generic point of the factor (those edges associated
with blocks at or above the block of the factor (Proposition 4.8)). We conjecture that
this same pattern of irreducible factors, edges and blocks applies to bar-and-joint
frameworks in the plane, although any proofs will have to be more complex. We do
know that the pattern must be modified for bar-and-joint frameworks in 3-space.

Bar-and-body frameworks are really special examples of a general matroid struc-
ture we call a k-frame [29]. Accordingly we present the results of the paper in terms
of these general structures. The k-frames first appeared in scene analysis—the study
of hyperplane scenes in R* projected into pictures in R*™' [28]. In § 5 we briefly
describe this interpretation for 3-frames to indicate how our results apply in this field.
In passing, we note that the k-frames can also be used to describe bar-and-joint
frameworks on the torus T* (a quotient of R* by the unit hypercube) [29]. As a
consequence, k-frames, and our work here, have potential applications to the study
of periodic sphere packings in R* [3].

A number of the techniques we use are based on the form of the rigidity matrix
for the framework or k-frame. This form, in turn, reflects the underlying matroid
structure of the matroid union of k copies of the graphic matroid [29]. As a result,
these techniques also apply to many other represented matroids based on unions of
graphic and bicircular matroids of a graph [29]. More generally, we anticipate that
many of the techniques will apply to a large class of matroids defined by counts on a
graph or hypergraph [26], [30].

1. Introduction to bar-and-body frameworks and frames. Let B be a rigid body in
R". Then any instantaneous motion of B may be expressed as a vector sum of rotations
and translations of B, as is well known. For example, in R?, any such motion is a
rotation or a translation, and in R>, such a motion is in general a screw, or a rotation
about a line L plus a translation in a direction parallel to L. In R*, there are motions
which cannot be expressed more simply than as a sum of two rotations. We must first
develop the algebra of such motions. We give an informal presentation of this algebra;
more details may be found in [4], [27].

1.1. Centers of motions in n-space. To any point p in R" we will assign the
homogeneous coordinates (p,, p2, " * *, Pn, 1). Thus we are regarding R" as embedded
in projective space PG(R, n). Since rigidity properties are in general projectively
invariant [17], it is useful and sometimes necessary to work with arbitrary subspaces
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in PG(R, n). Such a subspace W of dimension d corresponds to a subspace of
dimension d +1 in R""'. We say that W has rank d +1, and recall that it takes d +1
points to determine such a subspace. Thus, for example, an arbitrary line in R" (plus
its point at infinity) is a subspace of rank 2, but so is any line at infinity in PG(R, n).

Now let the subspace W of rank r be determined by the points p',p* ---,p"
(i.e., p%, p°, - -+, p" is actually a basis of W in R"*"). In the Cayley algebra on R"*'
(see [5], also referred to as Peano spaces on R"*! in [1]), we may associate with W
the r-extensor p' v p*v - - - v p". This r-extensor is, in the coordinatized version, really
just the vector of Pliicker coordinates of W, that is, the sequence of rx r minors of
the rx (n+1) matrix whose rows are p', p, - - -, p".

Now we consider a rotation of B in R", or what is really equivalent, a rotation
of all of R" itself. Any such rotation has a center (or axis) which is a subspace W of
rank n—1. Let Z"=p'vp®v - vp""! be the associated (n—1) extensor. Then for
any point p notin W, Z"v p is an n-extensor associated with the hyperplane sp (W +p).
Furthermore, Z" v p is an (n + 1)-vector whose entries are the coefficients of the equation
of the hyperplane sp (W + p) (assuming certain sign and order conventions). That is,
the first n coordinates are the vector v normal to sp (W+p) (the (n+1)st entry being
the constant term —v-(p,,- - -, p,)). If p’ is another point in sp (W+p), then Z"v p
and Z"v p' are scalar multiples of each other in the same ratio as the ratio of the
distances of p and p’ from W (with opposite signs if they are on opposite sides of W
in sp (W+ p)). Thus, for some constant scalar a, a(Z" v p) is (except for its last entry)
the velocity vector of the rotation at p, for every point p. We may regard « as the
angular velocity, appropriately normalized.

We will henceforth refer to the (n—1)-extensor Z'=aZ" as the center of the
rotation, and for any point p, M(p)=Z'v p as the motion at p.

Next we consider a translation in the fixed direction of the free vector v. Let U
be any hyperplane in the parallel family of hyperplanes normal to v. Then U intersects
the hyperplane at infinity (=points with (n+1)st coordinate zero in PG(R, n)) in a
subspace W of rank n—1, where W is independent of the choice of U. Regarding W
as the center of a ‘“‘rotation,” we mimic the above development. If Z” is the
(n —1)-extensor corresponding to W and a the chosen scalar for our translation, then
Z'=aZ" is the center and M(p)=Z'v p is the motion at p. This also corresponds to
the equation of the hyperplane normal to the velocity, and for an appropriate scalar
a it is the velocity vector v (independent of p) together with one extra component,
—0-(p1,"*, Pn)

If we now take an arbitrary instantaneous motion of our rigid body, it is a vector
sum of rotations and translations. If Z}, Z, - - - , Z!, are the centers of these rotations
and translations, then Z =X Z] is the center of our motion and M(p)=2Z;vp=Zvp
is the motion at p for any point p of the rigid body. M ( p) still represents the coordinates
of the hyperplane through p normal to the velocity vector.

Remark 1.1. The linear combination Z of (n —1)-extensors is no longer an (n —
1)-extensor, unless the motion is again a rotation or translation. The center Z may
now be an arbitrary vector of length (*]) =("3"), whereas an (n — 1)-extensor satisfies
the Grassmannian quadraticrelations (see [8, pp. 309-315]). The study of screw motions
in R? from this point of view has an extensive literature and is of current interest in
the study of robotics [9], [13], [20].

Example 1.2. Consider a rotation about the x-axis in R’. Taking the origin
(0,0,0,1) and the point (1,0,0,1) on the x-axis, we get as the center the Pliicker
coordinate vector Z = (0, 0, —1, 0, 0, 0), here taken in the order P,,, P35, P4, P, Poa, Pss4,
where P; denotes the minor using columns i and j. The motion vector Z v p, taken in
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the Order P234, "P134, P124, —P123 for minors Of

0O 0 0 1
1 0 0 1
pnop2 ps 1

is M(p)=(0, —ps, p,,0), where p =(py, p2, P3, 1). We note that (0, —p;, p,) is correct
for the velocity vector of our rotation, up to a scalar. Clearly the fourth coordinate is
0 because the plane M(p) contains the origin.

Similarly, for a translation in the direction of the x-axis, v=(1,0,0), U may be
taken as the hyperplane defined by x = 0, and W is the line at infinity {(x, y, z, w)|x =w =
0}. This line is determined by the points at infinity (0, 1,0, 0) and (0, 0, 1, 0), hence
Z=(0,0,0,1,0,0), and M(p)=(1,0,0, —p,).

1.2. Bar-and-body frameworks. Suppose now that two rigid bodies, B, and B,,
are connected by a rigid bar, which is attached flexibly at points a and b on B, and
B, (resp.). If B, and B, undergo instantaneous motions with centers Z; and Z, (resp.),
then the condition that the distance from a to b is instantaneously preserved is the
following:

If u and v are the velocity vectors at a and b,

M(a)=(u9 _u.(ala Y an))a M(b)=(U, _v'(bl9 Y bn));

then
0=(u—-v)-((ay," -, a,)—(by, - -,b,))
=u-(ay, - -,a)—u (b, -,b)—v(ay, ,a,)+v (b, -,b,)
=—-M(a)vb—M(b)va
or

Z,vavb+Z,vbva=2Z,v(avb)—2Z,v(avb)=(Z,—Z,)v(avb)=0

(see [4]). Here av b is a 2-extensor, a vector of length (";') consisting of the 2x2
minors (Pliicker coordinates) of the 2x (n+1) matrix whose rows are a and b. We
will henceforth write a v b simply as ab.

If Z is an (n—1)-extensor p'vp’*v---vp"', let us take Z*=
(Ply, =P, - -+, (=1)"7'P}, - - +), where P} is the (n—1) X (n—1) minor obtained by
omitting columns i and j from the matrix whose rows are p', p%, - - -, p"~'. Now if the
2-extensor ab is written in the standard order (Q;, Qi3,°**, Qy, * * *), where Q;; is
the minor with columns ij, then

Zvab=p'vp*v---vp"'vavb=det(p',p’---,p""",a,b)
==x(2(-1)"'P;Q;)=+Z* ab
where a Laplace expansion was used on the last two rows of the determinant. We have
proved:
ProvposiTiON 1.3. If rigid bodies B, and B, undergo motions with centers Z, and
Z, (resp), then the length of a bar ab is preserved if and only if
Z¥-ab—Z%-ab=0.

DEFINITION 1.4. A bar-and-body framework in R" is a finite collection of disjoint
rigid bodies B,, B,, - - -, B,, and of rigid bars (a,, b,), (a,, b,), - - -, (a., b.), where a;
and b; are points on distinct bodies and the ith bar is attached flexibly to those two
points as its end points.
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We will assume that each body is full, that is, it spans an affine subspace of R"
of at least rank n (i.e. dimension n—1). Corresponding to any such framework is a
finite graph G with vertices corresponding to the bodies and edges to the bars. We
may have multiple edges in G but no loops. Any such graph G may be realized as a
framework by assigning an ordered pair of (n+1)-tuples (with last entry equal to one)
to each edge, and providing that points on distinct bodies are assigned distinct
(n+1)-tuples. We note that the size and shape of the bodies themselves are not relevant
to questions of instantaneous motions, provided each body contains the requisite end
points of bars. We also note that the various edges incident to the ith vertex of G may
be given distinct end points on the ith body B;. We denote by G( p) any such particular
realization of the graph G as a bar-and-body framework.

DEFINITION 1.5. The rigidity matrix M(G(p)) for the framework G(p) has one
row for each bar and (";") columns for each body, with the columns for B, followed
by those for B,, etc. If (a, b) is a bar with end points a in body B; and b in body B,
then the row corresponding to (a, b) in M(G(p)) has the 2-extensor ab in the ("3')
columns for B;, —ab in the ("3') columns for B;, and 0 in all other columns. (Under
this definition, many frameworks are equivalent. Indeed, all that matters is the 2-
extensor, or line, ab, not the location of the two points a and b on that line.)

A motion of G(p) is an assignment of a center Z; to each body B;, 1=i=m, so
that the length of each bar (a, b) is instantaneously preserved, thatis, Z¥-ab—Z¥-ab =
0. If we let Z* be the vector of length m("3") consisting of Z¥ followed by Z¥ followed
by Z%, etc., then we require that Z*- R =0 for each row R of M(G,(p)).

PROPOSITION 1.6. Motions of the framework G(p) correspond (under *) to the
orthogonal subspace to the row-space of M(G(p)), i.e., to solutions of M(G(p)) X Z*' =0,
where ' denotes transpose.

Now the Euclidean motions of all of R", obtained by setting all Z; equal to each
other, are always motions of G(p). Since these motions form a subspace of dimension
k=("3"), the maximum rank of M(G(p)) is (m—1)k. We say G(p) is isostatic (or
basic) if M(G(p)) has exactly (m —1)k rows which are linearly independent.

1.3. k-frames. For the remainder of this paper, we wish to adopt a more general
point of view, by working with k-frames rather than bar-and-body frameworks. The
concept of k-frame includes bar-and-body frameworks as a special case, but also
includes applications to scene analysis (see § 5) and other types of frameworks [29],
[30].

DEFINITION 1.7. Let G be a graph with no loops but possibly with multiple edges.
A k-frame matrix for G consists of one row for each edge and k columns for each
vertex, where if e=(u, v) is an edge of G, then the row for e has a k-tuple x. in the
columns for u, —x, in the columns for v, and 0 in all other columns. This matrix, for
any particular choice of a vector x, for each edge e, is denoted M(G(p)), and the
graph G together with such assignments of x, is called a k-frame G(p). If G(p) has
distinct algebraically independent indeterminates for all entries in the x.’s, we call
G(p) a generic k-frame for G, and denote the corresponding k-frame matrix M(G).

A motion of a k-frame G(p) is a vector Z* of length km which is orthogonal to
the row space of M(G(p)). The trivial motions, having the same k-tuple for each
vertex, are always motions of G(p). A k-frame is rigid if it has only the trivial motions.

We note that bar-and-body frameworks are the special case of k-frames in which
k=("3") and the vectors x, are all 2-extensors. It is possible to interpret more general
k-frames as situations similar to bar-and-body frameworks. For example, 2-frames
may be interpreted as bar-and-body frameworks on a cylinder or torus, where two
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independent directions of “translation” are allowed, one of which is rotation about
the axis of the cylinder, but no rotation of a body about a point of the body is allowed
[29]. We will not pursue this interpretation further.

2. The pure condition for a graph.

2.1. Tie-downs and the pure condition. We want an algebraic procedure to describe
which positions (if any) of the edges of the graph as a k-frame will give an independent,
or spanning set. The graphs which give the simplest formulae are those which at least
count to be a maximal independent set as a k-frame. Since any k-frame has a
k-dimensional space of trivial motions we give the following definition.

DEFINITION 2.1. A graph is k-counted if |E|= k| V|- k.

Not all k-counted graphs will give the desired independent sets, but this is a
necessary condition for the algebra. In Theorem 2.18 we describe the necessary and
sufficient conditions on a graph.

It is a simple matter to check the independence, and the span, of the rows of a
square matrix by taking the determinant. However the k-frame matrix for a generic
k-frame on a k-counted graph is not square. We must add k simple rows which will
square up the matrix and be independent of the rows for any k-frame.

DEFINITION 2.2. The basic tie-down Tm is a set of k rows and km columns of the
form:

Tm=[L0- - - 0].

For a framework in n space, (k=n(n+1)/2), we can think of these rows as bars
from the first body to the ground, designed to remove the trivial or Euclidean motions
of the entire framework.

LeEMMA 2.3. The rows of Tm are independent of the rows of M(G(p)) for any
k-frame on a graph with m vertices.

Proof. Any k-frame matrix M(G(p)) has the k-dimensional space of trivial
solutions generated by e"—the vector formed by repeating the basic vector e;=
0,---,0,1,---,0) m times. We claim that the k rows of Tm remove this k-space of
solutions. In particular, row i removes e} from the solution space.

Since each row removes a new solution, these rows are independent of the rows
of M(G(p)) (and one another). O

For any k-frame G(p) the matrix formed by adding the appropriate tie-down
rows T (with k rows and k| V| columns) to the bottom of the k-frame matrix is written
M(G(d), T).

DEFINITION 2.4. A k-frame G(p) is k-isostatic if every allowed k-motion is trivial
and deleting any edge introduces a nontrivial k-motion.

ProposITION 2.5. If G is k-counted then any k-frame G(p) is k-isostatic if and only
if det (M(G(p), T))#0.

Proof. If det (M(G(p), T)) # 0 then the rows of the matrix are of rank k| V|, and
the rows of M(G(p)) are of rank k(|V|—1). Since the trivial k-motions form a space
of dimension k, we conclude that the space of allowed motions is the space of trivial
motions.

If G(p) is k-isostatic then the rows of M(G(p)) are of rank k(] V]—1) (since the
nullity is k). When we add T, we obtain a square matrix with rank k| V| (by Lemma
2.3), so we conclude that det (M(G(p), T)) #0. If any edge is deleted, we have less
than k|V|—1 rows and there must be a nontrivial motion. 0O

We can describe the algebraic form of det (M (G, T)).

ProrosITION 2.6. For any k-counted graph G

det (M(G, T))= C(G)
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where
(i) C(G) is a polynomial in the algebra of k-brackets of edges of G.
(ii) C(G) is homogeneous of degree |V|—1 in the brackets.
(iii) C(G) is linear in the variables of each edge vector.
Proof. We start with a Laplace expansion on the first k columns of the matrix.
Because the last k rows for T are zero outside these columns, we have a single term

det (M(G, T))=det[I,]eC(G) = C(G).

We now expand this minor C(G) by a Laplace expansion on the k columns of
the second vertex. This gives a sum of terms

£[biy - - bu]oCiy - - - alG)

where the first factor is a k-bracket (or k x k determinant) with rows for k edges of
the graph.

We repeat this decomposition, working through all columns k at a time, to obtain
the required polynomial in the brackets. Each term is degree |V|—1 in the brackets.

Since each row can only be used once in each term of such a Laplace expansion,
each term has exactly one entry *b; for each edge vector b—which is the desired
linearity. 0O

CoROLLARY 2.7. For any k-frame G(p) of a k-counted graph:

C(G(p))#0 if and only if G(p) is k-isostatic.

It appears that the polynomial C(G)—the pure condition of the graph in k-space—
depends on the choice of k rows for T. Surprisingly any similar set of k rows would
give the same critical factor C(G).

ProrosiITION 2.8. For any k-isostatic graph G with r vertices, and any set S of k
rows of length k.r

det (M(G, §)) =f(8)°C(G)

where f(S) is a polynomial in the entries of S and f(S)#0 if the rows of S block the
trivial motions.

Proof. Consider any assignment P of complex numbers p to the variables for
edges in M(G). The rows of M(G(p)) are dependent if C(G(p))=0. Therefore,

C(G(p))=0->det (M(G(p), S))=0.

Since we have two polynomials, and the implication holds for all complex numbers,
Hilbert’s Nullstellensatz [7, p. 165] guarantees that

(det (M(G, S)))"=A'C(G).
However, C(G) is of first degree in all variables so
C(C)|Q" implies C(G)|Q or det (M(G, S))=A-C(G).

Since det (M (G, S)) has only one entry for each variable from G, we know that
A is a polynomial only containing variables in S. We define f(S) = A.

If the rows of S block all trivial motions, then as in Proposition 2.5, M(G, S) is
invertible. Therefore

07 det (M(G, S))=f(S)C(G) and f(S)#0.

If the rows of S do not block all trivial motions, then M(G, S)x X =0 has a
nontrivial solution. Therefore 0=det (M (G, S))=f(S)> C(G). Since C(G)#0, we
find f(S)=0. O
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Remark 2.9. For a natural class of sets S we can describe f(S). A generic tie-down
of G is a set of k rows ry, - - -, ;. such that for all but one vertex V,; all k entries of
r; are zero and the V,(; entries are Z; =(z;, * - -, za). It is not difficult to check that
f(S)==x[Z,, " -, Z] for any generic tie-down.

If our k-frame is a bar-and-body framework, then each (z;,, - - -, zi) is a 2-extensor
of aline (or bar) and f(S) is a determinant of 2-extensors. This determinant is examined
in more detail in [24].

Remark 2.10. The proof of the analogous theorem for bar-and-joint frameworks
was far more complex [24, Prop. 3.12]. The simplicity of the current proof illustrates
the advantages of the present type of structure.

2.2. A combinatorial formula for the pure condition. If we reexamine the basic
Laplace decomposition which generated C(G), we can give a precise graph theoretic
description of which partitions of the edges in G give terms in the polynomial, as well
as the signs of the terms. An analogous (but, naturally, more complex) description for
bar-and-joint frameworks was given by Ivo Rosenberg [16]. For convenience we assume
that all edges of the graph have been oriented in some arbitrary fashion.

DEFINITION 2.11. A k-fan for the graph G is a partition of the edges into disjoint
ordered sets f;, 2=i= v, such that each f; is an ordered set of k edges all adjacent to
the vertex v;.

Two k-fans w and #' are distinct if f; includes an edge not in f} for some i.
Otherwise the two k-fans are permutation equivalent.

The sign of a k-fan =, written o (), is the sign of the permutation from the ordered
set E to the order (f, f5,* - -, f,) times (—1)" where r is the number of directed edges
in E which are in the f; of their second vertex.

As a matter of shorthand we write [ f;] for the bracket [¢,, - - -, ¢,] where ¢; is the
k-vector assigned to the jth edge in f;.

PrOPOSITION 2.12. The pure condition of a k-counted graph G is

C(G)=Za(m)[f2] - [fi] (sum over all distinct k-fans m of G).

Proof. Itis asimple matter to see that each nonzero term of the Laplace decomposi-
tion corresponds to such a k-fan. The actual bracket [ f;] is, up to permutation, precisely
the piece of the Laplace expansion term corresponding to the columns of vertex v;.
For those brackets, and the sign of the term in the Laplace expansion, we have the
precise discrepancy (—1)" (to account for occurrences of —b;, in the matrix when the
edge enters v;) and the permutation sign for the usual Laplace expansion rule. [

There is a simple and suggestive way to visually record a k-fan (or rather a
permutation equivalence class of k-fans).

DEeFINITION 2.13. The k-fan diagram, D(1r), is a directed graph with the vertices
of G, but with all edges reoriented so that e; is directed out of v; if ¢; is in f].

In Fig. 2.1A, B, C we illustrate the distinct 3-fans of a sample graph. As shown
in Fig. 2.1D, we can move from k-fan diagram A to diagram B or C by reversing all
edges of a directed polygon in the diagram. (A directed polygon is a cycle of edges
and vertices such that all edges are directed around the cycle in the directed graph.)

Given a general k-fan 7 and a set of edge-disjoint simple directed polygons in
the k-fan diagram D(7), each polygon is reversed by replacing each edge (v, Ukiv1)
in a polygon, which was in f;, by the edge (v, Vii—1). This creates a new set f; for
each vertex, and creates a new k-fan ' called the polygon reversal of .

PropPOSITION 2.14. Given any two distinct k-fans w and ', there is a set of
edge-disjoint, simple, directed polygons in the k-fan diagram D(ar) such that the polygon
reversal of m on this set is a k-fan 7" which is permutation equivalent to w'.
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Proof. Since the two k-fans are distinct, there is an f; using an edge not in f;. This
is the first edge in the path. This edge must be in f] (for its other end), and since f;
and f] are the same size, there is an edge in f; not in f}. This is the second edge of the
path. We repeat this process until the path repeats on a vertex. The loop between
repetitions forms our first polygon.

We reverse this polygon, creating a new k-fan #”, which is closer to 7' in the
sense that D(#") and D(#') have more edges with the same orientation.

If #” and #' are still distinct, we repeat the process, creating additional polygons
until we stop at a #” such that D(#") = D(#'). This means that #” is permutation
equivalent to 7' as required.

Since no edge will be reversed twice, the process will terminate and the polygons
are edge-disjoint. [

ProposITION 2.15. Given a k-fan 7 and a polygon reversal 7' obtained by reversing
on r simple, edge-disjoint, directed polygons then

a(m)y=(-1)o(m).

Proof. Assume we reverse on one polygon of length m. The basic permutation for
7' can be obtained from that for 7 by cycling the m edges—causing a sign change
(=1)™"'. However we have also switched these m bars in the count of bars entering
their heads or tails in their f/—giving an additional sign change of (—1)™. The total
change is (—1)™ "™ =(-1).

If there are r polygons, the process is repeated r times and o(7') = (—1)"o(ar). O

2.3. Examples of pure conditions. We will illustrate the techniques of the previous
section by deriving the pure conditions for a few small examples.

Example 2.16. The graph illustrated in Fig. 2.2 has a unique 6-fan shown in Fig.
2.2B. As a result the pure condition is a single term. Assuming the edges of G are

a — g
Y4 h
c i
B 1 d Bz J B3
e k
f 1
A N’

FI1G. 2.2
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oriented as in Fig. 2.2B and ordered lexicographically,
C(G) =[abcdef [ ghijkl].

A graph with a unique k-fan covering is called k-simple.

For such simple examples C(G) can also be easily obtained by a block decomposi-
tion of det (M (G, T)).

Example 2.17. We return to the graph illustrated in Fig. 2.1. Assuming the graph
is oriented as in Fig. 2.1A, the three fans give the pure condition

C[G]=[abc][def ][ ghi] - [abd ][ cef 1[ghi]—[abg][dec][ fhi].

2.4. A characterization of K-isostatic graphs. There are simple criteria for which
graphs will have nonzero pure conditions as k-frames. We offer an alternate proof
which illustrates the use of pure conditions, k-fans and a technique of specializing the
lines of the bars.

THEOREM 2.18. A graph G which is k-counted has a nonzero pure k-condition if
and only if there is a set of k edge-disjoint spanning trees which cover the graph G, if and
only if the rigidity matrix is the matroid union of k cycle matroids of the graph G.

Proof. Assume the graph has a nonzero pure k-condition. With the standard
tie-down we know det (M(G(p), T)) #0. We now reorder the columns of this matrix
placing the |V]|=v columns of first entries for each vertex first, then the columns of
second entries, etc. A Laplace decomposition following these blocks of v columns
gives terms II (det N;)1=i=k where each N; is a square v X v matrix formed from
the ith coordinates of the rows of v edges (possibly including “edges” in T).

There is at least one nonzero product IT det (N;). By the Laplace construction,
the rows used in the N; form disjoint subgraphs, and it is clear, for a nonzero term,

that each N; will include the ith row from T. The remaining v —1 rows of N; will each
be of the form

a[0---010---0-10---0]

for some nonzero scalar «;. Ignoring these factors, we have the usual matrix for the
subgraph of these edges. Any polygon in this subgraph gives a simple linear dependence
of the corresponding rows, so a nonzero term represents a subgraph with no polygons.
Since we have v vertices, v — 1 edges and no polygons, the subgraph must be a spanning
tree T;. Thus the distinct factors N; give the required edge-disjoint spanning trees
covering the edges of G.

Conversely, assume that G is covered by k edge-disjoint spanning trees. If we
root all these trees at the first vertex, and direct all edges down towards this root, we
have a k-fan diagram. Each vertex has k branches down to the root (one from each
tree) and ordering these edges in the order of the trees gives a k-fan Il,.

The pure condition is expressed

C(G)=Z2a(m)LILF] - [L]

We specialize the vectors for the edges by assigning all edges from tree T; the
same set of indeterminates X; = (x;;, - * * , Xi). With this specialization G(X), we have
the term for m, (up to sign)

[)21 e Xk]vﬁl
since each f; contains one edge from each tree.

Consider any k-fan diagram D(#') which has only one out-directed edge from
each tree. For each vertex there is a unique path to the root vertex in T;. Since all



12 NEIL WHITE AND WALTER WHITELEY

edges to this first vertex are directed into it, and no vertex has two out-directed edges
from T;, this entire path is directed down to the root. This direction of edges matches
the diagram for 7, so we conclude that #' is permutation equivalent to .

As a result any distinct k-fan has an f; containing two edges from some tree. With
the given specialization [ f;] is zero because of the duplicate columns.

We can conclude that

C(G(X)=«[X, - X,]"'#0.

Since this specialization is # 0, the original polynomial is also nonzero. [

COROLLARY 2.19 (Tay [21]). A graph is k-isostatic if and only if |E|=k(|V]|—1)
and, for any nonempty subgraph G': |[E'|= k(|V'|-1).

Proof. By a theorem of Tutte and of Nash Williams a graph can be covered by
k-edge-disjoint spanning trees if and only if it has the counts given [29]. O

Remark 2.20. Corollary 2.19 was first derived, for the case k=n(n+1)/2, by a
very different proof. An alternate proof of Theorem 2.18, along with the extension of
Tay to Grassmann coordinates of lines when k= n(n+1)/2 (describing actual bar and
body frameworks in n-space) is also given in [29].

Remark 2.21. One value of the tree covering property of Theorem 2.18 lies in an
efficient polynomial algorithm to find the trees. A direct verification of the counting
property of Corollary 2.19 would use an exponential algorithm. The role of tree
coverings in checking generic rigidity of bar and joint frameworks in the plane has
been explored by Lovasz and Yemini [14] and by Recski [15].

Remark 2.22. The count of Corollary 2.19 can be indirectly checked by a second
even more efficient algorithm introduced by Sugihara for plane bar-and-joint
frameworks [18]:

A graph satisfies |E| = k| V| — k and | E'| = k| V'| — k for all nonempty subgraphs
if and only if for each vertex i, when k tie-down edges are added at the vertex
(as loops) to create G, |E|=k|Vi| and, |E{|=k|V!| for all nonempty
subgraphs.

This second count is verified by a bipartite matching algorithm applied to a special
bipartite graph with vertices: k disjoint copies of V on one side and E and the tie-down
edges T; on the other. The edges join any edge (or tie-down) to all copies of adjacent
vertices. This matching is examined in more detail in Tay [22].

Remark 2.23. If we think of the tied-down graph (with tie-down edges as loops),
the bipartite matching of Remark 2.22 actually covers the graph G; with k edge-disjoint
independent sets in the bicircular matroid of the graph. These sets replace the trees
of Theorem 2.18, which are independent sets of the cycle matroid of the graph. A tree
with a loop at the root is one example of such a set, but there are others (Fig. 2.3A, B).
(A minimal dependent set of the bicircular matroid is a “bicycle” (Fig. 2.3C).)

F1G. 2.3
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Remark 2.24. For any vertex i, the bipartite matching associates k adjacent edges
to each vertex (and associates the tie-down edges with the initial vertex i). This gives
a k-fan for the graph, and gives a starting point for implementing the Rosenberg-type
method, without finding any trees. Of course the existence of such a k-fan for one
initial vertex is not sufficient to show that the graph is k-isostatic. The existence of a

k-fan for each choice of initial vertex is both necessary and sufficient for the graph to
be k-isostatic, by Remark 2.22.

3. Motions and examples.

3.1. Examples of pure conditions. Let us consider some more examples of isostatic
bar-and-body frameworks, frames, and their pure conditions. We begin with some
planar frameworks, which are examples of 3-frames.

Example 3.1. (Fig. 3.1.) Recall that a is the 2-extensor determined by the line in
which the corresponding bar lies, and that in the plane a is itself a 3-tuple. I; is the

3 %3 identity. We see that we may directly expand the 9 x9 determinant det M(G, T)
as

C(G)=[abd][cef]1-[abc]ldef],
where brackets denote ordinary 3 X3 determinants. This may also be obtained from
the two 3-fans (abd), (cef) and (abc), (def).

This pure condition has an interpretation in the dual Cayley algebra (see [5]) as
follows: rewriting C(G)=(aab)v(cad)v(enf), we see that C(G)=0 precisely
when the three points of intersection determined by the pairs of bars are collinear.
This result illustrates a thorem of Arnhold and Kempe:

If three bodies are in motion in the plane, the relative centers of motion of
the three pairs of bodies are collinear.

We will see shortly that (a scalar multiple of) ab represents the relative center of
motion of the bodies B, and B, if there is a motion.

B, B, B,
( a -a )
b -b
c -
M(G,T) = d -d
€ -€
f -f
s
/

FI1G. 3.1

We also remark that in this example we could have tied down another body, say
B,. Then we would obtain C(G)=[abe][cdf]—[abf][cde]. Although this appears to
be different from the previous bracket expression for C(G), it can be shown by the
use of syzygies (i.e. standard determinantal identities) that the two are equal, illustrating
Proposition 2.8. The equality of these expressions may also be inferred from the
symmetry of the dual Cayley algebra expression given above.
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Example 3.2. Next we consider the framework in space shown in Fig. 3.2A.
Using the three 6-fans shown in Fig. 3.2B, we have:

C(G) =+[abcdej ] fghikl] —[ abcdek][ fghijl]+ [ abcdel ][ fghijk].

This also has a Cayley algebra factoring as C(G) = (abcde) A (jkI) A (fghi) which may
be interpreted geometrically as follows. There is a one-dimensional space of relative
motions between B, and B,. Similarly there is a two-dimensional space of relative
motions between B, and B; and a three-dimensional space between B, and B;. Looking
at all three of these subspaces of the six-dimensional space of all possible motions,
C(G) =0 says that the three subspaces are not independent, i.e. some relative motion

between B, and B; is a linear combination of a motion between B; and B, and a
motion between B, and B;.

a
b
C
B1 d B,
€
J
1
h k \
¢ g
B3
A
<4 <+
<
B
F1G. 3.2

3.2. Motions of 1-underbraced frameworks. Let us now consider a k-frame which
is 1-underbraced, that is, one edge short of a k-counted graph. Such a k-frame will
generically have one k-motion besides the trivial ones. We now develop an algebraic
method of describing this motion. More specifically, we will think of vertex number
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one as tied down, and compute the relative motions of the other vertices relative to
vertex one.
Let us consider the k-frame matrix M(G(p), T) for such a k-frame.

Vl V2

a -—a 0
b 0 -b
I, 0 0

Assuming that the kv —1 rows of sp (M) are linearly independent, there is a unique
(up to scalar) row vector Z* of length kv orthogonal to the rows of M. We may
compute Z* by adding a row of indeterminates, (x,, X,, * - *, Xx,), to M, and setting
the determinant equal to zero. The coefficient of x; in the resulting equation is (—1)°
times the ith component of Z*. This may be checked by elementary linear algebra and
Cramer’s Rule.

Let vertex V; undergo a motion Z;, meaning that Z; is the k-vector of components
of Z* in the columns for V. Thus Z; is the vector of coefficients of the k indeterminates
in the columns for V. These k indeterminates may be regarded as an indeterminate
vector V, for a new edge between V; and V..

THEOREM 3.3. In a 1-underbraced k-frame G, with V, tied down, the motion of a
vertex V; may be computed by adding a dummy edge x =(x,, x,, - - -, x;) between V,
and V,, computing the pure condition of G U x, and taking the coefficients of the component
of x.

CoROLLARY 3.4. The relative motion of a vertex V; with respect to a vertex V, is
obtained by adding a dummy edge x between V; and V; and computing the coefficients of
x in the pure condition of GU x.

COROLLARY 3.5. The relative motion between V; and V; may be expressed in terms
of the Cayley Algebra as the (k —1)-extensor obtained from the pure condition of G U x,
where x is a dummy edge between V, and V;, by deleting x from the bracket expression
Jor the pure condition of GU x.

3.3. Examples of motions.

Example 3.6. (Fig. 3.3.) In this 1-underbraced 3-frame, the relative motion of B,
with respect to B, is obtained by adding an edge x between B, and B,, obtaining the
pure condition [abx][ cef ]. Thus the relative motion is [ cef ]ab. Regarding this 3-frame
as a bar-and-body framework in the plane, the join ab of the vectors a and b is the
same as the meet a A b with a and b regarded as 2-extensors (or, in this case, co-vectors).
In Example 3.1, when the pure condition C(G) is zero, and the framework has a single
motion, any one of the six bars is dependent upon the other five; hence the motion
of the framework is the same as that of the 1-underbraced framework of this example.
Thus we have justified the statement in Example 3.1 that a scalar multiple of a A b is
the center of the relative motion of B, and B,. Geometrically, the center of the motion
is the point of intersection of the lines a and b, regardless of the scalar multiple. The
scalar, [cef ], affects only the velocity of the rotation of B, about the point a A b, but
this is important in comparing or combining the relative motions of several bodies in
the same framework.

The relative motion of B; relative to B, may similarly be computed as [abc]ef,
and the motion of B; relative to B, as [abclef —[cef]ab (using the pure condition
computed in Example 3.1), and as we certainly expected, relative motions are additive:
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Fi1G. 3.3

if M, is the relative motion of B; relative to B; then M= M;,+ M,; for all h, and
My = '—M'i.

J
Example 3.7. This example is a 1-underbraced bar-and-body framework in three-

dimensional space; hence a 6-frame (Fig. 3.4).
Here M is a 17 x 18 matrix. Applying Corollary 3.5,

Z,=0,
Z,=[ fghijk]abcde,
Z,=[abcdek] fghij — [ abcdej] fghik
where we have used 6-fans with the obvious conventions to compute Z;.

& ™
a -a
b -b
c -c
a d -d
b e -e
c
B, d B, MG,T) = | f
e
g -g
J
\ i h -h
k
f & i -i
J =J
B3
k -k
le
\— -/

FiG. 3.4
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An expression such as abcde in Z, is a join of five “vectors” in the vector space
V® of 2-extensors, a six-dimensional vector space. Such a join corresponds to a
five-dimensional subspace U of V®, which corresponds to a line complex (see [4],
[10]), generated by five lines. In fact, an arbitrary five-dimensional subspace U corre-
sponds to a line complex, sometimes called a linear line complex. The line complex
is actually the set of vectors in U which correspond to lines. A line complex has a
unique line or screw reciprocal to it, and for abcde, that line or screw is the center Z,
of the motion of B,, up to scalar multiple. A line is reciprocal to Z, precisely when a
bar on that line does not (instantaneously) block the motion with center Z,. Thus if
Z, is a line, the line complex consists of all lines meeting Z,, whereas if Z, is a screw,
every line of the complex is, at each of its points, normal to the velocity vector of the
screw motion. If ab is a line, then ab is in the complex corresponding to Z, if and
only if Z,v ab =0, agreeing with Proposition 1.3.

We have a linear combination of two such expressions for Z%, but we may also
write Z¥ in the factored form fghi(ak — Bj), where the last factor, a linear combination
of the lines k and j, is, in general, not a line. Nevertheless, Z; is geometrically either

a line or a screw, as every instantaneous motion of B; is a translation, a rotation, or
a screw motion.

3.4. Motions in special position. Now let us consider an overbraced k-frame G(p),
that is, one in which the rows of M(G) are dependent. If we select a basis of the
row-space of M(G) and delete all other edges of G, then we have clearly not changed
the motion space of G( p). This fact must be reflected in our Cayley algebra calculations.

Example 3.8. We return to the 3-frame in Example 3.1 (see Fig. 3.1). Now, however,
we assume that the 3-frame is in the special position

(*) 0=C(G)=(anb)v(cad)v(enf)=[abc][def]—[abd][cef].

Thus the frame, though correctly counted, is underbraced, and in a generic point for
this special position [see § 4], the six edges form a circuit. Thus any one of the six
edges may be removed without affecting the single motion of G(p). Let Z{* denote
the center of the relative motion of B, to B,, computed by removing edge U. Then
Z$ =[cde]bf —[ cdf 1be.
Similarly
Z®M =[cdelaf —[cdf lae,  Z$ =[def]ab,
etc.
Now Z$ and Z{” must represent the same geometric motion, and hence must
be scalar multiples of each other in the Cayley algebra. Indeed [acd 1Z$ —[bcd]1Z$ = 0
as may be verified using standard syzygies and (*). Similarly
[abd]Z$”+[cbd]1ZS = 0.
Some care must be taken in choosing the coefficients, in addition to assuring
homogeneity and the correct sign. For example,
[aef1Z5° +[cef 125 #0.
For a more detailed examination of relative motion in special positions, see § 4.3.
4. Factors, motions and stresses. We have seen that deleting an edge from a

k-isostatic frame gives a single internal motion. The same motion occurred if this edge

was reinserted in an appropriate special position such that the coordinates satisfied
the pure condition.
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In this section we will give a description of the broad pattern of this motion and
the form of these special positions, based entirely on the factors of the pure condition
and on simple combinatorial properties of the graph.

4.1. The lattice of blocks. The basic units for our study will be the subgraphs of
a graph which are themselves k-isostatic, and the irreducible factors of the pure
condition. From previous work on bar-and-joint frameworks, we anticipate that some
of the factoring of the pure condition is explained by the presence of such k-isostatic
subgraphs [25, Prop. 4.4]. In fact, we will show that all the factoring and other associated
properties arise from this source.

With this goal in mind, we begin with a basic result about these subgraphs.

DEFINITION 4.1. A block of a k-isostatic graph G is a subgraph G’ which is also
k-isostatic.

We observe that the block G’ gives a block decomposition of det (M(G, T))
provided the tie-down T is attached to a body of G’ (see the proof of Proposition 4.4).

THEOREM 4.2. The blocks of a k-isostatic graph G, ordered by inclusion, form a
lattice, with G, A G,= G, G, for any two blocks.

Proof. (a) Given any two blocks, G, and G,, we will show that G,;N G, is a
block. If G,N G, is empty, then it is, in a trivial way, k-isostatic.

If G,N G,= G; is nonempty, then we know that this subgraph of G satisfies
|E5| = k(| V5| —1). We set m = k(|V5|—1) —|E;|, and show that m is also =0.

Since G, and G, are nonempty blocks, we know that |E,|=k(|V;|—1) and |E,| =
k(|V,|—1). Consider the graph G'= G,U G,. By the inclusion-exclusion principle:

V=Vl +|Va| - |V
and
|E'| = IE1|+IE2|—|E3I= k(lV,l—1)+k(|V2|—1)—(k(|V3|—1)—m)
=k(|[Vi|+| Vo= Vi) —k+ m=Kk|V|—k+m.

Since G’ is contained in G, we know that |E'|=k(|V'|-1) and m=0. Thus |E,|=
k(|Vs|—1) and G; is a block.

(b) The partially ordered set of blocks is a finite set with maximum element G
and minimum element ¢. For any two blocks G, and G, we define:

G, vG,=Nag (intersection over blocks G' > G,, G' > G,).

By part (a) this nonempty intersection is a block—the unique minimum block containing
G, and G,. Thus, by a standard construction we have a lattice. 0O

Remark 4.3. If G,N G, # ¢, then we find, from the count in part (a), that G,U G,
is a block. In this case G,v G,=G,U G,.

In Fig. 4.1A we show a 3-isostatic graph and its associated lattice. (A block is
described by listing its vertices.) In Fig. 4.1B we show a 2-isostatic example with its
lattice.

This lattice of blocks gives a partition of the edges of G. For each edge e (joining
vertices B and C) there is a lowest block G, which contains the edge (G.=Bv C).
We say that e is associated with G,. Figures 4.2A and B illustrate the associated edges
for the lattices of Figs. 4.1A and B.

The lattice of blocks also partitions the factors of the pure condition of G. We
recall that an irreducible polynomial over a field K is a polynomial f (with at least one
variable) such that, if f=g-h over the field then either g or h is the zero element of
the field. Since the pure condition of a k-isostatic graph is a polynomial over the
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FIG. 4.2

rationals which is of first degree in every variable, it is a simple result of commutative
algebra that any irreducible factor over the rationals is also irreducible over the complex
numbers (or any other field extending the rationals). For simplicity we speak of an
irreducible factor of the k-isostatic graph G.

ProrosITION 4.4. Each irreducible factor f of a k-isostatic graph G is associated
with a unique block G; such that:

(i) fis a factor of the pure condition of Gy, and Gy is minimal among such blocks;

(ii) each edge with variables occurring in f is also associated with the block G;.

Proof. (a) Any block G’ has |E’|=k(|V’|—1). We reorder the rows and columns
of the k-frame matrix of G so that the vertices and edges of G’ come to the upper left
corner. The matrix now looks like

Cc(G) o]
H L}

When we tie down the first vertex and take determinants, we find that
C(G)=C(G')-det (L).

Thus C(G’) is a factor of C(G). By the form of L it is clear that all variables for
edges in G’ occur only in C(G").

(b) Any irreducible factor of G is either of first degree in each variable of an
edge or has no occurrences of variables for that edge. This follows from the fact that
C(G) is linear in the vector for the edge, and any factoring must preserve such
homogeneity [25, Thm. 2.1].

(c) Each edge occurs in a unique lowest block G,, and the variables for the edge
occur in a unique irreducible factor f,. Therefore f, must be a factor of G,. However,
if a block G’ does not contain the edge e, then f, cannot be a factor of C(G'). We

M(G)=[



MOTIONS IN FRAMEWORKS 21

conclude that the factor f is associated with the block G.. Clearly this assignment
would be the same for every edge occurring in the irreducible factor and we have
defined the associated block G;. 0O

When some variables for an edge (and therefore all variables for the edge) occur
in an irreducible factor f, we say that the edge occurs in f.

In Figs. 4.3A and B, we give the associated factors in the blocks for the examples
of Fig. 4.1. This lattice of blocks, with its associated factors, gives a basic outline of
the structure of G. For any block G’ of G, the lattice of blocks of G’ is just the
sublattice from ¢ to G’ defined inside G. The pure condition for each block G’ will
be the product of all irreducible factors for blocks = G’ in the lattice.

4.2. The scope of an irreducible factor. If the vectors for the edges of a k-isostatic
graph are specialized so that the pure condition is 0, then the k-frame will have an
internal motion. This drop in the column rank of the k-frame matrix must correspond
to a drop in the row rank—a row dependence. Such a row dependence is analogous
to a static stress in a bar and joint framework [25, § 1].

DEFINITION 4.5. A stress on a k-frame G(p) is an assignment of scalars A(e;) to
the edges of the graph, such that (- - -, A(e;), - - -) is a row dependence of the k-frame
matrix for G(p).

The scope of a stress is the set of edges of G which have nonzero scalars in the stress.

We say a frame is independent if it has only the trivial stress with all scalars zero.
Thus, for example, an independent k-frame with |E|= k(| V|- 1) will be isostatic, since
it has the required row (and column) rank.

The set of stresses on a k-frame is a vector space—the space of stresses. As a
convenient short hand, when this space has dimension 1, we speak of a single stress.

[abc][def] [jk1][mno]
-[abd][cef] -[jkm][Ino]
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For any irreducible factor f of a k-isostatic graph G, we can find a generic point
p of f: values for the variables such that f(p) =0 and such that, whenever g(p)=0
for another polynomial, then g = f* h [8, pp. 10-15],[31, p. 21]. For a general irreducible
polynomial, the generic point lies in some general extension of the field. Since an
irreducible factor of any pure condition is a polynomial over the rationals of first
degree in each variable, we can always find generic points in R". If circumstances
dictate the addition or deletion of variables which do not occur in f, we can simply
delete, or add corresponding algebraically independent real numbers, without changing
the generic character of the point. In this chapter, such changes to the point will pass
without further comment. We also note that if the value for at least one variable in f
is omitted, the remaining coordinates are algebraically independent.

PrROPOSITION 4.6. A generic point p of an irreducible factor for the k-isostatic graph
G defines a single stress on the k-frame G(p), whose scope is the entire block G;.

Proof. (a) If we add an extra edge d to the graph G, joining some pair of vertices
also joined by an edge e of f, then we create a graph G’ whose general position frame
has a single row dependence. Using Cramer’s rule on the tied-down k-frame matrix
for G’, and writing R(e;) for the row of the edge e;, this row dependence can be written

2+ C(G'—e) R(e)+C(Gy)-R(d)=0.

(See [25, § 5] for details of the similar expansion on a framework.) When we specialize
to a generic point p of f, C(G;(p)) =0 and the equation becomes

(1) 2+(C(G'-e)(p)): R(e(p))=0.

Since G' — e is isomorphic to Gy, with d replacing e, we know that C(G'—e) # 0. Since
S cannot be a factor of this polynomial (different variables), and p is a generic point
of f, we know that (C(G’—e)(p)) # 0. Equation (1) expresses a stress on edges in G;.
Since removing the edge e from G’ creates an isostatic k-frame, we know there is
exactly one stress on G'(p), and therefore on G;(p). We also know that the edge e is
in the scope of the stress, and this must be true for every edge occurring in f.

(b) Take a point ¢ making G;(q) isostatic and a generic point p of f. We select
an edge e occurring in f, joining vertices B and C, and tie down vertex B. Assume
there is an edge d in G; which is not in the scope of the stress on Gy(p), and therefore
not in f, and remove this edge to create G'. We will derive a contradiction.

Assume C does not move in G'(q). Then B and C must lie in a k-isostatic
subgraph of G'. This contradicts the minimality of G; among blocks containing e.

Assume C does move in G'(q). Inserting a new edge e’, with general coordinates,
also joining B and C, creates a new k-isostatic graph G, since it blocks this motion.
However G,(p) must contain a stress, since it includes the scope of the stress in Gy( p),
by assumption. Therefore, C(G,(p)) =0 for a generic point of f, and C(G,(p)) =fh.
Since e and e’ join the same two vertices, setting the variables for e and e’ the same
will always create a row dependence, and make C(G’) =0. Therefore the two sets of
variables must both occur in some irreducible factor of C(G’). However the variables
of e occur only in f, and no variables of e’ occur in f (since e’ was not in G;). We
have reached the desired contradiction. [

Figure 4.4A shows a special position of the graph of Fig. 4.1A, with the three lines
g, h, i concurrent. This is a generic special position for the factor [ ghi]. Since all edges
lie below this factor in the lattice (Fig. 4.4B), this position defines a stress whose scope
is the entire graph G (shown by arrows on the edges). Figure 4.4C shows a special
position for the factor [ fg] in the graph of Fig. 4.1B. For this position the scope of
the stress is the block shown in Fig. 4.4D.
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Since every generic point of a factor f creates a stress with the same scope, we
speak of the scope of the irreducible factor.

[abc][def] [jk1][mno]
-[abd][cef] -[jkm][Ino]

FIG. 44
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4.3. The motion of an irreducible factor. For any generic point p of an irreducible
factor f, we know that G(p) has a single stress. If we tie down the first vertex, this
will leave a single motion (up to scalar multiplication). We want to investigate which
sections of the frame are locked together, and which pairs of vertices go into relative
motion.

DEeFINITION 4.7. A component of a motion M of a frame G(p) is a maximal
subgraph G’ such that no two vertices in G’ are in relative motion in M. A link of the
motion is an edge of G which joins vertices which are in relative motion.

PrROPOSITION 4.8. For any generic point p of the irreducible factor f of the k-isostatic
graph G, the components of the motion of G(p) are the maximal blocks of G which do
not contain G;.

Proof. (a) Consider a block G, not containing G;. At any generic point p of f we
can delete an edge occurring in f and leave an independent k-frame with the same
motion as G(p). Therefore G,(p) is an independent k-frame, with |E,|=k(|V,|-1).
It is isostatic and must lie inside a single component of the motion.

(b) Consider a component G, of the motion of G(p). Once more we delete an
edge e occurring in f, to create an independent k-frame G'. Any pair of vertices, A
and B, of G,, must share a k-isostatic subframe G(A, B)(p) in G’. For any three
vertices, G(A, B) and G(B, C) are isostatic subframes sharing at least a vertex, so
their union is an isostatic subframe (see Remark 4.3). By induction on the vertices,
we see that G, is contained in a k-isostatic subgraph G; of G'. By part (a) G; is
contained in a component, so G,= G; and the component is a block not containing
G. O

In Figs. 4.5A and B we show the components (lightly outlined boxes) and links
(heavy lines) of the special positions of Fig. 4.4A and C.

Since all generic points of an irreducible factor f create the same components

(and by subtraction, the same links), we speak of the components and links of the
irreducible factor.

Vs

FIG. 4.5
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THEOREM 4.9. An edge occurs in the irreducible factor f of a k-isostatic graph if and
only if the edge is in the scope of f and is a link of f.

Proof. (a) Assume the edge occurs in f. The edge lies in Gy, so by Proposition 4.6
it lies in the scope of f. The edge does not lie in any block not containing G;. By
Proposition 4.8, the edge does not lie in component—so it must be a link.

(b) Assume an edge b is in the scope of f and in the link of f. At any generic
point p of f, the removal of the edge b leaves a k-frame with no stress, and one motion
(after a tie-down). Since b was in the link, the vertices joined by b are in relative
motion. Inserting a general vector for b will block this motion, and create a point g
with f(g) # 0. We conclude that the variables for b actually occur in £ 0O

The picture of how irreducible factors are associated to the lattice of blocks can
now be completed.

For the examples of Figs. 4.4 and 4.5, we see that the edges f, g, h (resp. the edges
f, g) are in both the scope of the factor and the links of the factor.

THEOREM 4.10. At most one irreducible factor is associated with a block of a
k-isostatic graph. All edges associated with the block occur in this factor.

Proof. Consider the block G, for some irreducible factor. All edges of G, are in
the scope of f. If an edge b is also a link of f, then, by Theorem 4.9 it occurs in f.
Otherwise b is in a component of f, a block G’ not containing G;. Therefore b is in

the block G'N G; below Gy. The edge, and any related factor, is not associated with
G, 0O

4.4. The reduced graph of a factor. Each generic point of an irreducible factor
has an associated internal motion and stress. In fact, from the lattice of blocks, with
the associated edges, and the position of the block Gy, we can identify the scope of
the stress, and the components and links of the internal motion. The essential features
of this factor will be even clearer if we shrink each component of the motion to a
single vertex, and restrict our attention to the scope of f.

DEFINITION 4.11. For an irreducible factor f of a k-isostatic graph G, the reduced
graph of the factor is the graph formed from G; by contracting all edges of blocks
below G.

THEOREM 4.12. The reduced graph of an irreducible factor of a k-isostatic graph G
is a k-isostatic graph, with edges in 1—1 correspondence with the edges occurring in f.
The pure condition of the reduced graph is f (up to a scalar).

Proof. Each edge of Gy is either in a component of f, and thus contracted out, or
is a link, and appears in the reduced graph. By Theorem 4.9 such an edge occurs in
J. Conversely all edges occurring in f are links in Gy, and survive to form edges of the
reduced graph.

Given a motion of the reduced graph, there is a corresponding motion of G, which
transfers the motion of the vertex to the associated block G;. Since, in general position,
Gy has only trivial motions, the reduced graph is also rigid in general position. If we
delete any edge of the reduced graph then we get the motion corresponding to deleting
an edge occurring in f from G;. Thus deletion of any edge of the reduced graph, in
general position, causes an internal motion. We conclude that a general position
realization as a k-frame is minimal and rigid, so the reduced graph is k-isostatic. At
a generic point p of f, the frame Gy(p) has an internal motion in which blocks below
G, are components. The reduced graph will have the corresponding internal motion,
and p must make its pure-condition zero. Therefore f divides the pure condition of
the reduced graph. Since f incorporates all possible occurrences of variables for edges
of the reduced graph, it is, up to a scalar, the pure condition. 0O
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Figure 4.6A shows the reduced graph of the factor [ ghi] in the example of Fig. 4.1A,
while Fig. 4.6B shows the reduced graph of [ fg] in Fig. 4.1B.

Remark 4.13. The reduced graph of a factor has a lattice of blocks which is very
simple: a bottom—d¢, a top—the graph, and a set of pairwise incomparable middle
points—one for each vertex. Conversely, any k-isostatic graph with such a lattice
cannot be further reduced, so it must have an irreducible polynomial as its pure
condition.

Such a k-isostatic graph G with an irreducible pure condition is also recognizable
by the simple counting property: |E|=k(|V|—1) and |E’|<k(|V’|-1) for all proper
subgraphs. Such graphs are k-irreducible.

A k-irreducible graph shows a striking uniformity of both static and kinematic
behavior as a general position k-frame.

If we delete an edge from a generic, k-isostatic realization of the graph, the
resulting motion puts all pairs of vertices into relative motion. (This motion is equivalent
to the motion at a generic point of the pure condition, with the deleted edge in special
position). This is a complete motion, a concept which has applications in scene analysis
(see § 5).

If we add an extra edge d, in general position, to a generic isostatic realization
of the k-irreducible graph, G(p), the resulting stress will have the entire extended
graph as its scope. (Deletion of any other edge from the extended k-frame is equivalent
to deleting an edge of G(p) and inserting a general edge between vertices which are
in relative motion. Therefore no subgraph contains the stress.) Such a graph is a general
position circuit, a concept which is common in matroid theory and in the study of
tensegrity frameworks [17].

N
N

A B

FIG. 4.6

4.5. Generic points of several irreducible factors. We know that distinct irreducible
factors actually use disjoint sets of variables.

DEFINITION 4.14. A generic point of the set { f;} of irreducible factors of a k-isostatic
graph G is a point p in R* such that for each i, when p is restricted to variables not
in f;, j# i, p is a generic point of f.
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Remark 4.15. If the value of at least one variable in f; is omitted for each i, the
remaining coordinates of a generic point will be algebraically independent over the
rationals.

Remark 4.16. In algebraic geometry, generic points are defined for irreducible
varieties [8, pp. 10-15]. The set of irreducible factors {f;} defines a variety

VD ={(x1, -+, xm) € R™|fi(x) =0 Vi}.

Since the f; are irreducible, with disjoint sets of variables, this is indeed an irreducible
variety. Its generic points are defined as points p such that g(p)=0- g(X) =0 for all
X in V({f;}). In fact it can be shown that these are identical to the generic points
defined above. We have chosen to emphasize the property of generic points which will
be used in our proofs.

THEOREM 4.17. Assume p is a generic point of {f, g} for two irreducible factors of
the k-isostatic graph G.

(i) If Gy and G, are incomparable in the lattice of blocks, then G(p) has a 2-dim
space of stresses generated by the stresses of f and g, and a 2-dim space of internal
motions, generated by the motions of f and g.

(ii) If G;< G,, then G(p) has the single stress of f and the single internal motion
of g.

Proof. (i) Assume G; and G, are incomparable. If we restrict to G, this omits
all edges of g and leaves a generic point of £ We have the stress of f in G, and in G.
Similarly we have the stress of g and these stresses (with different scopes) are indepen-
dent. The dimension of the space of stresses is at least 2.

The space of internal motions is now at least of dimension 2. If we delete one
edge occurring in f, and one occurring in g, this leaves an independent k-frame with
|E’|=k(]V’|—1) —2. Therefore the space of motions has dimension exactly 2. If we
reinsert the edge from g, with general coordinates, this leaves only the motion of £, so
this motion appears in G(p) as well. Similarly, the motion of g also occurs in G(p).
These independent internal motions of f and g generate the entire space of internal
motions (modulo a tie-down of the first vertex).

This also shows that the space of stress of G(p) has dimension 2, so it is generated
by the stresses of f and g.

(ii) Assume G;< G,. If we restrict to the graph Gy, we omit all edges of g and
have a generic point of f Therefore there is at least the stress of f, with scope Gy, in
G(p). If we delete an edge occurring in f, G;(p) becomes an independent, general
position k-frame. In G, ( p), the omitted edge would be part of the scope of g (if placed
in general position). Therefore G, ( p), with this edge deleted is an independent k-frame
with remaining coordinates for a generic point of g. It has the single internal motion
of g (the same motion which occurs with the edge inserted in general position). We
conclude there is exactly the single stress of f and the single motion of g. O

Figure 4.7A shows a special position for the graph of Fig. 4.1B which is a generic
point of the incomparable factors [ fg] and [ab]. The scopes of the two stresses are
shown with arrows, and the links and components of a general combination of the
two motions are drawn with heavy lines and light boxes, as before. Figure 4.7B illustrates
a special position for the graph of Fig. 4.1A which is a generic point for the two factors
[abc][def ] —[abd][cef]<[ghi]. The scope of the single stress and the links and
components of the single motion are also shown in the figure.

This analysis can be extended to describe the patterns of motions and stresses at
a generic point p of three factors f, g, h of a k-isostatic graph G. We offer, without
proof, a summary of the cases:
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(i) If no two blocks Gy, G,, G, are comparable, the G(p) has a 3-dim stress
space generated by the stresses of f, g and h, and a 3-dim space of internal motions
generated by the motions of f, g and h.

(ii) If G;< G, <Gy, then G(p) has the single stress of f and the single internal
motion of h.

(iii) If G;< Gy, G, and G,, G, are incomparable, then G(p) has a 2-dim space
of motions generated by the motions of g and h, and a 2-dim stress space including
the stress of f.

(iv) If Gy, G, <Gy, and Gy, G, are incomparable, then G(p) has a 2-dim space
of stresses generated by the stresses of f and g, and a 2-dim space of internal motions
which includes the motion of h.

For a generic point p of a general set of irreducible factors f, g, - - -, h, we know
that:

(i) If G is minimal among blocks for the set, then the stress of f is in the stress
space of G(p).

(ii) If G, is maximal among blocks for the set, then the motion of g is in the
space of internal motions of G(p).

(iii) If there is a set of m pairwise incomparable blocks for the set, then the space
of stresses (and of internal motions) has dimension at least m.

We conjecture that:

(iv) The dimension of the space of stresses (and the space of internal motions)
is exactly the size of the largest set of pairwise incomparable blocks for the set of factors.

4.6. Finding graphs for given factors. For a mathematician, it is natural to ask
whether a pure condition arises from a unique graph, or a unique lattice of blocks.
The answer is no.

In Figs. 4.8A and B we give two 3-isostatic graphs with the same lattice and
associated irreducible factors (Fig. 4.8C).
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[abc][def]
-[abd][cef]

FIG. 4.8

In Fig. 4.9, we give a graph with the same pure condition, but a different lattice
of blocks.

However, for each irreducible factor f, we know that there is a unique lattice for
any associated k-reduced graph (a lattice with m+1 middle points, where f is of
degree m in the brackets). We conjecture that there is a unique k-irreducible graph

with such a factor as its pure condition.
[abc][def]
-[abd][cef]

F1G. 49

5. Scene analysis. By our choice of topics and vocabulary, we have emphasized
the role of k-frames as an abstract form of framework. Matrices with the same pattern
also arise in scene analysis—the study of which plane pictures represent spatial scenes
formed by distinct planes in space with designated points of contact which project to
given points in the picture [19].

A basic correspondence between plane pictures, with their spatial scenes, and
associated 3-frames, with their motions, has been described, in detail, in [28]. We
recall three critical features of this correspondence.

(i) A picture S(p) is an abstract incidence structure S=(V, F; I) with vertices
V, faces F, and incidences I = VXF, together with a mapping p: V- R*(p; = (x;, y;))-
Such a picture corresponds to a 3-frame with a vertex for each face, and a tree of
collinear edges (with coordinates (x;, y;, 1)) spanning the faces incident to each vertex
v; with coordinates (x;, y;) in the picture.

(ii) A scene S(g,r) is an assignment q: V- R*(q(i)=(x;, yi,2)) and r:F-
R?, (r(j) = (a;, b, ¢;)) such that ayx;+ by, +z;+ ¢; =0 (the point is on the plane) if the
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vertex is incident with the face in I, and q(i) has the same x and y coordinates as p(i)
(i.e. q(i) projects onto p(i)). Such a scene over a picture corresponds to a motion of
the corresponding 3-frame, where the vertex of face j has the motion r(j). Flat scenes
(with all faces in the same plane) correspond to trivial motions (with all bodies receiving
the same center).

(iii) The desirable sharp scenes (with each face in a different plane) correspond
to complete internal motions (with each pair of vertices in relative motion).

In Fig. 5.1 we show three pairs of corresponding pictures and frameworks. The
example in Fig. 5.1A is a framework of four bodies and eight bars which corresponds
to the picture of a tetrahedron. Such a picture always has a nontrivial scene, and the
framework has a nontrivial motion (just by the count). The example in Fig. 5.1B is
our standard framework with three bodies and six bars which is generically isostatic
(Example 3.1), so the corresponding picture has only flat scenes. If the picture is drawn
to represent a proper prism of three planes (Fig. 5.1C), then the corresponding
framework has a complete motion.

We see from (i) that a general position picture for an incidence structure does
not produce a general position 3-frame for a corresponding graph. The requirement
that certain sets of edges must be collinear gives a special position to the 3-frames
corresponding to pictures. When we identify the variables for edges which must be
collinear, the pure condition of a 3-counted graph will specialize to the pure condition
of the corresponding incidence structure. (The pure condition obtained for the incidence
structure will be independent of which of the equivalent collinear trees is chosen to
correspond to each vertex.) A picture S(p) will have a nontrivial scene if the point
p'=(xi, 1,1, ", X, ¥, 1, - -) satisfies this pure condition C(p')=0.

This identification of edges causes a modification in the counting algorithm for
generically correct pictures [30, Thm. 5.2]:

An incidence structure gives a minimal flat picture if and only if
|V|+3|F|-3=|I|, and | V’|+3|F’|—3=|I’| for all proper substructures.

Of course this identification of variables also destroys the linearity of the pure condi-
tion—and may introduce many complications into the factoring of pure conditions of
incidence structures. The lattice of blocks, and its associated partition of factors will
remain. However most other results of § 4 (including the uniqueness of factors in a
block) will be disturbed.

With these specialized matrices, Rosenberg’s method for calculating conditions
on k-frames can also be modified. Since no vertex should have two exiting edges in
a 3-fan diagram with the same coordinates, each tree of collinear edges (corresponding
to a vertex of the incidence structure) should be rooted and oriented as a whole towards
this root. As a result the number of compatible 3-fans will be drastically reduced. The
proof of Theorem 2.18 actually illustrated this principle, where we specialized to k
trees and we were left with a single k-fan.

If we take an incidence structure whose pictures are, in general, sharp
(|V'|+3|F|-4=I' for all substructures) and are maximal (| V|+3|F|—4=|I|) then the
corresponding k-frames for these pictures will have a single motion which is computed
by the methods of § 3. This method will therefore compute the planes of a general
scene over such a picture. The results could be used to investigate other aspects of the
picture—such as additional inequalities which follow from visual occlusion (require-
ments that one plane be above another at a specified point) [28, § 6].

We leave further discussion of these and other associated topics for another
occasion.
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EMBEDDING GRAPHS IN BOOKS: A LAYOUT PROBLEM
WITH APPLICATIONS TO VLSI DESIGN*
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Abstract. We study the graph-theoretic problem of embedding a graph in a book with its vertices in a
line along the spine of the book and its edges on the pages in such a way that edges residing on the same
page do not cross. This problem abstracts layout problems arising in the routing of multilayer printed circuit
boards and in the design of fault-tolerant processor arrays. In devising an embedding, one strives to minimize
both the number of pages used and the “cutwidth” of the edges on each page. Our main results (1) present
optimal embeddings of a variety of families of graphs; (2) exhibit situations where one can achieve small
pagenumber only at the expense of large cutwidth; and (3) establish bounds on the minimum pagenumber
of a graph based on various structural properties of the graph. Notable in the last category are proofs that
(a) every n-vertex d-valent graph can be embedded using O(dn'/?) pages, and (b) for every d >2 and all
large n, there are n-vertex d-valent graphs whose pagenumber is at least

nl/2—l/d
Q )
( log>n )

Key words. book embeddings, arrays of processors, fault-tolerant computing
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1. Introduction.

1.1. The problem. We study here a graph embedding problem that can be viewed
in a variety of ways. We start with an undirected graph G.

Formulation 1. To embed G in a book, with its vertices on the spine of the book
and its edges on the pages, in such a way that edges residing on the same page do not
Cross.

We seek embeddings of graphs in books that use pages that are few in number
and small in width. (The width of a page is the maximum number of edges that cross
any line perpendicular to the spine of the book. The width of a book embedding is the
maximum width of any page of the book. The cumulative pagewidth of a book embedding
is the sum of the widths of all the pages.) The results we present are of four types:

(1) We characterize graphs that can be embedded in books having one or two
pages. For instance, the one-page graphs are precisely the outerplanar graphs. (A graph
is outerplanar if its vertices can be placed on a circle in such a way that its edges are
noncrossing chords of the circle.)

(2) We find upper bounds on the number of pages required by graphs of valence
(i.e., vertex-degree) at most d, and we show that these bounds are often approached
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by specific d-valent graphs. For example, every n-vertex (d >2)-valent graph can be
embedded in a book with min (n/2, O(dn"'?)) pages (graphs of valence d =2 require
only one page); and there exist such graphs that cannot be embedded in fewer than
Q(n'*7"4/10g? n) pages. (All logarithms are to the base 2.)

(3) We find optimal or near-optimal embeddings of a variety of families of graphs,
including trees, grids, X-trees, cyclic shifters, permutation networks, and complete
graphs. For example, every n-vertex d-ary tree can be embedded in a book having
one page, of width [d/2] - log n.

(4) We exhibit two instances of a tradeoff between the number of pages and the
widths of the pages. For example, every one-page embedding of the depth-n “ladder”
graph requires width n/2, but there are width-2 two-page embeddings for this graph.

1.2. The origins of the problem. The problem has several origins.

Sorting with parallel stacks. Even and Itai [10] and Tarjan [24] study the problem
of how to realize fixed permutations of {1, - -, n} with noncommunicating stacks.
Initially each number is PUSHed, in the order 1 to n, onto any one of the stacks. After
all the numbers are on stacks, the stacks are POPped to form the permutation. One
can view this problem graph-theoretically as follows. Say we are studying permutations
of {1,---,n}. Then consider the bipartite graph G, with vertices
{a,, -, a,, by, -, b,} and edges connecting each a; to b;. The problem of realizing
the permutation 7 on {1, - - -, n} with k parallel stacks is equivalent to embedding G,
in a k-page book, with its vertices embedded in the order a,, - - -, a,, b1y, * * * 5 Bu(n)-

Single-row routing. In an attempt to simplify the problem of routing multilayer
printed circuit boards (PCBs), So [22] decomposed the problem in the following way.
In his variant, one arranges the circuit elements in a regular grid, with wiring channels
separating rows and columns of elements. One then decomposes the circuit’s net lists
(possibly by adding new dummy elements) so that every net connects elements in a
single row or in a single column. The PCB can now be routed by routing each of its
rows and each of its columns independently. The variant of this scenario that does
not allow a net to run from the top of a row around to its bottom nor to change layers
en route [20] corresponds directly to our embedding problem applied to small-valence
graphs.

Fault-tolerant processor arrays. The DIOGENES approach to the design of fault-
tolerant arrays of identical processing elements (PEs, for short) [7], [21] uses “stacks
of wires” to configure around faulty PEs. In broad terms, the approach works as
follows. The PEs are laid out in a (logical, if not physical) line, with some number of
“bundles” of wires running above the line of PEs. One then scans along the line of
PEs to determine which are faulty and which are fault-free. As each good PE is
encountered, it is hooked into the bundles of wires through a network of switches,
thereby connecting that PE to the fault-free PEs that have already been found and
preparing it for eventual connection to those that will be found. To simplify the
configuration process, each bundle is made to behave like a stack, as illustrated by
the following embedding of a complete depth-d binary tree (see Fig. 1). One uses a
single bundle whose wires are numbered 1, - - - , d. After determining which of the PEs

» @ @ ® 66 © O

F1G. 1. The preorder 1-page layout of the depth-3 complete binary tree.
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are good and which are faulty, one proceeds down the line of PEs from right to left.
As a good PE that is to be a leaf of the tree is encountered, it is connected to line 1
in the bundle, simultaneously having lines 1 through d —1 “shift up,” to “become”
lines 2 through d; switches disconnect the left parts of the lines from the right parts
so that vertex-to-vertex connectivity remains correct. The bundle has thus behaved like
a stack being PUSHed. As a good PE that is to be a nonleaf of the tree is encountered,
it is connected to the stack/bundle in two stages. First it is connected to lines 1 and
2 of the bundle, simultaneously having lines 3 through d “shift down” to “become”
lines 1 through d —2; again switches ensure that proper vertex-to-vertex connectivity
is maintained. The bundle here behaves like a stack being twice POPped. Second, the
PE PUSHes a connection onto the stack. In this scenario, POPs amount to having a
PE adopt two children that lie to its right in the line, while PUSHes amount to having
the PE request to be adopted by some higher level vertex that lies to its left. The
process just described lays the tree out in preorder and, hence, uses at most d lines.

Although not directly related to the research in this paper, the following relation-
ship to Turing-machine graphs is also of interest.

Turing-machine graphs. One can construct a T-vertex graph that “models” a given
T-step Turing machine computation, as follows. Each vertex of the graph corresponds
to a step of the computation; vertices ¢, and ¢, are adjacent in the graph just if one
of the machine’s tape heads visits the same tape square at times ¢; and t,, but at no
intervening time. One can easily show that every k-tape Turing-machine graph is
embeddable in a 2k-page book. Hence, a characterization of graphs that are embeddable
in books with a given number of pages might have applications to complexity theory.
For example, a proof that such graphs have small bisection width would lead to several
interesting complexity-theoretic results.

1.3. Additional formulations. Our perusal of the origins of the problem affords us
additional formulations with which to hone our intuition.

Formulation 2. To place the vertices of G in a line and to assign its edges to
stacks in such a way that the stacks can be used to lay out the edges.

Formulation 3. To embed the graph G so that its vertices lie on a circle and its
edges are chords of the circle; to assign the chords to layers so that edges/chords on
the same layer do not cross.

Formulation 3 combines the insights of [10] and [22], and yields a simple charac-
terization of the 1-page embeddable graphs.

THEOREM 1.1 [3]. A graph can be embedded in a one-page book if, and only if, it
is outerplanar.

Proof sketch. A graph G is outerplanar just when its vertices can be placed on a
circle so that its edges become noncrossing chords of the circle.

If G is outerplanar and is laid out on a circle as above, then cutting the circle
between any two vertices and opening it out to form a line yields a one-page embedding
of G.

Conversely, given a one-page embedding of G, passing a line through the vertices
of G in their order in the embedding and joining the ends of the line together to form
a circle demonstrates G’s outerplanarity. [

This characterization suggests yet another formulation.

Formulation 4. To decompose G into outerplanar graphs all of whose outerplanar-
ity is witnessed by the same embedding of G’s vertices.

1.4. Reflections from the facets. The many formulations of our problem suggest
at least two variants: the first assumes that the layout of the vertices is fixed (as in
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sorting with parallel stacks and single-row routing); the second leaves the arrangement
of the vertices as part of the problem (as in the construction of fault-tolerant processor
arrays). We focus in this paper on the harder version of the problem, in which the
placement of the vertices is not given.

The many facets of our problem further allow us to draw on results obtained in
a variety of contexts.

The first result follows from Tarjan’s analysis of the number of stacks that are

required to compute a given permutation of {1, - - -, n}. We translate the result to our
graph-theoretic setting.

THEOREM 1.2 [24]. Let the graph G have vertices {a,,- - ,a,,b,, -, b,} and
edges connecting each a; to b;. Let 7w, and m, be permutations of {1, - -, n}. Let the
vertices of G be placed in a line in the order a, )," * *, Qry(n)s bynys * * 5 buy1). The

number of pages needed to embed G given this placement of its vertices is precisely the
length of the longest sequence of b-vertices whose indices are similarly ordered with their
a-mates.

The next result is immediate from the following important observation by Even
and Itai [10]: The problem

To minimize the number of pages required to embed a graph G in a book, when
the ordering of G’s vertices along the spine of the book is prespecified

is equivalent to the problem

To find a minimum vertex-coloring for a circle graph (which is the intersection-
graph for chords of a circle).

The correspondence between the two problems is best seen from Formulation 3 of the
book-embedding problem. Garey et al. [13] show that the coloring problem for circle
graphs is NP-complete.

TaeOREM 1.3 [10], [13]. The following problem is NP-complete: Given a graph G,
an ordering of the vertices of G, and an integer k, decide whether or not G can be embedded

in a k-page book when its vertices are placed along the spine of the book in the specified
order.

See [1] for a related result.

2. Sample embeddings and helpful principles. The problems of embedding small-
valence graphs and of analyzing given embeddings are harder than they seem at first.
In order to help the reader develop intuition for the remaining sections, we now present

helpful strategies for obtaining bounds, and we illustrate them with sample embeddings
and their analyses.

2.1. An embedding strategy. Formulation 3 of our problem suggests a strategy for
embedding graphs in books, that is valuable both in finding and describing embeddings.
In order to embed the graph G in a book, the strategy advocates:

1. embedding the vertices of G in a circle by finding a hamiltonian cycle in G or
in some edge-augmentation of G (that is, a graph obtained from G by adding zero or
more new edges);

2. assigning the edges of G (which are easily transformed into chords of the
circle) to pages in some noncrossing manner, perhaps by coloring the vertices of the
associated circle graph.

Reinforcing the intuition behind this heuristic is the fact that hamiltonian cycles
add virtually no cost to an embedding: a cycle adds only 1 to the cutwidth of a layout
(since one snips it), and it does not interfere with any other edges, so it does not
increase the pagenumber of the embedding.
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2.2. Two strategies for lower bounds. The first strategy for bounding pagenumber
from below resides in the following result, which follows from Theorem 4.1 (q.v.).

THEOREM 2.1. If the graph G is not planar, then it cannot be embedded in fewer
than three pages.

The second bounding strategy revolves around the properties of matching graphs.
For our purposes a matching graph is a regular univalent graph (hence has an even
number of vertices). If we view a matching graph as being bipartite, we can naturally
associate with it a permutation #: the graph’s “input” vertices are labelled 1, -, n
and are connected, respectively, to “output” vertices 7(1), - - -, w(n). We shall encoun-
ter situations when analyzing a specific layout or a class of layouts of a graph G
wherein we can assert that G must contain as a subgraph a matching graph G* such
that

1. the input vertices of G* all lie to one side of its output vertices;

2. the input and output vertices of G* are similarly ordered, in the sense that, if
the inputs are laid out in the order v, v,, - - -, v,,, then the outputs appear in the order
77(”1)9 ”(02), T 17(1),,).

When the existence of such a G* can be established, we can infer that this (class
of) embedding(s) of G requires n pages. The reasoning leading to this conclusion
bears a strong kinship with the reasoning that Tarjan [24] and Even and Itai [10] used
when studying sequences of integers that can be sorted using n stacks.

The lower bounds we obtain via matching subgraphs are among the best we derive
in the paper.

2.3. Sample embeddings.

2.3.1. The pinwheel graph. The embeddings we shall be presenting in the course
of our study will bear out the value of the hamiltonian-cycle embedding strategy. The
following example illustrates how careful one must be to search for a good hamiltonian
cycle.

The depth-n pinwheel graph P(n) has 2n vertices

{ar, a2, -, a.}
and
{b1, by, - -, b}
and edges connecting each pair of vertices of the form
a;—b;, 1=i=n,
ai—b, i, 1=i=n,
a,—a,, 1=i<n,
b,—b;,, 1=i<n.
See Fig. 2.

FIG. 2. The depth-8 pinwheel graph P(8).
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When n > 2, the graph P(n) is not planar: P(3) = K; ;. We shall see in § 4 (Theorem
4.1) that this nonplanarity precludes P(n)’s being embedded in fewer than three pages.
Can one do this well? The obvious hamiltonian cycle—that goes “down the a’s and
up the b’s”—leads to an embedding using roughly n pages, one of width proportional
to n. However, if one studies the structure of pinwheels more carefully, then one
discovers a hamiltonian cycle that leads to a 3-page embedding for P(n), independent
of n, in which the three pages have widths 2, 4, and 4, respectively.

ProposITION 2.2. The graph P(n) is 3-page embeddable in such a way that one
page has width 2 and the other two have width 4 each.

Proof. The embedding. One obtains the desired cycle by rearranging the “butter-
flies” that comprise P(n), as follows. We use asterisks to divide the cycle into segments

that facilitate the analysis of the induced embedding. Assume for simplicity that n is
even.

— b — —_ _ — — - —*_ — — — — - — - —%_
a,—-b-a,—-b,—b, ,—a,_;—b,—a, ay—by—a, ,—b, ,—b,_3—a, 3—b—a,

*
=¥ —au 1= by — ay/242= buj242-bujpi1—8njpe1 = bupp—ay ;.

Each segment of the cycle comprises two adjacent butterflies, the second recorded in
reverse order of the first. Let us linearize the vertices of P(n) by snipping the cycle
between a, and a,,,, as suggested by the way we have written the cycle.

The analysis. For each segment, we need one width-2 page to hold the butterfly
edges. A second, width-4, page suffices to hold the edges that connect any single pair
of adjacent butterflies. But, if this page is used for the edges that connect the ith and
(i+1)th butterflies, it cannot also hold the edges between the (i+1)th and (i+2)th
butterflies; for this next pair we need yet a third width-4 page. We need no additional
pages, since the latter two can alternate joining up adjacent butterflies. Thus the cycle
we have presented leads to a layout with the claimed efficiency. 0O

2.3.2. The sum of triangles graph. The next graph we look at is interesting because
of the techniques that are needed to analyze and bound the efficiency of its embeddings.
In particular, it will afford our first use of matching subgraphs to obtain a lower bound
on pagenumber.

The depth-n sum of triangles graph T(n) has vertices

{a;,, b;, c:1=i=n}

and edges connecting each triple a;, b;, c; into a triangle.

THEOREM 2.3. The graph T(n) is 1-page embeddable, with width 2. However, if
one insists that T(n) be laid out ““by columns”, so that the vertices {a;} are all contiguous,
and so are the vertices {b;} and the vertices {c;}, then T(n) is 3n'/>-page embeddable,
and this is optimal, within a factor of 3.

Proof. The unrestricted layout of T(n) being obvious (triangle by triangle), we
restrict attention to layouts of T(n) that keep all the a-vertices, all the b-vertices, and
all the c-vertices contiguous, so we can refer with no ambiguity to the a-block of
vertices, the b-block, and the c-block. We shall henceforth assume such a layout without
further explicit mention. We shall also assume, for simplicity, that n is a perfect
cube.

! One of the referees has found a 3-page embedding of P(n) with pagewidths 4, 3, and 1, respectively.
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The upper bound. Begin with each of the blocks of vertices in order: the a-block
lies in the order

a,,Qa,- -, a,,
the b-block lies in the order

by, by, - s bn,
and the c-block lies in the order

C15,C25 " " Cpe

Partition each of these blocks into n'/? segments, each segment being further subdivided
into n'/® runs of n'/? vertices each. Each block thus has the form:

(Rl e Rd)(Rd+1 e Re) e (Rf+1 e Rg)’

where runs are grouped by parentheses into segments. To this point, corresponding
runs in corresponding segments are similarly ordered in each block.

Now begin rearranging the vertices within blocks as follows. Assume without loss
of generality that the a-block lies to the left of the b-block, which lies to the left of
the c-block.

(a) Leave the a-block as is.

(b) Rearrange the b-block by reversing the order of its segments, and reversing
the order of the runs within each segment (but keeping vertices within runs in order,
as before). The block will now look like:

(Rg‘ o Rf+1) “o(Res - Raw1)(Ra- * * Ry).

(c) Rearrange the c-block by reversing the order of the runs in each segment and
reversing the order of vertices within each run (but keeping the original order of the
segments). If we let R denote the run obtained by reversing the vertices of the run R,
then the block will now look like:

(Ra+* R)(R.- - - Rasr) - -+ (Rg+ -+ Rpwy).

Now let us add in the edges of T(n) and keep track of how many pages we can
get by with. When we add the edges that connect the a-block to the b-block, we note
that a single page will accommodate one edge from each a-run to its corresponding
b-run; since each a-run emits n'/* edges to the b-block, we need only this many pages
to realize the a-to-b edges. When we add the edges that connect the b-block to the
c-block, we note that a single page will accommodate the edges from one b-run per
segment to its corresponding c-run; since there are n'/> runs per segment, we need
only this many pages to realize the b-to-c edges. When we add the edges that connect
the a-block to the c-block, we note that a single page will accommodate all the edges
from one a-segment to its corresponding c-segment. Since there are only n'/* segments
per block, we need only this many pages to implement the a-to-c edges. We have thus
used 3n'/? pages to implement all of T(n)’s edges.

The lower bound. Without loss of generality, say that we have T(n) laid out in
an a-block, a b-block, and a c-block, in that order. If we concentrate on any pair of
blocks, we have a subgraph of T(n) that is a matching graph whose “inputs” and
‘“outputs” are laid out disjointly. Using the obvious correspondence between similarly
(resp., oppositely) ordered inputs and outputs on the one hand, and increasing (resp.,
decreasing) subsequences of an integer sequence on the other hand, we note the
following variant of a well-known result of Erdos and Szekeres [9].
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LEMMA 2.4 [9]. Let A and B be orderings of the integers {1,2, - - - , n}. If sequences
A and B share no similarly ordered subsequence of length greater than k, then they share
an oppositely ordered subsequence of length at least n/ k.

Now assume for contradiction that our layout of T(n) requires fewer than n'/3
pages. As we have noted in § 2.2, this implies that the a-block and the b-block share
no similarly ordered subsequence of vertices of length as great as n'/>. By Lemma 2.4,
therefore, these blocks must share an oppositely ordered subsequence of length greater
than n?>. Look now at the length-n*> subsequence of the c-block that corresponds
to the oppositely ordered subsequence of the a-block and the b-block. By Lemma 2.4,
this subsequence of the c-block must share with the corresponding subsequence of the
a-block either a similarly ordered subsequence of length

(n2/3)1/2 - n1/3

or an oppositely ordered subsequence of the same length. In the former case, the edges
between the a-block and the c-block cannot be realized with fewer than n'/® pages;
in the latter case, the edges between the b-block and the c-block require this many

pages. This contradicts our assumption that fewer than n'/> pages suffices to realize
the layout of T(n). O

3. Specific efficient layouts. Our attention to this point has been on establishing
general analysis techniques and bounds. We now turn to the task of finding efficient
layouts of a number of familiar graph families. We shall find in § 4 that these families
have much more modest pagenumber demands than random graphs.

3.1. Trees. In § 1.2 we presented an embedding of the complete binary tree that
turns out to be optimal in both pagenumber (one) and pagewidth (log n). (Optimality
of width follows from [5].) It is not hard to show that all trees enjoy embeddings that
are approximately as efficient as those of complete trees.

ProOPOSITION 3.1. Every n-vertex d-ary tree can be embedded in one page of width

at most
. d logn
min (" L [2] [1og 3/2])‘

Proof sketch. Let G be a graph. One adds a fringe to a vertex v of G by appending
to v a line of (possibly 0) vertices:

V=0 U= U, r=0.

A fringing of G is a graph obtained by adding a fringe to each vertex of G.

Concentrate on a single vertex v of G. Say that when G is laid out, v is flanked
by vertices u and w. Let v have two fringes, v, - -, v, and v}, - - -, v; (one or both
of which may be empty). Lay the fringes out either in the indicated order between v
and w or in reverse order between u and v. To choose the side of v: place the first
fringe on that side of v where the fewest edges of G cross or meet v (as in the
conventional definition of cutwidth); place the second fringe using the same criterion
in the now-augmented embedding. This strategy increases the cumulative width of the
embedding by at most 1, while leaving the number of pages (one) unchanged.

An easy induction verifies that any d-ary tree T can be “built” by levels, by starting
with a single vertex and “double”-fringing the graph at most

HR b
2 log 3/2
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times. Our bounds on pagewidth follow from this method of constructing the tree and
from the fact that the tree has at most n —1 edges. Details are left to the reader. 0O
Proposition 3.1 seeks to optimize the worst-case tree embedding. Dolev and Trickey

[8] present an algorithm for finding a width-optimal one-page embedding for an
individual tree.

3.2. Square grids. Square grids are planar and subhamiltonian, hence 2-page
embeddable. (We verify this claim in Theorem 4.1.) The augmented hamiltonian cycle
formed by row-by-row alternated east-to-west and west-to-east sweeps, as indicated in
Fig. 3(a), leads to the 2-page embedding shown in Fig. 3(b). This embedding is optimal
both in number of pages—the grid is not outerplanar—and in the cumulative width
of the pages—the n X n grid has minimum bisection width n.

PROPOSITION 3.2. The n X n square grid admits a 2-page embedding, each page of
width n. This embedding is optimal in pagenumber and is within a factor of 2 of optimal
in pagewidth.

3.3. X-Trees. The depth-d X-tree X(d) is the edge augmentation of the depth-d
complete binary tree that adds edges going across each level of the tree in left-to-right
order (see Fig. 4(a)).

X-trees are planar and subhamiltonian, hence admit 2-page embeddings. While
it is easy to find a 2-page embedding for X (d)—the cycle that runs across levels in
alternating orders yields one such—it is difficult to find one that has width o(n) (where
n=2%—1 is the number of vertices in X (d)), despite the fact that X (d) has a bisector
of size d. However, the edge-augmentation of the X-tree depicted in Fig. 4(a), with

(b)

PAGE 1

/—\
oee@oeee«mmw@@@

PAGE 2

F1G. 3. (a) The 4% 4 grid and its efficient hamiltonian cycle. (In all the figures, the edges added to create
an efficient cycle are shown as dotted lines; the graph edges comprising the cycles are thickened.) (b) The 2-page
layout of the grid induced by the cycle.
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(a)

FIG. 4. (a) An edge-augmentation of the depth-4 X-tree and an efficient hamiltonian cycle. (b) The layout
of the X-tree induced by the cycle of (a).

the indicated hamiltonian cycle, leads to the width-O(d) 2-page embedding of X (d)
depicted in Fig. 4(b).

PropPoSITION 3.3. The depth-d X-tree admits a 2-page embedding, with one page
of width 2d and one of width 3d. This embedding is optimal in pagenumber and is within
a factor of 5 of optimal in cumulative pagewidth.

Proof. Optimality in number of pages is immediate since X (d) is not outerplanar
for d =3. The (near-) optimality of the claimed cutwidth follows from the proof in
[17] that X (d) has no bisector of size less than d, coupled with the demonstration
that this implies a similar bound on cutwidth.

It remains only to verify that the widths of the pages in the prescribed embedding
do indeed satisfy the claimed bounds. The verification proceeds by induction, but
requires some detail about the layout of X (d). Say that we have a 2-page embedding
of X(d—1) with the claimed pagewidths and the following form. We depict the
embedding schematically by its linearization of X(d)’s vertices, together with a few

relevant edges. For simplicity we draw page 1 above the line of vertices and page 2
below the line.

asrt 3
LAayour 1

Here r, s, t are, respectively, the root of X(d —1) and its left and right sons; a and B
are the strings comprising the rest of X(d —1)’s vertices. Assume for induction that
in Layout 1:
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(1) the left spine vertices (which are the leftmost vertices at each level) of X (d —1)
appear consecutively in leaf-to-root order in «;

(2) the right spine vertices (which are the rightmost vertices at each level) appear,
not necessarily consecutively, in root-to-leaf order in B;

(3) the vertices r, s, t and all of the left and right spine vertices are exposed on
page 2, in the sense that no edge of X (d —1) passes totally over them (i.e., under them
in the picture);

(4) the width of page 1 is at most 2d —2;

(5) the width of page 2 is 0 below the left spine vertices, and is less than 3k —3
to the right of the level-(d — k —1) spine vertices.

Now take a second copy of Layout 1:

2

a® 5" B#;
LAayourT 2

The prescribed layout of X (d)—whose set of vertices is just the union of the sets of
vertices of its two depth-(d —1) sub-X-trees, in addition to r*, its root vertex—is
obtained from the indicated layouts as follows:

LAyouT 3

A careful analysis of the composite layout extends the induction: Conditions (1), (2)
are immediate since the left (resp., right) spine of X(d) is contained in the string asr
(resp., the string r* t* B*), whose order is inherited from Layout 1 (resp., from Layout
2). Condition (3) is clear from the depiction of Layout 3: no edges are placed in the
forbidden regions. Conditions (4), (5) are verified by simple counting.

Analysis of small X-trees establishes the base of the induction, thereby completing
the proof. 0O

3.4. Benes permutation networks and their relatives. We now consider families of
graphs whose structure is materially more complicated than the ones we have considered
so far. These families are all very similar in structure and arise in a variety of contexts.
They include the FFT networks whose structure represents the computational dependen-
cies in the Fast Fourier Transform algorithm, Banyan networks whose structure approxi-
mates that of the Boolean n-cube while retaining bounded vertex-degrees, and the
Benes rearrangeable permutation network [2], which is shown in Fig. 5(a). We concen-
trate on the Benes network, since it is a supergraph of the others, hence the hardest
of the group to embed efficiently.

Let n be a power of 2. The n-input Benes network B(n) is the graph defined
inductively as follows.

1. B(2) is the complete bipartite graph K, , on two input vertices i, , and i, , and
two output vertices 0, and 0, ,.
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PAGES 4,5,6

PAGES 2,3,4

FI1G. 5. (a) The 4-input Benes network. (b) A 6-page layout of two levels of the network.

2. B(n) is obtained by taking two copies of B(n/2) as well as n new input vertices,
In1>in2,* " *,inn and n new output vertices, 0,,, On2,* * *, Op,. For each 1=k=n, one
adds edges that create one copy of K,, with “inputs” i, and i, x+.,> and “outputs”
in2x and iy, (the primed vertices coming from the second of the two copies of
B(n/2)) and one copy of K,, with “inputs” 0,,, and o;,/,, and “outputs” o, and
Onk+ns2 (again, primed vertices come from the second copy of B(n/2)).

Benes networks and their relatives are nonplanar, so they require at least three
pages. Games [12] has recently discovered an elegant embedding that achieves this
pagenumber. In order to illustrate a strategy that is often useful for finding good book
embeddings, we describe now a simple 6-page embedding, which is built upon the
hamiltonian cycle that alternates running up and down the “columns” of inputs ard
outputs of B(n); see Fig. 5(b). In this embedding, one uses three pages to realize the
“butterflies” that connect each “column” of vertices to the next “column.” The fact
that the embedding uses only a bounded number of pages is due to its reusing pages
as it proceeds down the columns of B(n). This strategy of reusing independent pages
is a central feature of efficient embeddings (cf. [6], [15], [29]). It is somewhat surprising
that any graph capable of “computing” all permutations can be realized with any
bounded number, let alone 3, of pages.

PrOPOSITION 3.4 [12]. The Benes network B(n) admits a 3-page embedding, with
each page having width n. This embedding is optimal in pagenumber and within a factor
of 3 of optimal in pagewidth.

3.5. The Boolean n-cube. Our next family of graphs also has a rich interconnection
structure which follows the communication structure of a broad class of algorithms.
This family has been proposed as a desirable network architecture for a highly parallel
computer; indeed, many of the other networks discussed in the literature—the shuffie-
exchange, the banyan, and the cube-connected-cycles, for example—arose as bounded-
valence stand-ins for our next graph. The Boolean n-cube C(n) has as vertices the set
of all binary strings of length n. The edges of C(n) connect string-vertices x and y
just when x and y are unit Hamming distance apart, i.e., when there exist binary strings
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a, B, of collective length n—1, such that

{x, y} = {08, «1B}.

Thus C(n) has 2" vertices and n2" ' edges. Since C(n) is hard to visualize for n> 3,
its efficient embedding is more easily described inductively in string-oriented terms,
rather than via a hamiltonian cycle.

ProPOSITION 3.5. The graph C(n) (n=2) admits an (n—1)-page embedding, with
one page of width 2' for each 1=i=n—1. This embedding is within a factor of 2 of
optimal in both pagenumber and cumulative pagewidth.

Proof. The lower bound on pagenumber is immediate from the facts that

(a) the pagenumber of C(n) is at least as big as the minimum number of
outerplanar graphs into which C(n) can be decomposed (Theorem 1.1);

(b) an N-vertex outerplanar graph can have at most N ‘“noncircle” edges [23];

(c) C(n) has n2"'=(1/2)N-log N edges.

The lower bound on cumulative pagewidth follows from the easily derived fact that
C(n) has minimum bisection width 2" "

The upper bound is seen easily by describing inductively the linearization of the
vertices of C(n).

* The vertices of C(2) are laid out as follows:

00 01 11 10

hence C(2) is embeddable in one width-2 page.

* Assume that C(n) is realized with n—1 pages of widths 2,4, - --,2""", via the
linearization

3132' BN

where each B; is a distinct length-n binary word. Then the following layout for
C(n+1):

08,08, - - 0BN1B8N- - 18,18,

is realizable with just one more page, of width N. This extends the induction
and completes the proof. [

3.6. The complete graph K, . Finally, we analyze the complete graph on n vertices,
K, in which every pair of vertices is adjacent. To simplify our analysis, without losing
any of the germane ideas, let us assume that n is even.

PROPOSITION 3.6. The complete graph K,, is embeddable in n/2 pages, each of width
at most n. This embedding is optimal in pagenumber and in cumulative pagewidth.

Proof. We establish the claims in reverse order.

Optimality in cumulative pagewidth is immediate since, by symmetry, all layouts
of K, have the same cutwidth.

Optimality in number of pages is deducible from our principle about matching
subgraphs. Lay the vertices of K, out on a line; call the vertices 0,1,--+,n—1 in
left-to-right order. Note that K, contains as a subgraph the matching graph M, whose
input vertices are 0, 1, - - -, (n/2) — 1, and whose output vertices are given by: #(v) =
v+n/2 for 0= v <n/2. Since the inputs and outputs of M, are similarly ordered in
this embedding, this embedding requires n/2 pages. Since all embeddings of K, are
isomorphic, the bound on pagenumber follows.

To see the upper bounds, consider the following way to lay out K,. Place the
vertices 0,1, - - -, n—1 evenly spaced on a circle. For each vertex v, 0=v<n/2, draw
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the line-graph L, as indicated in the following illustration, in which all arithmetic is
modulo n and in which double dashes denote edges of the line:

v=vtl=v-1=v+2=0v-2=---=v+(n/2)-1=v—-(n/2)+1=v+(n/2).

It is not hard to verify the following facts.

(1) Each such line is composed of noncrossing chords of the circle; hence, by
Theorem 1.1, each is embeddable on a single page.

(2) Every edge of K, appears in precisely one line: to verify this, note that each

vertex w is an endpoint of (hence, has valence 1 in) precisely one line, namely, L,, mod n/2
and has valence 2 in all other lines, so that in all, n—1 edges leave w; moreover, no
two lines share an edge since, in the circle picture, all the lines emanating from vertex
w have different slopes.
These two facts establish that, if one snips the circle between any two vertices, thereby
laying K, out in a line, and if one colors the edges of K, according to which line L,
they lie in, one obtains an embedding of K, in an n/2-page book. By the symmetry
of K,, this embedding has optimal cumulative pagewidth. 0O

3.7. The mesh of cliques. The nXxn mesh of cliques M(n) is the graph whose
vertex-set is {1,2,---,n}x{1,2,- -, n} and whose edges connect each row {i}x
{1,2,- -+, n} into an n-vertex clique and each column {1,2,-:-,n}x{i} into an
n-vertex clique. While we do not know how efficiently M(n) can be embedded in a
book in general, we can show that any embedding that places M(n)’s vertices along
the spine row by row must use n*? pages. The proof follows the inspiration of Theorem
2.3; details are left to the reader. Any nontrivial bound (particularly a lower bound)
on the pagenumber of M(n) would be interesting.

As a closing note to this section, Muder [18] and West [30] have a number of

nontrivial bounds on the pagenumber of complete bipartite graphs K, ,, that improve
our results in [7].

4. Graph structure and pagenumber. In this section, we look at certain structural
features of a graph, that are related to the number of pages required to embed the
graph in a book. We find certain unexpected effects as well as the absence of certain
expected ones.

4.1. Planarity. Theorem 1.1 indicates that the outerplanarity of a graph has a
material effect on its pagenumber. It is easy to show that planarity has a not-dissimilar
effect, but only when it is accompanied by a second structural property.

THEOREM 4.1 [3]. The graph G admits a 2-page embedding if, and only if, it is
subhamiltonian, i.e., a subgraph of a planar hamiltonian graph.

Proof sketch. A graph is subhamiltonian just if it is embeddable in the plane so
that (1) its vertices lie on a circle; (2) each of its edges lies either totally within the
circle or totally without it; and (3) no edges cross in the layout.

Given such a ‘“circular” embedding of a subhamiltonian graph G, cutting the
circle between any two of G’s vertices yields a planar embedding of G in a line, with
each edge lying either totally above the line (i.e., on page 1) or totally below it (i.e.,
on page 2).

Conversely, given a 2-page embedding of the graph G, we view this embedding
as placing G in a line with each edge lying totally above the line (page 1) or totally
below it (page 2), and with no edges crossing. Pasting together the ends of the line
containing G’s vertices yields a “circular’” embedding of G that witnesses G’s subhamil-
tonian planarity. 0
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In the several years since the appearance of [3], the question of how many pages
an arbitrary planar graph requires has attracted considerable attention. Buss and Shor
[6] were the first to demonstrate that planar graphs can be embedded in a bounded
number of pages; their elegant layout technique embeds an arbitrary planar graph in
9 pages. Heath [15], [16] used a quite different technique that improves this bound to
7 pages. Yannakakis [29] has recently settled the issue by proving coincident upper
and lower bounds of 4 pages.

THEOREM 4.2 [29]. Every planar graph admits a 4-page embedding. Moreover, there
exist planar graphs requiring 4 pages.

Returning to the consequences of Theorem 4.1, we observe that every series-parallel
graph is 2-page embeddable. The class of series-parallel graphs is defined inductively
as follows.

1. The 2-vertex graph with one source vertex s adjacent to one target vertex ¢ is
a series-parallel graph.

2. If G is a series-parallel graph with source vertex s and target vertex ¢ and if
G' is a series-parallel graph with source vertex s’ and target vertex t’, then the graph
G" obtained by ‘““identifying” vertices ¢t and s’ is a series-parallel graph with source
vertex s and target vertex t'. (This is an example of ‘“‘series composition.”)

3. If Gy, -, G, are series parallel graphs with source vertices s,,* -, s, and
target vertices t,, - - -, t,, respectively, then the graph G* obtained by: taking a new
source vertex s and adding edges between s and each of the s;; and taking a new target
vertex ¢t and adding edges between ¢t and each of the ¢ is a series-parallel graph with
source vertex s and target vertex t. (This is an example of “parallel composition.”)

A graph is series-parallel just when its being so follows from provisos 1-3.

ProvposiTiON 4.3. Every series-parallel graph is 2-page embeddable.

Proof. Tt is clear that every series-parallel graph is planar. By Theorem 4.1, then,
we need only show that each such graph is subhamiltonian. This is easily proved by
induction on the number of vertices in the graph, using the following inductive
hypothesis.

Given a series-parallel graph G with source vertex s and target vertex f, there is

a planar edge-augmentation of G that has a hamiltonian path starting at s and
ending at t.

The indicated path can then be completed to a cycle by an edge from ¢ to s, without
endangering planarity, thus establishing that the graph is subhamiltonian.

We sketch the easy induction. (1) Trivially, the unique 2-vertex series-parallel
graph satisfies the claim. (2) If the graphs G and G’ with source vertices s and s’ and
target vertices t and t' each satisfies the claim, then so also does their series composition:
the desired hamiltonian path goes from s through G to ¢, which is identified with s,
and thence through G’ to t'. (3) If the graphs G,, - - -, G, are series-parallel, with
source vertices s;, - - -, s, and target vertices t,, - - -, t,, then the parallel composition
of the graphs satisfies the claim: the desired hamiltonian path goes from s to s,, thence
through G, to t,, to s,, thence through G, to t,, - - -, from ¢,_, to s,, thence through
G, to t,, and finally to t. Details are left to the reader. [

The final corollary of Theorem 4.1 is a direct consequence of Wigderson’s result
that the problem of deciding whether or not a maximal planar graph is hamiltonian
is NP-complete [28].

COROLLARY 4.4. The problem of deciding 2-page embeddability is NP-complete.

4.2. Bisection width. The next structural property we consider measures the ease
of recursively cutting a graph into two equal size subgraphs. We find that this measure
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yields a nontrivial upper bound on pagenumber but does not provide any nontrivial
lower bound.

For our purposes, the simplest measure of the ease of bisecting a graph resides
in the Bhatt-Leighton [4] notion of bifurcator: The graph G has a p-bifurcator of size
B (B an integer and p>1) either if G has fewer than B edges or if G admits a
decomposition tree with the following property. The root of the tree (which is the sole
vertex at level O of the tree) is the graph G. Each graph H at level k=0 of the tree
that has more than one vertex gives rise to two disjoint graphs at level k+1, having
the following properties: (a) each graph contains at least one vertex; (b) their union
is H; and (c) each is connected to the other by no more than Bp * edges.

THEOREM 4.5. If the graph G has a p-bifurcator of size B, then it is embeddable in
(p/(p—1))B pages.

Proof. Let G have a p-bifurcator of size B. One begins the process of embedding
G in a book by forming G’s decomposition tree. One now lays G’s vertices in a line
(which will be the spine of the book) in the same order in which they appear as leaves
of the decomposition tree. One assigns edges to pages as follows. At each level k of
the tree, one creates Bp™* new pages. One proceeds through all of the subgraphs of
G that are split at that level, and one assigns one “cut” edge from each such subgraph
to each of the new pages. No crossings can be introduced by such an assignment
strategy since (a) edges that belong to the same level-k subgraph are assigned to
different pages, and (b) edges that are assigned to the same page belong to disjoint
intervals of vertices (because of the way vertices were laid out in the spine). It remains

only to count the number of pages used in the embedding. This number is clearly
bounded above by

Y Bp k= (—p—> B. 0
k=0 p— 1

An immediate corollary of this result is that every small-degree n-vertex planar
graph is embeddable in O(n'/?) pages. This was the best upper bound known before
the work of Buss and Shor [6], Heath [15], [16], and Yannakakis [29].

Theorem 4.5 indicates that the size of a graph’s bifurcator places a nontrivial
upper bound on the number of pages it requires. For the most part, this does not work
in the other direction. By Theorem 4.1, every n-vertex 2-page embeddable graph has
a 2"2-bifurcator of size O(n'/?), but once we get to 3-page embeddable graphs,
knowledge of a graph’s pagenumber no longer yields a nontrivial bound on the size
of its bifurcators.

PROPOSITION 4.6. There exist n-vertex 3-page embeddable graphs whose smallest
p-bifurcators have size Q(n/log n) for all p>1.

Proof. Games [12] has shown that the n-input Benes network can be embedded
in a 3-page book. A straightforward application of Thompson’s lower bound proof
technique [25] shows that every p-bifurcator of the O(n - log n)-vertex 3-page embed-
dable graph B(n) has size Q(n). 0O

The bound in Proposition 4.6 has recently been strengthened by Galil, Kannan
and Szemeredi [11], but it is still not known whether or not there exist n-vertex 3-page
embeddable graphs whose smallest p-bifurcators have size ®(n). As we mentioned in
§ 1.2, showing the existence of such graphs could have interesting consequences in
classical complexity theory.

4.3. Valence. The final structural property we study is the valence of a graph. We
find that this property affords us nontrivial upper and lower bounds on pagenumber.
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These bounds are not very close for small or large valences, but they are close for
moderate-valence graphs.

The graph G has valence d if no vertex of G has degree exceeding d. G is regular
if all its vertices have the same degree.

4.3.1. An upper bound for d-valent graphs.
THEOREM 4.7. Let d be any positive integer, and let € be any positive constant. Say
that G is a d-valent graph with n vertices, where

. (ln ((d+1)n1/2)>4.

£

If d =2, then G is 1-page embeddable. For any values of d and ¢, G is F(e, d, n)-page
embeddable, where

F(e, d, n) = min [g (1+e)2+2Y?)(d + 1)n‘/2].

Proof. The cases d =2 are simple, for if d =1, G is a matching graph, and if
d =2, G consists of disjoint paths and cycles.

We turn now to the case of arbitrary valence d. Say that we are given an n-vertex
graph G of valence d. We note first that G is embeddable in n/2 pages, since K, is
(Proposition 3.6); hence we need look only at the second term in the expression for
F(g, d, n). We shall justify this term (nonconstructively) by showing that not all
embeddings of G in books can be “bad,” in the sense of using too many pages.

We begin by decomposing G into at most d +1 matching graphs, Gy, - - -, G,
each having at most n vertices, by means of an edge-coloring algorithm (this is always
possible by Vizing’s Theorem [26]). Now consider all possible permutations of G’s
vertices (or, equivalently, all possible layouts of the vertices in the spine of a book).

Focus on an arbitrary permutation # and on its “behavior” on one of G’s
constituent matching graphs G;. Consider those edges of G; that connect a vertex in
the left half of the layout with a vertex in the right half; say there are k such edges.
These edges can be viewed (as we have noted earlier) as specifying a permutation on
k integers. Since we have assumed nothing about the layout nor the edges, this
permutation can be viewed as a random permutation on k integers. By a fundamental
result of Hammersley [14, Thm. 6], the fraction of such permutations that have an
increasing sequence of length exceeding k'/?+ £(n/2)"? is strictly less than

on(2(2))

This means (as we have noted before, by analogy with work of Tarjan [24]) that at
most this small fraction of the layouts will require as many as (1+¢)(n/2)"/? pages to

realize the edges of G; that connect a vertex in the left half of the layout to a vertex
in the right half (since k=n/2).

Recall that increasing (resp., decreasing) sequences in a permutation correspond
to similarly ordered (resp., oppositely ordered) sequences of inputs and outputs
of our matching graph. Moreover, one can show via a strengthened analogue of
Lemma 2.4 that the existence of a length-p increasing sequence in a permutation
implies that the permutation can be partitioned into p decreasing sequences. The
residents of each of the pages in the layout are the edges corresponding to one
of these decreasing sequences.
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Now let us remove these edges that connect the two halves of the layout and their
incident vertices. We are left with two (roughly) half-size copies of the same problem.
Moreover, since we have been discussing a matching graph, the relative layout of the
remaining vertices is completely independent of the layout of the vertices that were
removed, so that once again, the permutations induced by the edges can be viewed as
random ones, hence within the purview of Hammersley’s theorem. This means that
when we analyze each of the permutations specified by the edges that connect the left
halves of each of the subgraphs with the right halves, we find that at most the fraction

or(+(3))

require as many as (1+ &)(n/4)"/? pages for their realization. We can now continue in
this fashion to remove edges that have been considered, thereby reducing our concern
to 2' subproblems of size roughly n/2' each, each of which encounters ““bad” layouts

with probability less than
n 1/2
—2¢e|l = .
exp( 8(2'> )

We continue generating half-size subproblems until n/2°=n"? for by that time,
Proposition 3.6 assures us that every layout can be realized within n'/? pages (i.e., that
the probability of a layout’s being “bad” is 0). It is clear from the foregoing reasoning
that the probability that a random layout requires more than

(1/2)logn .
Y (1+e)(n/2)*=1Q+e)1+2Y*)n"?+n'/?

i=

<(1+&)(2+2Y%)n'?

pages to realize one of G’s component matching graphs is less than

(1/2)logn X .
2 exp (—2&(n/2)?)=n"? exp (—en'’*).
i=1
Since G is just the disjoint union of its component matching graphs, it follows
that the probability that a random layout of G’s vertices requires more than

(1+€)(2+2Y%)(d+1)n"?
pages to realize all of G’s component matching graphs, hence G itself, is no greater than
(d+1)n"? exp (—en"*),

which is less than unity, by the assumed relationship among n, d, and e.

We have thus shown that almost all orderings of G’s vertices result in layouts
using no more than F(e, d, n) pages. 0

Remark. The result of Hammersley that is at the center of the preceding proof
deals with the lengths of monotonic subsequences of permutations. We needed the
result instantiated for increasing subsequences, for this yielded the sought bound on
pagenumber. However, the result can also be instantiated for decreasing sequences,
thereby giving an O(n"/?) upper bound on pagewidth also. Details are left to the reader.

4.3.2. A construction for trivalent graphs. The (nonconstructive) upper bound of
Theorem 4.7 holds for almost all orderings of the vertices of arbitrary d-valent graphs,
but we do not have a general construction that yields a good ordering. If we restrict

attention to trivalent graphs, then we do have such an explicit construction. We begin
with a special case.
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Let G be a trivalent graph, and let S be the set of its degree-3 vertices. We say
that G is trimmable if G admits a matching whose removal leaves G with at most one
degree-3 vertex.

LEMMA 4.8. Every n-vertex trimmable trivalent graph can be embedded in a (3n"/*+
5)-page book, each page having width at most n'/?.

Proof. Let G be an arbitrary n-vertex trimmable trivalent graph. We shall embed
G in a book via the following series of steps.

1. We remove a matching from G, plus at most one additional edge, in such a
way as to be left with a bivalent subgraph of G: in fact, a set of vertex-disjoint cycles
and paths that include all of G’s vertices. This is possible since G is trimmable. Let
us refer to the removed matching edges as matched edges.

2. We (tentatively) lay G out in a line, cycle/path by cycle/path. Then we reinsert
the removed edges.

3. We partition the linearized version of G into n'/? contiguous blocks of n'/?
vertices each, from left to right. (Assume for simplicity that n is a perfect square.)

4. Our next task is to rearrange our tentative layout so as to achieve the claimed
pagenumber. Note that every block (save possibly one) has at most n'/?+4 edges
leaving it to any other block: at most n'/> matching edges and at most 4 emerging
edges that go from the cycles/paths of this block to neighboring blocks. The one
possible exceptional block is the one that had one additional edge removed with the
matching; it could have that additional edge leaving it, too.

We rearrange the vertices in each block, from left to right, in the following way.
For the first block, we sort the vertices in decreasing order of the block numbers to
which their matched edges go. For each subsequent block: (a) we place those vertices
whose matched edges go to leftward blocks to the left of those vertices whose matched
edges go to rightward blocks; (b) we sort the leftgoing vertices in decreasing order of
the block numbers to which their emerging edges go; (c) we sort the rightgoing vertices
analogously; (d) within each group of leftgoing vertices that are going to the same
block, we arrange the vertices in increasing order of the distance from the present
block of their target vertex.

Analysis. The effect of the rearrangements in 4(a)-(d) is that now each of the n'/?
blocks needs just one page to realize all of its rightgoing matched edges; each of these
pages has width at most n'/2. The edges that we have scrambled within each block lie
totally within blocks of size n'/? each; hence, we need at most half this many additional
pages to realize them: By Proposition 3.6, m/2 pages, each of width m, can realize
the edges interconnecting any group of m vertices; moreover, since the blocks are
mutually disjoint, we can use the same 3n'/? pages to realize all of them. The (at most)
4n'/? emerging edges can be realized using at most 4 new pages: Since we never move
blocks, at most two of these edges connect a block to its right neighbor, and at most
two connect the block to its left neighbor; hence, the only conflicts occur within a
block, and 4 new pages can resolve these conflicts. (Two of the pages used with one
block can be reused in its neighbor block.) Finally, at most one additional page is
necessary, to realize the one non-matched edge of G that we may have had to remove
at the beginning of the embedding. The result follows. 0

With the help of a crucial observation by Lenny Heath [31], we can extend Lemma
4.3 into a (3n'/*+6)-page embedding of arbitrary trivalent graphs.

Lemma 4.9 [31]. Every trivalent graph without cut-edges (i.e., edges whose removal
disconnects the graph) is trimmable.

Proof. If the trivalent graph G has no cut-edges, then every vertex of G has degree
2 or 3. Let us pair up the degree-2 vertices of G and add an edge between each pair.
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This will augment G to a regular trivalent graph, unless G started with an odd number
of bivalent vertices, in which case our pairing leaves us with one unmated degree-2
vertex, call it v. We handle this last contingency as follows. Let u-v-w be a chain in
the augmented G. (If G had fewer than three vertices, it would be univalent.) Replace
v and the edges (u, v) and (v, w) by the single edge (u, w). At this point, in either of
the contingencies, we have augmented G to a regular trivalent graph, possibly having
multiple edges, but definitely having no cut-edges (since G had none). By a well-known
result of Petersen [19], the augmented G has a perfect matching, i.e., a matching whose
removal renders the graph regular bivalent. If we now restore G to its original state
and consider the implications of Petersen’s perfect matching, we verify easily that G
is trimmable. 0O

TueOREM 4.10. Every n-vertex trivalent graph can be embedded in a book with
(3n'?+6) pages. Each page, save possibly one, will have width at most 2n"/?. The
cumulative pagewidth of the embedding will at worst be proportional to n, which cannot
be improved in general.

Proof. Let us be given an arbitrary n-vertex trivalent graph G. By removing all
of G’s cut-edges, we decompose G into subgraphs G,, G,, - - -, G,,, each having no
cut-edges. By Lemma 4.9, each G; is trimmable; hence, by Lemma 4.8, each G; can
be embedded in a (3n'/?+5)-page book, each page having width at most n'/2. Thus,
any embedding of G that lays the G; out disjointly along the line has the claimed
efficiency. To prove the theorem, then, we need only show how to deal with the removed
cut-edges.

We begin with two easily verified but crucial observations for which we are grateful
to Lenny Heath. First, we note that if we take our layout of one of the G; and shift
the vertices cyclically, we do not change the pagenumber of the layout, and we at most
double its pagewidth (since our layouts really are in circles, not lines; cf. Theorem
1.1). Second, we note that if we contract each subgraph G; to a point, leaving only
the cut-edge interconnections, then the resulting contraction of G is a tree.

Our strategy is to lay G out as a tree of subgraphs, with each subgraph laid out
as in Lemma 4.8, but possibly cyclically shifted.

We begin by arbitrarily picking G, as the first subgraph to process. We lay G,
out as in Lemma 4.8. Say that in the layout, the vertices

V11, V12, " * 5 Uik

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k, subgraphs along the line in the reverse order of the v,;. When we place each
subgraph, we use the layout prescribed by Lemma 4.8; but we cyclically shift the
vertices in this layout so that the leftmost cut-edge-bearing vertex is the one connected
to G,. The subgraphs just placed will remain in this order, and their layouts will stay
fixed, but other subgraphs may be placed between them.

Next, we process the just-placed subgraphs recursively, from left to right. (By
“recursively”” here we mean the following. If we have subgraphs A and B remaining
to be processed, in that order, and if in the course of processing A we place a new
subgraph C between A and B, then C gets processed before B.) We process subgraph
G, i>1, as follows. Say that in the layout of G; the vertices

Vi1, iz, * ° vik;,

appearing in that order, are connected to other subgraphs by cut-edges. We place those
k; subgraphs along the line in the reverse order of the v;, immediately to the right of
G; (hence, to the left of all other subgraphs that have previously been placed to the
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right of G;). As before, when we place each subgraph, we use the layout prescribed
by Lemma 4.8; but we cyclically shift the vertices in this layout so that the leftmost
cut-edge-bearing vertex is the one connected to G;. Again, the subgraphs just placed
will remain in this order, and their layouts will stay fixed, but other subgraphs may
be placed between them.

The reader will recognize that we have essentially laid the contracted tree version
of G out in preorder. By Proposition 3.1, then, we need only one extra page to
accommodate the cut-edges. Since the contracted tree has at most n edges, the extra
page has cutwidth at most n.

We thus have an embedding of G with the parameters advertised in the statement
of the theorem. The cumulative pagewidth of the embedding (which is at worst
proportional to n) cannot be improved in general, as one can verify by observing that
the cutwidth of a trivalent n-superconcentrator must be proportional to n. 0

4.3.3. A lower bound for d-valent graphs. We have been unable to find lower
bounds on the worst-case pagenumber of d-valent graphs that match the upper bounds
of Theorem 4.7 and Theorem 4.10. We have, however, found nontrivial lower bounds,
that we present now.

THEOREM 4.11. For all valences d > 2, for all sufficiently large n, there are n-vertex
graphs of valence d whose pagenumber is no less than

p(/2)-(/d)
(const) Tog® n

Proof. Let the valence d >2 of the graphs of interest be fixed. Imagine that we
have a table each of whose rows is labeled with one of the n! permutations of n items
(=1layouts of n vertices), and each of whose columns is labeled with one of the n-vertex
matching graphs: the table entry corresponding to row i and column j is “FEW” if
layout i uses no more than p pages on matching graph j, and is “MANY” if the layout
uses more than p pages. The general strategy of our proof is to demonstrate that if p
is no larger than indicated in the statement of the theorem, then some d-tuple of
columns encounters at least one “MANY” in every row.

In order to get the argument going, we need to know roughly how many rows/per-
mutations/layouts contain a “FEW” for a given column. This information is derivable
from the following lemmas.

LEMMA 4.12. At most p*>" permutations of r integers have no increasing sequence of
length p+1.

Proof. We noted in Lemma 2.4 that any permutation of {1, 2, - - -, r} whose longest
increasing subsequence is of length p can be partitioned into p decreasing subsequences.
This decomposition can be used to specify the permutation uniquely via two length-r
strings over the alphabet {1,2, - - -, p}. The first string specifies, for each position i,
which decreasing sequence occupies that position. The second string assigns the integers
{1,2,---,r} to subsequences. Since there are p*>" pairs of length-r strings over
{1,2,- - -, p}, the lemma follows. 0

LeEMMA 4.13. Let G be an n-vertex matching graph. The number of layouts of G
that use at most p pages does not exceed

P(n, p)=25""

where

E(n,p)églog n+n-logp+2n-loglogn.
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Proof. Let us count the number of layouts of G that require at most p pages. We
employ the correspondence we have established between matching graphs and permuta-
tions (§ 2.2). Consider an arbitrary layout of G that has r edges passing between the
leftmost n/2 vertices of G and the rightmost n/2 vertices; there are obviously no more
than n/2 such edges. Let (}) denote the binomial coefficient

<x>= x!
v/ ytx=y)r

1. There are at most (",?) ways to choose the r edges that cross the center of the
layout.

2. Each association (=edge) between element i and element j in a permutation

can arise because w (i) =j or because 7 (j)=1i; hence there are 2" ways of assigning
left and right halves to each of the r edges.

3. There are at most ((,/427}/2) Ways to assign edges that do not cross the center
to either the right or the left half of the layout.

4. Since the edges that cross the center can appear in any order, there are r! ways
of ordering the left endpoints of these edges.
5. By Lemma 4.12, no more than p*” of the permutations specified by the r edges

can be realized with only p pages, so there are at most p>” ways of ordering the right
endpoints of the edges that cross the center.

6. There are ("/?) ways to place the (now ordered) endpoints of the r crossing
edges on each side of the layout.

Aggregating all of these possibilities, recursing down to handle the two induced
subgraphs of G to the left and to the right of the center of the layout, and allowing r
to range over its possible values, we end up with the recurrence

P(np)= T ("fz) 2 ([('(1%)2)_:]'/2) rlep ("f2)2~ [P(g—r,p)]z.

Our strategy will be to take the largest term T (say that it is the rth term) from this
sum and show that nT, which certainly is no less than P(n, p), is no greater than the
claimed bound. We begin by representing r as

n
=b— 0<b=1
r 2’ ’

and by applying to T standard estimates for the binomial coefficients. We find that
P(n, p)=nT

=exp 2[log n+3 H(b)n +-;-1+ bglog (bf) ——bglog e+bnlogp

2
+2E((1—b)§,p)]

where exp 2(x) =4.r2", and where H(b) is the base-2 entropy function
H(b)=-[blog b+(1—b)log (1-b)].

Let us now assume for induction that our claimed bound

E(m,P)-f—%lOg m+mlogp+2mloglog m
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on E (hence on P) holds for all m < n. It then follows from the preceding inequalities,
after simplification, that

P(n,p)=exp 2[log n+ H(b)n +§log n—bglog etnlogp

+2(1-b)n log log ((1 —b) %’)]
Note that the right-hand expression can be shown to be less than
exp 2[; log n+nlog p+2nloglog n]
provided only that for all 0<b=1,
H(b)+ <210glogn 2(1—-b) log log ((1 b) )+§log e
We establish this last inequality by verifying that, in fact,

log n_ 2

(1) H(b)+—— +2b log log (2)+sloge

This will suffice since

2loglog n—2(1—b) loglog ((l —-b) g) >2loglog n—2(1—b) loglog (g)
=2loglog n—2loglog (2) +2b loglog ( )
=2loglog n—2log (logn—1)+2b loglog (g)

2
>——+2b loglog (2)
logn 2

Now we must verify the final inequality (1) involving H(b): Using the Taylor’s series
expansion for log (1 —b), one can show that

H(b)éblogl

b+b loge
for all b=1. Hence it suffices to verify that
1 b log n 2
blog—+-1 =" 42b1
0Bl et T e n oglog (2)

This is easily accomplished by analyzing the two cases
b=(logn)™?> and b>(logn)™ 2
Thus we establish the desired inequality (1) on H(b) and, through it, the desired
inequality on P(n,p). 0O
Return to proof of Theorem 4.11. Consider again our large table with entries

“FEW” and “MANY”. The number of “FEW” entries in each (n!-item) column of
the table is at most P(n, p), where p is the number of pages we are prepared to use
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to lay out our n-vertex d-valent graphs. Clearly, we cannot lay out all such graphs
unless every d-tuple of table columns contains only ‘“FEW” entries in at least one row
of the table. (The d-tuples of this last assertion arise from the fact that every union
of d matching graphs forms a d-valent graph.) These “FEW” entries have a chance

of existing only if
d
c?=n! (M C) ,
n!

where ¢ denotes the number of n-vertex matching graphs. The left-hand quantity is
the number of d-tuples of matching graphs, while the right-hand quantity is the product
of the number of rows and the number of d-tuples of “FEW” entries in each row.
(The latter fact follows from the observation that, by symmetry, every row has the
same number of “FEW” entries.) Simplifying, then, we can accommodate all d-valent
graphs in p pages only if

P(n, p)*=(n)* .
By Lemma 4.13, this inequality implies (after taking logarithms)
dn-[3logn+logp+2loglog n]=(d —1)nlog n+0O(n).

The validity of this inequality finally implies the claimed lower bound on p, namely,
n1/2—1/ d

log’ n

Our upper and lower bounds are within a few logarithmic factors apart when the
valence d is logarithmic in n; they are rather far apart when d is either very big or
very small. We conjecture that one of the factors of log n can be removed in the lower
bound, but the tighter analysis needed is likely to be quite complicated.

p = (const) O

5. Cost tradeoffs. In this section, we point out a rather interesting anomaly that
could be important in the context of our study. We describe here two families of graphs
that engender pagenumber-pagewidth tradeoffs. Each of these families can be laid out
using some number p pages—but only if the widths of the pages are allowed to grow
proportionally to the size of the graph being laid out. However, if one uses just one
additional page, then the widths of the pages can be kept bounded by a constant.

Both of the graph families have the following form. The depth-k K,,-cylinder C (k, n)
is the graph whose vertex-set is the union of the k sets

Vin={vi1, Uiz, " * ',Ui,n}, 1=sisk,
and whose edges (a) connect each set V;, into an n-clique, and (b) connect each vertex
v;; tO Vertex v, 1Si<k 1=j=n.

The anomalies of interest appear in the first two parts of the next result. The third
part of the result indicates the failure of the obvious generalization of the first two parts.

ProrosITION 5.1. (1a) Any 1-page layout of C(k,2) has pagewidth at least k/2.
(1b) There are 2-page layouts of C(k,2) having pagewidth 2.

(2a) Any 2-page layout of C(k, 3) has pagewidth at least k/2. (2b) There are 3-page
layouts of C(k,3) having pagewidth 4.

(3) There are 3-page layouts of C(k, 4) having pagewidth 4.

Proof sketch. The fact that C(k,2) is outerplanar guarantees that it is 1-page
embeddable. The fact that C(k, 3) is planar and subhamiltonian (a hamiltonian cycle
can be traced by going from v, , to v;, to v,, to v,,, and so on until one has reached
v,.n; at that point one goes to v,3, thence to v,_, 3, and so forth, to v, ;) guarantees



EMBEDDING GRAPHS IN BOOKS 57

that it is 2-page embeddable. Proving the lower bounds on the pagewidths of the
resulting layouts proceeds by showing that at least half of the constituent n-cliques
must be nested in any minimal-page layout. This is easily verified directly in the case
of C(k,2): any (not necessarily contiguous) sequence of the form

va,l...vb,z...vc,l...vd,z

(or its reversal), where {a, b} ={1, 2} precludes an embedding using just one page.
(This verification is a special case of Syslo’s result [23] that every biconnected outer-
planar graph has a unique outerplanar embedding.) In the case of C(k,3), a direct
verification is a bit more difficult; but the result follows immediately from Whitney’s
proof [27] that every triconnected planar graph has a unique planar embedding.

The existence of the claimed small-pagewidth layouts can be verified by the reader
from the illustrative layouts depicted in Fig. 6. [

@ EROETRY

oo
coe

eoe

FIG. 6. A small-width layout for (a) C(4,2), (b) C(4,3), (c) C(4,4).

It would be interesting to know whether or not there exist pagewidth-pagenumber
tradeoffs analogous to those of Proposition 5.1 for every number of pages; i.e., can
using one more page decrease pagewidth unboundedly?

Acknowledgments. It is a pleasure to thank Lenny Heath, Ravi Kannan, and Gary
Miller for helpful conversations leading to several key insights.
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ON THE SINGULAR “VECTORS” OF THE LYAPUNOV OPERATOR*
RALPH BYERSt AND STEPHEN NASH}

Abstract. For a real matrix A, the separation of AT and A is sep (A”T,— A) =min |ATX + XA|/| X1,
where ||-|| represents the Frobenius matrix norm. We discuss the conjecture that the minimizer X is symmetric.
This conjecture is related to the numerical stability of methods for solving the matrix Lyapunov equation.
The quotient is minimized by either a symmetric matrix or a skew-symmetric matrix and is maximized by
a symmetric matrix. The conjecture is true if A is 2-by-2, if A is normal, if the minimum is zero, or if the
real parts of the eigenvalues of A are of one sign. In general the conjecture is false, but counterexamples
suggest that symmetric matrices are nearly optimal.

Key words. Lyapunov equation, sep, singular values, singular vectors
AMS(MOS) subject classifications. 65F35, 15A18, 15A45, 49B99, 65G99
1. Introduction. For AcR™" define the separation sep (A", — A) [9], [10] by

T Ay |ATX + XA
Here ||-|| is the Frobenius matrix norm ||Z||*>=trace (Z¥Z). We are concerned with

the following:

ConNJECTURE. The minimum in (1) is obtained by a real symmetric matrix X.

Of course, there may be nonsymmetric minimizers as well.

The sensitivity of the solutions of Lyapunov equations [7] and algebraic Riccati
equations [1], [4] to perturbations in the data is governed by sep (A", — A). Related
quantities govern the sensitivity of invariant subspaces [9].

In this paper we show that (1) is maximized by a symmetric matrix and is minimized
by either a symmetric matrix or a skew-symmetric matrix. It is definitely minimized
by a symmetric matrix if A is 2-by-2, if A is normal, if sep (A”,— A) =0 or if the real
parts of the eigenvalues of A are of one sign. A counterexample shows that the
conjecture is false.

In terms of the Lyapunov operator

L(X)=ATX+XA

the conjecture is that the smallest singular “‘vector” of L is symmetric. The structure
of the Lyapunov operator has been studied extensively. Some surveys on this and more
general operators appear in [8] and [11].

Section 2 points out some of the conjecture’s practical consequences in the design
of numerical algorithms. Section 3 proves the conjecture for several special cases.
Section 4 presents some counterexamples. The examples suggest that nearly optimal
symmetric matrices always exist for the problem (1).

2. Applications to numerical software. Consider the Lyapunov equation
(2) L(X)=A"X+XA=B,

where A and B=B” are known n-by-n matrices and X = X" e R"*" is unknown. If
the spectra of A and —A are disjoint, then there is a unique solution X. Using ¢-digit
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base b arithmetic, a sound numerical algorithm for solving (2) will produce an
approximate solution X such that

(3) A"™X+XA=B-R,

where the residual R is small in the sense that for some modest constant ¢ depending
on the size of the problem and the algorithm used,

(4) IR|| = cb' | Al X].

Such an approximate solution X may be bounded in terms of the correct solution X
of (2) using

ATX-X)+(X-X)A=R.

Thus,

. R
(5) IIX—X||§$TH_A)-

The Bartels-Stewart algorithm [2] and the Golub-Nash-Van Loan algorithm [7] both
produce approximate solutions satisfying (3) and (4), but in the presence of rounding
errors, the Bartels-Stewart algorithm preserves the symmetry of X and R while the
Golub-Nash-Van Loan algorithm usually does not. The latter algorithm could sym-
metrize the solution, but it was designed for nonsymmetric systems, and is less efficient
than Bartels-Stewart in the symmetric case.

So, the Bartels-Stewart algorithm produces a better quality approximate solution.
Furthermore, if (1) is not minimized by a symmetric matrix, then (5) cannot be an
equality for the Bartels-Stewart algorithm. The main issue in (5) is really the difference
in magnitude between the left- and right-hand sides, so this point may not be significant.
(The Bartels-Stewart algorithm also requires less work and storage to solve (2) than
the Golub-Nash-Van Loan algorithm. However, for the more general problem in
which AT is replaced by some other matrix the Golub-Nash-Van Loan algorithm
becomes less expensive.)

An economical estimator for sep (A7, — A) described in [3] uses a heuristic similar
to the LINPACK condition estimator [5] to choose an approximate minimizer of (1).
The heuristically chosen minimizer can be improved by using inverse iteration on the
Lyapunov operator (2) and its transpose. The approximate minimizer is symmetric
and symmetry is preserved by inverse iteration. Separation estimators like [3] that use

symmetric approximate minimizers may fail when (1) is not minimized by a symmetric
matrix X.

3. Special cases. In this section we show that the quotient in (1) is maximized by
a symmetric matrix and is minimized by either a symmetric matrix or a skew-symmetric
matrix. We establish that it is minimized by a symmetric matrix if A is 2-by-2, A is
normal, sep (A”,— A) =0 or if the real parts of the eigenvalues of A are of one sign.

In what follows, we use the usual ordering of (possibly complex) Hermitian
matrices: B= C if and only if B—C is positive semi-definite. The notation A"
represents the Hermitian transpose of A.

The first lemma shows that the conjecture can be false only if (1) is minimized
by a skew-symmetric matrix.
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LEMMA 1. Let A be a real n-by-n matrix. There exists a real matrix Z e R"" such

that Z # 0,
T T
6) min |ATX + XA| _ I|A Z+ZA||’
x=0 || X| ¥4

and either Z=Z" or Z=-2Z".

Proof. The Lyapunov operator L(X) in (2) is a linear transformation on the
finite-dimensional, real vector space R"™". The Frobenius norm is simply the vector
2-norm applied to “vectors” in R"*", so the minimum in (6) occurs when X is a

singular “vector” of L corresponding to the smallest singular value. Let WeR"™" be
such a singular “vector.” Since

[ATW+ WA| = (AW + WA)T|| = |[ATWT + WTA],

W7 is also a singular “vector” of L corresponding to the smallest singular value. If
W+ WT =0,then Z = W is a skew-symmetric matrix satisfying the theorem. Otherwise,
Z=(W+ WT) is a symmetric singular “vector” of L corresponding to the smallest
singular value. 0

Notice that the set of real, symmetric matrices and the set of real, skew-symmetric
matrices form invariant subspaces of the Lyapunov operator L(X) (2). These subspaces
are orthogonal with respect to the Frobenius inner product

(A, By=trace (A"B)

from which the Frobenius norm arises. Since the symmetric and skew-symmetric
matrices span R"*", the singular “vectors” of L(X) may be chosen from these invariant
subspaces. The interpretation in terms of singular values and the orthogonality of these
two invariant subspaces makes the use of the Frobenius norm in (1) more natural than
other matrix norms.

Much of what follows depends on the following corollary to the proof of Lemma 1.

CoROLLARY 2. If (1) is minimized by a possibly complex matrix X € C"*", then it
is minimized by X, X + X, X — X, X+ X" and X — X" (whenever these are nonzero).
In particular, if (1) is minimized by X € C"*" and the real part of X is not skew-symmetric,
then (1) has a real symmetric minimizer.

Proof. Similar to Lemma 1. 0

An immediate consequence of the corollary is

THEOREM 3. If the minimum of (1) is zero, then it is achieved by a symmetric matrix.
Furthermore, if A is nonsingular, then the minimum is also achieved by a skew-symmetric
matrix.

Proof. If A is singular, then there is a vector v € R” such that A7v = 0. The symmetric
matrix X =vv” minimizes (1). If A is nonsingular and K #0 is a skew-symmetric
matrix such that ATK + KA =0, then KA is a nonzero symmetric matrix and
7 AT(KA)+(KA)A=AT(KA)+(-ATK)A=0.

Similarly, if A is nonsingular and X # 0 is a symmetric matrix such that A"X + XA =0,
then XA is a nonzero skew-symmetric matrix that minimizes (1). 0O

The conjecture can also be proved for the class of normal matrices.

THEOREM 4. If A€ R"™" is normal, then (1) is minimized by a symmetric matrix X.

Proof. Since A is normal, there is a unitary matrix U € C"*" and a diagonal matrix

De C"™" suchthat A= UDU". The Frobenius norm is invariant under unitary transfor-
mations, so if X e R™*", then

®) |ATX + XA| _ID*(Uuxu) +(UXU) D
x| luxu™|
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Let W= UXU H and denote the diagonal entries of D by d;. Define integers k and [
by |di+ dj| =min|d; + d;|. In terms of W and D, the right-hand side of (8) becomes

£ § m@+ar /1wl

i=1j=1

which is minimized by setting W =[w;] where

" _{w ifi=kandj=1,
Ylo ifizgkorj#l

and o is a number of unit modulus chosen so that the real part of U¥(W+ WH)U
is nonzero. By Corollary 2, (W+ W¥) also minimizes the right-hand side of (8). So
X =U"(W+ WH)U minimizes the left-hand side. Again applying Corollary 2, the
real part of U”(W+ W)U also minimizes (8). O

The conjecture holds without any special assumptions for 2-by-2 matrices.

THEOREM 5. If A is 2-by-2, then (1) is minimized by a symmetric matrix.

Proof. By Lemma 1, either a symmetric or a skew-symmetric matrix minimizes
(1). We will show that for every 2-by-2, skew-symmetric matrix, there is a symmetric
matrix that makes the quotient in (1) at least as small.

Suppose
a B
A_[v 5]

is a real, 2-by-2 matrix. Without loss of generality, we may assume a = 8. To see this,
let ¢t be a root of the quadratic equation

(a—8)+2t(y+B)—t*(a—8)=0.
The discriminant is 4(y+ B)*+4(a —8)*=0, so t is real. Set c=(1+¢*)""? and s = ct.

So, ¢*+s*=1, and
R c s
| -s c '

is orthogonal. These choices of ¢ and s make the diagonal entries of A=RART equal.
The Frobenius norm is unitarily invariant, so

_ |ATX+XA| . |ATX + XA
mm-—— 5, _ _ ==mm—=&— .
x=o | X =0 | X]

If the right-hand side is minimized by a symmetric matrix X, then the left-hand side
is minimized by the symmetric matrix X = RXR".
All 2-by-2, skew-symmetric matrices are scalar multiples of

k=[ 7o)

The only value of the quotient in (1) for a skew-symmetric matrix is |ATK +
KA|/|K||=]|a+8|. If @ =8, and c and s are real numbers such that ¢+ s>=1, then
for the symmetric matrix
c 0
X =
[0 S]

the quotient in (1) is also |A"X + XA| /| X || =2|e|=|a+8|. O
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An important special case of the Lyapunov equation (2) is the case that A is
stable, i.e., all eigenvalues of A have negative real part. It is well known that the
Lyapunov operator is order preserving for stable matrices. A consequence is that the
conjecture is true for stable matrices A. To establish this, we need the following two
lemmas.

LEMMA 6. Suppose all eigenvalues of A€ R"™™" have negative real part and suppose
B and C are (possibly complex) Hermitian matrices such that B= C. If X and Y satisfy
the Lyapunov equations A"™X + XA=B and A"Y+ YA=C then Y= X.

Proof. The difference X — Y satisfies the Lyapunov equation

AT(X-Y)+(X-Y)A=B-C.

Since A is stable and B— C is positive semi-definite, X — Y is negative semi-definite
[12, p.277]). O

We also need

LeMMA 7. If X and Y are (possibly complex) n-by-n Hermitian matrices such that
XzY=z=-X, then | X| =| Y]

Proof. Let Y = UDU" be a unitary spectral-decomposition of Y (i.e. U is unitary
and D is diagonal). Set Z= UXU". Note that Z= D= -Z. In particular, for i=
1,2,3,-:-n, z;—d;=0 and z;+d; =0. So z;=|d;| and

IY|I?=|D|*= ¥ di= ¥ z=|Z|*=|X]|"

The first and last equalities follow from the unitary invariance of the Frobenius norm.
We can now prove

THEOREM 8. If the eigenvalues of A€ R"*" have negative real part, then (1) is
minimized by a symmetric matrix.

Proof. For a real skew-symmetric matrix K # 0, we will exhibit a symmetric matrix
S (depending on K) such that

IATK + KA| _ |A"S+ SA]|
Iy s

The theorem then follows from Lemma 1.

Let K € R™" be skew-symmetric and set M = ATK + KA. M is skew-symmetric,
so it has an orthogonal spectral-decomposition of the form M = UDU " where U € R™*",
UU=1, DeR"™", D=-D", and D =diag(D;) is block diagonal with 1-by-1 and
2-by-2 blocks. The skew-symmetry of D forces the 1-by-1 blocks to be zero and the
2-by-2 blocks to take the form

0 A
©) D’"’:[—Aj 0]‘

The A’s are real and (without loss of generality) positive. Define 1-by-1 and 2-by-2
matrices Ej; as follows. If Dj is a 1-by-1 zero block, then let E; = D;;. If Dj is of the

form (9), then
A0
E;=|"" .
v [0 A,]

For each j,
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where i’=—1. Define E e R”" as the block diagonal matrix E = diag(E;), and set
R =UEUT. The unitary invariance of the Frobenius norm shows that

IRI>=IEI*=2% A} =|D|*= | M.
Also Rz iM =z —R. If S solves
ATS+SA=R,
Lemma 6 shows that $ = iK = —S, and Lemma 7 shows ||S|| = ||iK|| = || K||. Therefore
IATS+SA| _IIR||_IM||_ M| _|ATK + KA
ISl Isi sl Ikl IK|

The difficulty of establishing the symmetry of the minimizer leads to the question
of the symmetry of the maximizer. We close this section by showing that the maximizer
of (1), the ““vector” corresponding to the largest singular value of the Lyapunov
operator, is symmetric.

THEOREM 9. For all AcR"™",

g

|ATX + XA|

ax ——————
x=0 | X]|
is achieved by a symmetric matrix X.

Proof. An analogue of Lemma 1 shows that the maximizer is either symmetric or
skew-symmetric. So, for any skew-symmetric matrix K, it suffices to construct a
nonskew-symmetric matrix S such that
|ATK + KA|| _||ATS+ SA||

= .

1Kl ISl
Suppose that n=2m for some integer m. (The case of n odd is similar.) There is an
orthogonal matrix U € R"*" and a matrix D € R™*™ such that

0 D

12 U'KU = .
This decomposition can be obtained from the Schur decomposition D = QJQ, where
QeR™" is orthogonal and JeR"™" is block diagonal with m 2-by-2 blocks. If P is
the permutation matrix obtained from the n-by-n identity by interchanging rows j and
m+j—1forj=2,3,---, m, then K=(QP)(P"JP)(QP)" is of the form of (12).

Now partition UTAU into m-by-m blocks as
All AIZ]
A21 A22 '
The Frobenius norm is invariant under unitary transformations, so
|ATK + KA|*> JJUTAUUKU + U'KUUAU|?

(10)

(11)

UTAU=[

. lu"kuU|®
_IIDA; = A3, DT|’+ |AD = DAy’ +2||Af, D+ DA, ||*
2| D|?
DA |?+ | ALD|*+ ] Al, D+ DAy
ID|*

Ak el o1+ls Sla 4]
L ALJLO o 0 0JLA, A,

2
/io1
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Inequality (11) is satisfied by S = UTEU where

0 D
E= . 0
[0 0]

It is remarkable how specific are the proofs of the above theorems. The conjecture
holds for normal matrices because they are diagonalized by unitary similarity transfor-
mations. It holds when the minimum in (1) is zero because both a symmetric and a
skew-symmetric minimize. It holds for 2-by-2 matrices because there is essentially only

one skew-symmetric, 2-by-2 matrix. It holds for stable matrices because in the stable
case the Lyapunov operator respects order.

4. Conclusion. The following counterexample shows that the conjecture is not
true in general.

-2 1 -1
A= 0 1 1]
00 1

With this choice of A, the minimum in (1) is .5034 (to four significant digits). It is
achieved by the real skew-symmetric matrix

0 305457 480347
X =| —.305457 0 491479 |.
—.480347 —.491479 0

The smallest quotient in (1) that can be obtained from a symmetric matrix X is
approximately .5079.

The counterexample is not compelling: there is a symmetric matrix that makes
the quotient (1) almost as small as the minimizing skew-symmetric matrix. In all
counterexamples we have been able to find, there has been a symmetric matrix that
produces a quotient that is no more than three times the quotient for the best skew
minimizer.

To obtain a heuristic estimate of how frequently the conjecture fails, we used
LINPACK [6] to run four sets of Monte Carlo studies. Each set generated upper-
triangular and full matrices A of sizes 3-by-3 to 8-by-8 with nonzero entries chosen
from the normal (0, 1) distribution or the uniform (—1, 1) distribution. The singular
values and ‘‘vectors” were computed using the Kronecker product matrix for the
operator (2). The results are summarized in Table 1. We know of no reason why the
triangular samples produced fewer skew-symmetric minimizers than the full samples.

TABLE 1
Monte Carlo: number of skew-symmetric minimizers out of 1000 trials.

Uniform (-1, 1) Normal (0, 1)
Order Full Triangular Full Triangular

3 14 4 3 3
4 19 8 14 S
5 20 8 13 5
6 24 8 18 6
7 22 10 22 5
8 24 5 23 5
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Counterexamples are rare. The conjecture is true in the common case that the
eigenvalues of A have negative real parts and it is true whenever sep (A”,— A) =0.
Furthermore, it appears that there is always a nearly optimal symmetric minimizer, so
the conjecture is true in spirit.

The case of Theorem 8 in which the eigenvalues of A have negative real part is
particularly important because it is in this form that the Lyapunov equation arises in
the theory of stochastic and optimal control. The cost of the quadratic regulator problem
is essentially the solution of such a Lyapunov equation [13, p. 284]. Solving the
algebraic Riccati equation by the Kleinman-Newton method requires the solution of
a sequence of such Lyapunov equations [13, p. 285]. The covariance matrix of a linear

stochastic differential equation driven by white noise is the solution of such a Lyapunov
equation [13, p. 252].
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L-FUNCTIONS AND THEIR INVERSES*
JOHN S. MAYBEEt AND GERRY M. WIENER}

Abstract. Using concepts from qualitative matrix theory, we introduce a class of nonlinear mappings from
R™ — R" called L-functions. These generalize the L-matrices in much the same way that M-functions generalize
M-matrices. We prove some global inverse function theorems for L-functions on several different types of
domains without assuming that such functions are differentiable. Thus we do not make use of the Jacobian
matrix. We also obtain interesting qualitative relations which must hold between an L-function and its inverse.
Finally we prove a global implicit function theorem for L-functions, again without assuming differentiability.

Key words. Jacobians, inverse function theorems, implicit function theorems, global univalence

AMS(MOS) subject classifications. 26B10, 15A99

1. Introduction. The classical inverse function theorem and implicit function theo-
rem are strictly local results. Therefore they are of limited utility to research in various
applied fields such as economics, engineering, or regional and urban planning where
nonlinear models are often formulated. In these fields scientists would like to know when
the models they have built have solutions wherever data is given in the range of the
functions defining the model. Thus global inverse function theorems are often required.

In recent years several global theorems have been proved. The main result seems
to be the work of Gale and Nikaido [2] who deal with the so-called P-functions, i.e.,
functions whose Jacobian matrix is a P-matrix throughout a suitable domain. (The matrix
A is a P-matrix if every principal minor of 4 is positive.) The monograph of Parthasarathy
[11] summarizes this and other known results on global univalence although it says very
little about implicit functions.

From Jacobi’s time down to the present, researchers have concentrated upon the
use of properties of the Jacobian matrix in order to derive inverse function theorems.
We shall show that differentiability throughout a domain is not essential in order to
prove either a global inverse function theorem or implicit function theorem. Thus it is
not always necessary to formulate such results in terms of the Jacobian matrix.

During the past 25 years qualitative matrix theory has been developed and applied
to a variety of problems such as stability (see Jeffries, Klee and van den Driessche [4]),
the solution of linear systems (see [9], [8], [6], among others) controllability (see Jeffries
[3]), etc. We borrow the basic ideas from this field and a fundamental concept due to
Ortega and Rheinboldt [10] in order to define the concept of a qualitative mapping.
From among the qualitative mappings we identify a subclass which we call L-functions
and which generalize to the nonlinear case the notion of an L-matrix introduced by Klee,
Ladner and Manber [6]. Our definition generalizes L-matrices in much the same way as
the definition of an M-function (see, for example, Rheinboldt [12]) generalizes the notion
of an M-matrix. For the L-functions we prove both global inverse function theorems
and a global implicit function theorem.

2. Fundamental concepts. Given a real matrix 4, we can associate with it a new
matrix Q(4) such that Q(4); = sgn a; for all i and j (see Maybee and Quirk [9], where
this concept was first introduced and elaborated upon). For example, if

* Received by the editors August 19, 1985; accepted for publication (in revised form) April 21, 1986.
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-3 4 2]
Ao= 1 1 -8 1,
6 —4 0
then
-+ + ]
sgndo= | + + -—
+ - 0

Note the use of + in place of 1 and — in place of —1 here. This usage has become
conventional (see Johnson [5]).

Equivalently we can associate with A4 a signed digraph S(4) = (V, A, o) where V'
consists of » points (vertices) labeled 1, 2, - - - , n, (i, j) € 4 is an arc of S(4) if and only
if a; # 0 and o: A — (+, —) following the rule that o(j, j) = + if a; > 0 and (i, j) = —
if a; < 0. For the above matrix 4y, S(4o) is shown in Fig. 1. Note the use of a dashed
line for a negative arc.

DEFINITION 1. A real n X n matrix A is an L-matrix (or sign nonsingular matrix)
if and only if 4 is nonsingular and for all » X n matrices B satisfying Q(B) = Q(A4), B is
also nonsingular.

In other words, 4 is an L-matrix if it is nonsingular by virtue of its sign pat-
tern alone.

We will denote by S(4) the signed digraph obtained from S(4) by deleting all loops
of S(A). Also, as is conventional, the sign of any subset 4, of A4 is simply the product of
the sign of the arcs in Ay (sign Ao = + if 49 = &). The following result is the fundamental
theorem on square L-matrices.

THEOREM A. (Bassett, Maybee and Quirk [1]). 4 real n X n matrix A is an L-
matrix if and only if by column permutations and/or multiplication of columns by —1, it
can be transformed into a matrix B satisfying

(i) b;<0,1 =i=n,

(ii) S(B) has only negative cycles.

An L-matrix B is said to be in normal form when it satisfies (i) and (ii) of
Theorem A.

We now have the tools to introduce the concept of a qualitative function. To this
end assume f: D € R” - R" and that f = (f;, - - - , /). Let e’ be the jth standard basis
vector for R”. Following Ortega and Rheinboldt suppose x € D and define

dii(0) = fi(x + te’)

for all ¢ such that x + te/ € D. Suppose that for all i, j, | = i, j < n, ¢; is either a strictly
increasing, strictly decreasing, or constant function of ¢ independent of the base point x.

FIG. 1. The signed digraph of Ao.
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In this case we say that f'is qualitatively defined on D and we associate with f'a matrix
Q(f) such that

o(f )i
O(f); = — if ¢;(?) is a strictly decreasing function, and
O(f); =0 if ¢;(¢) is a constant function.

Thus we see that Q(f); = 0 if the variable x; “does not appear in f;”, O(f); = + if
Ji is an increasing function of x; in D when all other variables are held constant, and
QO(f); = — in a decreasing function of x; in D when all other variables are held constant.

DEFINITION 2. The function f: D < R" = R" is called an L-function on D if fis
qualitatively defined on D and Q(f) is an L-matrix.

Now Theorem A can be extended to the nonlinear case because column interchanges
in the matrix Q(f) correspond to relabeling pairs of variables in the function f and
multiplication of a column of Q(f) by —1 corresponds to replacing a variable in f by its
negative. Thus we can use the test given in Theorem A to determine when f'is an L-
function by applying the theorem to Q(f). We wish to point out two facts of importance,
however. The first is that at the present time it is unknown whether or not the problem
of testing a signed digraph to determine that it has only negative cycles is NP-complete.
Thus the problem of testing a given qualitative function to determine if it is or is not an
L-function is of unknown difficulty. The second fact of importance is that it is not always
desirable to put an L-matrix or an L-function into the same normal form.

Here are some examples of L-functions.

Example 1. Let f(x;, x2) = (fi(x1, x2), /o(x1, X2)) where

apx,+apx;
b
ax X1 + axpx,

+ if ¢;(?) is a strictly increasing function,

ﬁ(xl ’x2) =

a;1ax — a12a,, <0,

1
=————— whereq;>0, i=1,2,3, j=1,2.
So(x1,x2) Bt s where a;; i J

This is an L-function for all x; > 0 and x, > 0.
Example 2. Let fix, - -+, xp) = (fi(x1, =+, Xa), =+, fuX1, * +* 5 Xn)) Where
X3+ ¢
b] + a| X ’

.fl(xl, e ,Xn)=

Xi+1H ¢
b
Qi1 Xi— 1+ aix;i+b;

1
xl LY x =
f;l( ’ ’ n) an,n —1Xn—1 + AnnXn + bn ’

f;(xl’ e ’xn)=

2=i=n—1,

with all constants positive. This is an L-function for all x; = 0, 1 = { =< n. This example
is of particular interest because the closely related example defined by

SilGxy, -0 xp) = anx +apx; t,

AiiXi+ Qi1 Xi+ 1T C
Qi1 Xi—1t b

ﬁ(xl’ e ’xn)=

, 2=i=n—1,

XntCn

X e X)) =E— ————
f;l( 1 s n) a,,,,,_lx,,_1+b,,’
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with all constants positive is also an L-function for all x; = 0. This second case is not in
the normal form required in Theorem A.

We conclude this section with two technical ideas required in the following theorems.

First we say that two vectors x, y € R"” conform in sign if for 1 < i =< n, sgn x; # 0
and sgn y; # 0 imply sgn x; = sgn y;, and for at least one i, 1 =i =< n, sgn x; ¥ 0 and
sgn y; # 0. The vector x, y € R" anticonform in sign if x and —y conform in sign. Two
vectors x, y € R” nonconform in sign if x and y neither conform nor anticonform in sign.
Two vectors x, y € R” strictly nonconform in sign if x and y nonconform in sign and for
at least one value of i sgn x; # 0 and sgn y; # 0. To illustrate observe that:

(1,0,2,0)and (2, 1, 0, 1) conform in sign,

(1, 2, 3, —1) and (—1, —2, —3, 0) anticonform in sign,

(1,0, 5, 0) and (0, 1, 0, —3) nonconform but do not strictly nonconform in sign,
(1, 3, 5) and (2, —1, 2) strictly nonconform in sign.

DEFINITION 3. A domain D = R” will be called coordinately connected if, given
any two points a, b € D, there exists a finite sequence of distinct points p, = a, p,, - - -,
Dr = bin D such that

(A) each vectorp; . —pi,i =1, - -+, k— 1, has exactly the same sign pattern, i.e.,
sgn (p;+1 — pi) = sgn (b — a), and

(B) there is a path from p; to p; . , along the edges of the parallelepiped enclosed
by pi, pi+1fori =1, .-+ k — 1 which lies entirely within D.

Note, for example, that D, in Fig. 2 is coordinately connected but D, is not because
each path from a to b violates condition (A).

3. Univalence. For reference we state the classical inverse function theorem. In this
connection we shall use J(f) to denote the Jacobian matrix of the function f: D € R” —
R”. The value of this matrix valued function at the point x is J(f )(x).

THEOREM B. Suppose f € C\(D) on the open set D = R" into R" and [J(f )a)]™!
exists for some a € D. Then

(a) there exist open sets U, V in R" with a € U, f(a) € V and f is a univalent mapping

of U onto V, and

®) f[LV—>UisC\(V)andforallye V

JUH) =N

If J(f)(x) exists for all x € D, it is not necessarily true that fis globally univalent as
can be seen by the example f(x, y) = (e* cos y, e* sin y). We have

e*cosy —e*siny
=\, . N =e¥+0
e*siny e*cosy
Y
o
a
: O
D, D,

FIG. 2. D, is coordinately connected, D, is not.
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for all (x, y) € R? but, since f(x, y + 27) = f(x, ), fis not globally univalent on all of
R2. Note, on the other hand, that Q(f) is an L-matrix on R X (0, /2), R X (x/2, 7), etc.
Our first theorem shows that fis, in fact, globally univalent on each of these semi-infinite
rectangles.

THEOREM 1. Let f: D = R" = R" be an L-function on an open or closed rectangle
D. Then fis globally univalent on D.

Proof. Suppose a, b € D, a # b witha = (a;, az, -+, a,), b = (by, ba, - -+, by).
Then

filb)—fi@)=fibr,az, -+~ ,an)—fiar, a2, -+ ,an) +fi(b1,b2,a3, -+ ,ay)
—f;‘(blsaZa vt aan)+ ot +f;(bl’b25 tt ,bn)

_f;(blabZa ot ,bn——laan)

for i = 1,23 T, N ObSCrVCthat(al,az, et aan),(bl,aZ’ e san), e ’(bl, sz T,
by) are all points in D since D is rectangular. If (b — @) and row; Q(f) conform or
anticonform in sign, then

sgn (fi(b) — fi(a)) = £sgn row; Q(f)-(b—a) #0.

Here - represents the standard scalar product. Since Q(f) is an L-matrix and (b — a) is
not the zero vector, there exists a row of Q(f), say row. Q(f), such that row, Q(f) and
b — a either conform or anticonform in sign. Thus f.(b) — f.(a) # 0 implying f(b) —
fla) # 0. Since a and b were arbitrary, distinct points in D, f must be globally univalent
on D. O

Note that D is not required to be a finite rectangle in the proof so the assertion
made above regarding the function f{(x, y) = (e* cos y, ¢* sin y) on domains such as R X
(0, 7/2), etc., are correct.

Our next result shows how the domain, D, can be enlarged.

THEOREM 2. Let f: D € R" — R" be an L-function on a coordinately connected
domain D. Then f is globally univalent on D.

Proof. Suppose for contradiction that fis not globally invertible, i.e., there exist
points a, b € D, a # b, such that f(a) = f(b). Since D is coordinately connected, there
exists a sequence of points p;, p,, ‘- - , pr in D with p; = a, p, = b such that (A) and (B)
are satisfied. Now (B) implies that for each pair p;, p; + | there is a sequence of » points
4> @) "+ > gni Such that g; € D, 1 =i = n, q,; = pj, gy = pj+1 and gy, g; +1; differ in
at most one coordinate. (qy;, - - - , g,; Will be equal to the vertices of the parallelepiped
that lie on the path from p; to p;, . If the parallelepiped induced by p; and p;,  has
dimension m = n, then exactly m of gy, gz;, * * * , g, Will be distinct.) Thus for all i, 1 <
i=n,

Jipj+ ) —fi(p) =fi(@2) —fi(qy) +fi(@3) — fi(@2) + - - - +[i(dw) —fi(Gn - 1.))-

As in the proof of Theorem 1, if p;, ; — p; and row; Q(f) conform or anticonform in
sign, then
sgn (fi(pj+1) —fi(py)) = sgn row; Q(f) - (pj+1—p) #0.

Since Q(f) is an L-matrix and p; . ; — p; is never the zero vector, there exists a row of
O(f), say row, Q(f), such that row. Q(f) and p; . ; — p; either conform or anticonform
in sign. Moreover, by condition (A) in the definition of coordinate connectedness, each
Di+1~— Dj»j =1, -+, k— 1, has the same sign pattern so row, Q(f) and p;+ ; — p; will
either conform or anticonform in sign for each j. Consequently either f.(p;+ 1) —
Jp)>0forl =j=k—1orf(pj+1)—f(p) <O0forl =j=k— 1 (the difference
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being positive when row, Q(f) and p;+ ; — p; conform in sign and negative when row,
Q(f) and p; | — p; anticonform in sign). Since

Je(b) —fe(@) = fo(Dr) — fe(Dr= 1) H fe(Pr - ) = fe(Di—2) + + - - +o(p2) —fo(D1),

we have f.(b) — f.(a) # 0, when p; . — p; and row, Q(f) conform or anticonform in
sign. But this implies f.(b) — f;(a@) # 0 when b — g and row, Q(f) conform or anticonform
in sign as b — a and p; . ; — p; have the same sign pattern. The remainder of the proof
now follows the proof of Theorem 1. O

The following result is now of some interest.

COROLLARY 3. Iffis an L-function on an open convex region D, then f is globally
univalent on D.

Proof. Suppose a, b are distinct points of D. Since the line segment [a, b] is compact,
there exists a radius 2r such that for each p € [q, b], the open ball B(p, 2r) with center p
and radius 2r lies entirely within D. If p, g are on the line ab and the distance from p to
q is less than or equal to r, then it follows that the closed cube with diagonal pg must lie
entirely within D. It is thus clear that there exists p;, p,, ** -, px on [a, b] such that
properties (A) and (B) are satisfied. Thus Theorem 2 applies to D. O

As an example illustrating Theorem 2 consider the following function discussed by
Gale and Nikaido, namely

fx,n=e=y*+3,  glx,y)=4e>y—y>

Observe that when x = 0, y = £2, we have f= g = 0. Now (f, g) is an L-function for all
xandforO<y< 2e"/«/§ . Also this region is coordinately connected although not convex,
hence the mapping defined by fand g is globally univalent there.

We can extend Theorem 2 and Corollary 3 by using the invariance of the domain
theorem which states that if D is open in R” and f: D = R" is globally univalent and
continuous, then f{(D) is open in R” and fis a homeomorphism [11]. We therefore have
the following result.

THEOREM 4. If f: D = R" = R” is a continuous L-function and D is an open
coordinately connected set or if D is a compact coordinately connected set, then f is a
homeomorphism.

It should be noted that if f€ C'(D), then the usual inverse function theorem and
its related results apply so we obtain also the following results.

THEOREM 5. Iff: D = R" = R" is a continuously differentiable L-function and D
is an open coordinately connected set, then f ! is continuously differentiable on f(D).

We will present here two applications of our results thus far. In this connection we
point out that our definitions imply that L-functions are normalized so that each ¢;(?),
j =1, - -+, n is different from zero. The usual normalization is that given by Bassett,
Maybee and Quirk [1] where ¢;(?) is strictly decreasing, i.e., O(f)y=—,i=1, -, n.

As our first application suppose f(z) in an analytic function of the complex variable
z on the convex or coordinately connected domain D = R2 Then in D f(z) = u(x, y) +
iv(x, y) satisfies the Cauchy Riemann equations u, = v,, u, = —v,. Assume %, and u,
do not change sign in D and that at least one of u,, u, is nonzero in D. Then the Jacobian
matrix of the mapping f= (u, v) is

J)x, )=

[ u, uy]

L —Uy Ux

If u, > 0 in D, then this matrix is an L-matrix throughout D and

E

+-

+ o+ + + 0
Q(f):[_ +] for u,>0, [+ for u, <0, or[O +] for u,=0
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in D. If u, < 0 in D, then the matrix is again an L-matrix throughout D with

- +
Q(f)=[_ _] for u,>0, [+

- 0
] for u, <0, or[0 __] for u,=0

in D. Similar results hold for u, = 0, #, # 0 in D. Thus in all cases we can assert that if
f(x) is analytic in D with u, and u, of constant sign at least one of which is nonzero, then
the mapping (u, v) defines an L-function on D. Therefore by our theorems (u, v) or,
equivalently, fis globally univalent on D.

As a second application we consider what form an L-matrix 4 takes when the
normalization is a; > 0, i = 1, 2, - - -, m. We then have that A4 is an L-matrix if and
only if every cycle of even length in S(4) is negative and every cycle of odd length positive.
For such a matrix every principal minor of order r is positive for all r, i.e., A is a P-
matrix. Thus we can identify the class of qualitative P-matrices, a subclass of P-matrices
apparently not noticed before. It follows that there is a subclass of P-functions, the qual-
itative P-functions, which are globally univalent as a consequence of our theorems.

In his book Parthasarathy presents an example, namely, f(x, y, z) = (1, £, f3) where
fi=x2+ 2% f, = x*>+ y%, fy = y* + z2 The Jacobian is

2x 0 2z
J)xy,2)=|2x 2y 0
0 2y 2z

It is easy to see that for all x < 0, y < 0, z < 0 this is an L-matrix as it is also for all x >
0, y > 0, z> 0. On the other hand, for all x > 0, y > 0, z > 0, it is also a P-matrix and

[+ 0 +]

ofN=|+ + o
0+ +

is a qualitative P-matrix. Note that the related function f; = x> — z2, f, = y> — x%, f3 =
22 + y? has
B n
+ 0 -
- 4+ 0
0 + +
and J(f)(x, y, z) is also a P-matrix forall x>0,y >0, z> 0.
We could, of course, generate families of additional examples.

of)=

4. The sign pattern of the inverse. The classical inverse function theorem (Theorem
B) says something about the Jacobian matrix of the inverse mapping. On the other hand,
the following result of Lady and Maybee [7] details the sign pattern of the inverse of an
L-matrix.
THEOREM C. (Lady and Maybee). Let A be an irreducible L-matrix with a;; # 0,
1 < i = n. Then, setting A" = [}, we have
(l) lfa,, # 0, sgn «j; = sgn ai;,
(ii) ifa; = O, then the sign of o is qualitatively determined if and only if every path
p(j = i) in S(4) has the same sign. In this case, sgn aj; = —sgn p(j —> i) where
p(j = i) is any path in $(A) from j to i.
For example, suppose
0

o+

QA=

+_

=
S+ |+
I
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then

- *
-+

sgnAd~!=

+ o+
|+ »

* —

where we use * to denote an element whose sign is not determinate because of paths of
different signs from j to i in $(A).

Theorem C shows that the structure of the inverse of an irreducible L-matrix is to
a large degree qualitatively determined. One would hope that a similar result holds for
L-functions. In fact we can say even more.

THEOREM 6. Suppose f: D € R* = R" is an L-function and D is coordinately
connected. If sgn (Q(f));} is qualitatively determined, then:

() sgn (Q(f )i} = + implies f7'(x + te’) is increasing with respect to t for any

x € f(D).

(B sgn (Q(f )i} = 0 implies f7'(x + te’) is constant with respect to t for any x €
AD).

(v) sgn (Q(N))i} = —1 implies f7'(x + te’) is decreasing with respect to t for any
x € f(D).

Proof. Suppose (Q(f));} is qualitatively determined. Let £ ~'(x) = u, £~ !(x + te’) =
v for some ¢ > 0. Thus f(u) = x, f(v) = x + te’ and f(v) — f(u) = te’. We now claim that
for the above j,

(1) row; (Q(f)) and v — u conform in sign,

(2) if i # j, row; (Q(f)) and v — u nonconform in sign.
Facts (1) and (2) follow from the proof of Theorem 2 in which we found out that

sgn (fi(v) — fi(w)) = £ sgn row; Q(f)-(v—u)#0

if row; Q(f) and v — u conform or anticonform in sign. If row; Q(f) and v — u neither
conform nor anticonform in sign, there must be another row in Q(f), say row, Q(f),
such that row, Q(f) and v — u either conform or anticonform in sign. This is due to the
fact that Q(f) is an L-matrix. But then f.(v) — f.(u) # 0 for some ¢ # j, contradicting
the fact that f{(v) — fiu) = f(v) — f{(u) = te’. Since row; Q(f) and v — u cannot anticonform
in sign as ¢ > 0, it is clear that (1) and (2) hold.

We further claim that there exists an L-matrix 4 having identical sign patterns of
QO(f) such that A(v — u) = e’. To prove this, let v — u = (w;, w,, * * * , w,). Define 4 as
follows:

Ap=sgn Q(f)i ifwr=0,
Ax=0 ifQ(f)ix=0,

1 .
A= P when Q(f )i and w; have the same nonzero sign.

[d 3

(Here ¢; equals the number of corresponding elements in row; Q(f) and w having the
same nonzero sign.)

-1 ..
Ay = deon when Q(f )i and w; have opposite signs.
Wi
(Here d; equals the number of corresponding elements in row; Q(f) and w that have
opposite signs.) From properties (1) and (2) and the definition of A it is evident that A
is an L-matrix.
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Since there exists an L-matrix 4 having the same sign pattern as Q(f) such that
Aw = €/, any qualitative determination found for elements in col; (Q(f))™' must hold
for w and vice versa. Thus, if sgn (Q(f));' is qualitatively determined, sgn w; =
sgn (Q(f));'. But w; = f7'(x + te’) — f7'(x) and x was arbitrary, so that properties (),
(B), and (y) must hold. O

From the proof of Theorem 6 we obtain the following interesting corollary.

COROLLARY 7. If A is an L-matrix, then row; A and col; A~ conform in sign for
1 < j = n, and row; A and coly A™" nonconform in signfor 1 <j, k< n,j# k.

5. An implicit function theorem. Before presenting an implicit function theorem
for L-functions, we will present two general implicit function theorems that apply even
for nondifferentiable functions.

THEOREM 8. Suppose f: D = R" X R™ = R™ and that there exists a point (a, b) €
D, a € R", b € R™ such that fla, b) = 0. Define F: D < R* X R™ - R” X R™ by
F(x, y) = (x, f(x, ). If F is globally univalent, then the set S = {(x, y)€ D,x€R", y €
R™: fix, y) = 0} defines a nontrivial implicit function y = h(x), i.e., if (x, y) € S and
(x,2) €S, theny = z = h(x).

Proof. Suppose f(x, y) = 0 and f(x, z) = 0 where (x, y) € D, (x, z) € D, x € R",
¥, z € R™. Since (x, f(x, ¥)) = (x, f(x, 2)), we have F(x, y) = F(x, z) and thus y = zas F
is one-to-one. O

THEOREM 9. Suppose f: D = R" X R™ — R™ and there exists a point (a, b) € D,
a € R", b € R™ such that f(a, b) = 0. Suppose N is a neighborhood of (a, b) contained
entirely within D. If F as defined in Theorem 8 is a homeomorphism, then the set S =
{(x,y) € D, xeR", ye R™ f(x, y) = 0} defines a continuous, nontrivial implicit function
¥y = h(x) and there exists an open set H = R" such that a € H = domain h.

Proof. Let U, V be open sets containing a, b, respectively, such that U X V < N.
By the invariance of domain theorem, F(U X V) is an open set containing (a, 0). Thus
there exist open sets H, K containing a, 0, respectively, such that H X {0} € H X K <
F(U X V). Clearly, H < U by the definition of F. The remainder of the theorem follows
from Theorem 8. O

We will now present an implicit function theorem for L-functions.

THEOREM 10. Suppose f: D = R" X R™ = R™ and there exists a point (a, b) € D,
a € R", b € R™, such that f(a, b) = 0. Suppose D is coordinately connected and that
f(x, ) is an L-function with respect to y for all x, (x, y) € D. Then F as defined in Theorem
8 is an L-function on D and Theorem 8 holds.

If in addition f is continuous, D is compact and (a, b)) € N = D where N is a
neighborhood of (a, b) or if fis continuous and D is open, then Theorem 9 holds.

Proof. Since fis an L-function with respect to y for all x for (x, y) € D we can
introduce the matrix Q(F) defined as follows:

an : 0
0 q.
Q(F)= qn+1,1 " qn+l,n+m
qn+m,l qn+m,n+m
Here the elements g; = +, 1 =i = n, and the elements g5, i=n+1,--- ,n+m,j=
n+ 1, -+, n+ m, are determined by the fact that fis an L-function with respect to y.

Thus Q(F) is block lower triangular and the diagonal blocks are L-matrices. By an easy
argument Q(F) is then an L-matrix regardless of the numbers Q;, i = n + 1, ---,
n+m,j=1, -+, n, which we may arbitrarily assign the values +, for example. The
theorem now follows from Theorems 2, 8 and 9. O
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Theorem 6 may now be employed to provide us with information concerning the
implicit function y = A(x). In this regard assume that A(x) = (h(x), ha(x), -+, h(X))
and that F7'(x, y) = (&1(X, ¥), &x, ), ***, &n+m(X, ¥)). Since y = h(x) iff (x, y) =
F7l(x, 0),

hi(x+ te’) = hi(x) = gn+ i(x + t€’,0) — gy + (X, 0).

Thus if sgn (Q(F)), % ;; is qualitatively determined, we can determine if h;(x + te’) —
hi(x) is increasing, decreasing or constant with respect to .
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THRESHOLD REPRESENTATIONS OF MULTIPLE SEMIORDERS*
JEAN-PAUL DOIGNON¥

Abstract. Cozzens and Roberts recently proved a variant of the Scott and Suppes representation theorem
for semiorders. They treated nested pairs of semiorders, but stated as open the corresponding problem with any
number of relations. A solution is described which even alleviates the condition and the proof in the case of
two relations. Moreover, representations simultaneously involving constant and nonconstant thresholds are
considered.

Key words. semiorder, interval order, threshold, preference modelling
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1. Introduction. In order to modelize an individual’s preferences on a finite set X
of objects or actions, Luce [5] associates to every object x in X a measure of utility f(x),
and proposes to explain preferences through comparisons of utility values, taking into
account a discrimination threshold ¢. Formally a semiorder is a binary relation P on a
finite set X which satisfies the conditions in the following proposition from Scott and
Suppes [14].

PROPOSITION 1. There exist a real-valued mapping f on X, and a nonnegative real
number o such that for all x, y € X,

xPy<flx)>f(y)+o
iff P is an irreflexive relation with for all a, b, c, d € X,

(aPb and cPd) = (aPd or cPb),
(aPb and bPc) = (aPd or dPc).

In recent papers concerned with decision theory, there appeared a variant of the
semiorder model in which two thresholds respectively determine weak and strong pref-
erences. Roy and Hugonnard [10] encode in this way various criteria underlying the
forecast analysis of line extensions for the Paris metro, and Vincke [15] shows the adequacy
of the model in a case study of a projects comparison. After further advocating their
model, Roy and Vincke [11] raise the problem of characterizing pairs of relations amenable
to their description. Motivated by other applications whose report shall not be repeated
here, Cozzens and Roberts [1] also consider, and solve, the same problem, but leave

open the following general question: given m relations P,, P,, - - - , P, on the finite set
X, when do there exist a real-valued mapping fon X and nonnegative real numbers o/,
03, ,omsuchthatforallje{1,2,---, m}and x,y€X

(D xP;y <> fx)>f(y) + o;.

Such families of relations appear in psychological measurement: each P; captures one
level of the preferences an individual expresses among a set X of objects. They are also
met in the theory of “probabilistic consistency” (see e.g. Roberts [6], [7] or the references

* Received by the editors December 10, 1984; accepted for publication (in revised form) March 31, 1986.
This work was supported by National Science Foundation grant IST84-18860 to J.-Cl. Falmagne at New York
University, New York, New York 10012.

+ Université Libre de Bruxelles, C.P. 216, Bd du Triomphe, 1050 Bruxelles, Belgium.
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therein). Given the frequency p(a, b) that object a is chosen over object b by some given
subject, one forms a family P, of binary relations by setting for any real number A

aP\b iff p(a,b)> \.

The subject’s consistency is then defined in various senses by conditions on the family
of relations P,. It turns out that the P, are usually assumed to be semiorders, and that
the existence of a representation as in (1) is a very strong form of consistency.

Now when does a representation as in (1) exist? For m = 1, the answer was given
in Proposition 1. In case m = 2, Cozzens and Roberts [1], relying on a technique due to
Scott [13], were able to formulate a rather involved criterion that they could not extend
to other values of m. We will provide here a general result for all m, from which easily
follows their solution. Our proof uses the so-called potential theory of graphs, and a bit
of convex geometry. The relevance of potential theory to semiorders was illustrated by
Roy and Vincke [12] in establishing for m = 2 a result similar to, but weaker than, the
one in [1]. Notice that, independently of us, Roubens and Vincke [9] obtained the Cozzens
and Roberts [1] result (m = 2).

After having established the general case, we will apply the technique to a still wider
setting. The thresholds in the representation can be taken either as constant or depending
on the object. Besides semiorders, we thus work in § 5 with interval orders, whose rep-
resentation theory is due to Fishburn [4].

2. Multiple graphs. Our basic tool is a classical result on graphs that we restate for
the reader’s convenience. Here a weighted multiple graph G = (V, E, w) will be a finite
set V of vertices, a family E of (ordered) pairs of vertices called edges (with repetitions
of the same pair allowed), and a weight mapping w from E to the reals. By a cycle of G
we mean any finite sequence of edges having the form x;x;, x2X3, *** , X, - 1X;, X;X;. The
weight of a cycle is the sum of the weights of its edges.

PROPOSITION 2. For G = (V, E, w) as above, the following two conditions are equiv-
alent:

(i) there exists a real-valued mapping f on X such that for all xy € E,

S ZA(Y) + wixy),

(ii) no cycle of G has a strictly positive weight.
Clearly in condition (ii) one can replace “cycle” by “simple cycle” (in the sense that
no vertex is met more than once by the cycle).

3. Representations of multiple semiorders. Let # = (P,, P,, ---, P,,) be an m-
tuple of binary relations on the same finite set X. A constant threshold representation for
2 consists in a real-valued mapping fon X and real numbers o, g5, * - - , 0, such that
the following condition holds for allj€ {1,2, --- , m} and x, y € X:

xP;y < flx)>f(y) + o;.
We shall denote this representation by (f, gy, 02, * * - , 0,,,). When such a mapping fexists,
we call the m-tuple of real numbers (o, o2, - - * , 0,,) a constant threshold vector for 2.

When a representation exists, it is clear that any P; must be irreflexive (in case o; =
0) or reflexive (in case g; < 0).

For a binary relation R, we write R’ for its dual, that is, the converse of its inverse.
Given a family 2 as above, we call cycle from 2 any sequence of pairs of the form x;x;,
XoX3, * 5 Xp— 1%, XeX1, all takenin LU P,UP,UPLU --- U P, U P,,. We associate
to this cycle the numbers p; and p; of pairs that were chosen in P; and Pj, respectively,
and set g; = pj — p;. It will be assumed in the definition of a cycle from £ that p; > 0
for at least one j.
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PROPOSITION 3. The m-tuple (o, 02, * * - , 0,,) of real numbers is a constant threshold
vector for P iff for each cycle from P the following inequality holds:
q101+ G0+ - - - + @0, >0.

Proof. Assume (f, o, 03, - - - , 6, is a representation for Z2. Since there are only
a finite number of values f(x) — f(y) — g;, we can find ¢ > 0 which is a lower bound for
all those strictly positive values. We then have

xPiy=f(x)Zf(y)+a;+e,
and also

xPjy=f(x)Zf(y)— ;.

Now define a weighted multiple graph G = (V, E, w) by taking ¥V = X and introducing
an edge xy of weight
oj+¢€ whenever xP;y,

!
—o; whenever xPjy.

Proposition 2 implies that any cycle of G has nonpositive weight, that is,

2 Do+ e+ 2 pj(—a) =0,

j=1 j=1
or
m m
2 (pj—Dpj)oj—€ 2 p;20,
j=1 j=1
which implies
m
2. gjo;>0.
i=1

Conversely, since there are only a finite number of cycles from £ without repeated pair,
we can find € > 0 such that for any cycle

m m

2 gioj—¢€ 2, p;=0.

=1 j=1
Relying on the same graph as above, and taking the arguments in reverse order, one
derives the existence of a mapping f such that (f, o1, 03, - * -, 6,,) iS a representation
for 2.

COROLLARY. There exists a constant threshold vector for P iff there exists such a
vector with integer components.

Let us consider the particular case of two relations P; and P,. Assuming P, is irre-
flexive, a representation (f, o, 03) exists for 2 = (P,, P,) iff such a representation exists
with o, > 0 (this will be explained in the proof of Proposition 4 below). Hence we see
that (o, 03) is a threshold vector for £ iff for each cycle from 22

(1 —p1)o1+(p2—pa)a>0,
which amounts to
p2—p2>0 when p}=p,

M<ﬂ When P,l >pla
Di—D 02
e | ’—
o1 _Z(P2=p)

- when p <p;.
02 Di—D1
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We deduce that a representation using ¢, o, exists iff the following four conditions are
fulfilled:
(i) no cycle from P, uses the same number of pairs from P, and P1;
(ii) no cycle from P, uses at least as many pairs from P, than from P3;
(iii) no cycle from 2 = (P, P,) is balanced, that is, can be obtained by choosing
the same number of pairs in P, and P}, and the same number of pairs in P,
and P5;
(iv) for any two cycles C and € from 2 = (P,, P,), one has in case p} > p, and
P1 <pr:

ot -
Pf P2<9_1<Ii2 13,2
Di—D1 02 Di—Di
The first two conditions when both P, and P, are irreflexive mean that these relations
are semiorders (cf. Proposition 1), while the last two amount to conditions used by

Cozzens and Roberts [1]. Hence, Theorems 6 and 7 of these authors are included in
Proposition 3.

4. Characterizations of multiple semiorders. The proposition in the last section
does not offer a criterion for the existence of a representation for 2 = (Py, Py, - , Py).
We shall formulate such a criterion using the following concepts. A k-cyclone from 2
will be any nonempty union of at most k cycles from £. Thus a k-cyclone is obtained
by taking pairs in P,, P, P,, P5, - - - , P,, and/or P}, that altogether can be partitioned
into k cycles. When for each j = 1, 2, - - - , m, the same number (possibly zero) of pairs
is taken in P; and P}, we say that the cyclone is balanced.

PROPOSITION 4. Assume m Z 2. There is a constant threshold representation for
P = (P, Pa, -+, Py) iff no m-cyclone from 2 is balanced.

Proof. First assume that 2 admits a representation (f, oy, 02, *** , d,,). Then

xPiy=fx)=f(Y)>a;,  xPjy=fx)=f(Y) =0
If we consider any k-cyclone, write those implications for all its pairs and sum the resulting
inequalities, we get

2) 0=

J

m m
po;+ 2 pi(—a)= 2 (pj—D)a;

1 j=1 j=1

M3

where p; and p}, respectively, denote the number of pairs taken in P;and Pjwhen forming
the cyclone. Moreover inequality (2) is strict when at least one pair from some P; is used.
This clearly implies p; # pj for at least one j.

Conversely, assume that no m-cyclone from £ is balanced. First notice that any P;
is either reflexive or irreflexive (otherwise we construct a balanced 2-cyclone by taking
one loop in P; and another one in Pj). Since there are only a finite number of values
f(x) — f(»), we can always look for a nonzero threshold o,, and by an appropriate change
of scale, even assume o, = +1. We treat the case P, is irreflexive, setting o; = +1. (The
other case is similar.)

By Proposition 3, we have to show the existence of a common solution to all the
inequalities

Q02+t q303+ « - - +@mom>—q

associated to simple cycles from £ (considering simple cycles, as in the remark following
Proposition 2, leaves us with a finite number of inequalities). Applying the Helly theorem
(see e.g. [8]) to the convex sets defined by those inequalities in the euclidean space of all
(m — 1)-tuples (o3, a3, * * * , 0., it is sufficient to show that any m of those inequalities
have a common solution, say
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3) 4202+ gizozt+ * - -+ Gimom > — g

withi =1, 2, - -+, m. By a classical result (see e.g. [8, Thm. 22.2]), this is equivalent to
the following assertion: given real numbers A\, \;, - - -, A\, with \; 2 O for each i, and
Ai > O for at least one i,

(4) ZXIQU=O forj=2’3a T,
i=1

implies

) 2 Nigin>0.

i=1

Since g;; = pj; — p;is an integer, we have only to check the assertion for rational numbers
\; (because the real tuples (A, Az, - - -, A,) satisfying A\; = 0 and (4) form a polyhedral
convex set with rational extreme points and directions). From the positive homogeneity
of (4) and (5) it then follows that we need only consider ;s which are natural numbers.

Now any of the equation in (3), for fixed i, comes from a cycle C; from 2. Assuming
A; is a natural number, we consider the cycle C‘i obtained by traversing \; times the cycle
C;, and then the union U of those C;. The resulting m-cyclone U uses

m
> N\ip}; pairs from P},
i=1

and

m

> \ip; pairs from P;.

i=1
Formula (4) tells us that for j = 2, 3, - - - , m, these two quantities are equal. Since by
assumption U is not balanced, we deduce

2 Mg #0.

i=1

In order to establish (5), and thus complete the proof, it remains to show that (4) together
with

(6) 2 Nigin <0

i=1

lead to a contradiction. If (6) were true, we would of course have one of the g;, strictly
negative (because all \; are nonnegative), thus the~ m-cyclone U would use at least one
pair xy from P;. Now we form a new m-cyclone U by adding

m
2> Nigi
i=1
times the pair xx to U (recall that P, is taken as irreflexive, thus xx € P;). Then Uis a
balanced m-cyclone, in contradiction with our present assumption.

Notice that Proposition 4 does not directly extend to the case m = 1, as exemplified
by X = {a, b} with P, = {aa, ab}. Nevertheless, it remains true for m = 1 under the
additional assumption that P, be irreflexive or reflexive. The proof prompts a few simple
remarks. First, one needs only to ask that m-cyclones of a certain kind be nonbalanced
(more precisely, those which are the union of at most m repetitions of simple cycles
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together with loops). Moreover, this requirement implies that no k-cyclone for any k is
balanced.

5. Not necessarily constant thresholds. Fishburn [4] introduced interval orders in
connection with representations involving a threshold that depends on the object. More
precisely interval orders are the binary relations S on a finite set X that are characterized
by the following proposition [4].

PROPOSITION 5. There exist real valued mappings f, p on X such that for all x,
yEX,

p(x)=0
and
xSy <> f(x)>f(y) + p(y)
iff S is an irreflexive relation with for all a, b, ¢, d € X,
(aSb and cSd) = (aSd or cSb).

We want now to establish representation theorems for families of relations involving
both semiorders and interval orders. Suppose thus that we are given m + n relations Py,

Py, -, P, S, S, -, S, on the same finite set X, writing for short £,,, =

Py, Py, -+, Pp, Sy, 82, + -+, Sy). A threshold representation for #2,,, consists in real-

valued mappings f, p1, p2, - * , p» on X and real number o,, a,, * - - , o, such that the

two following equivalences hold for all x, ye X, je€ {1,2, --- ,m},l€{1,2, ---, n}:

@) xPjy<>f(x)>f(y) + o),

(®) xS1y < f(x)>f(y) + pi(y).

We will need direct generalizations of notions introduced in §§ 3 and 4. A cycle from

P .0 is any sequence of pairs of the form x,x,, x,x3, * ** , X, - 1X;, XX1, taken in
P,UP\UP,UPU---UP,UP;,,US S1US,S2U ---US,S),

(where juxtaposition represents relative product), but not all in Py U P4 U --- U P,,.

Then a k-cyclone is any nonempty union of at most k cycles, or when k = 0, it is taken
as being any cycle. It is simple if it never meets twice the same element from X. For a
given k-cyclone, we denote by p;, pj and s}, respectively, the number of its pairs that
were chosen in P;, P;and S;S}, and we set also g; = pj — p;. The k-cyclone is balanced

when p; = pjforj=1,2, -+, m;itis pure when p;=p;=0forj=1,2,---, m. The
qualifiers simple, balanced and pure also apply to cycles.
PROPOSITION 6. Fix real numbers o, 03, *** , 6.,. There exists a threshold rep-

resentation for P,,, involving those numbers iff the following inequality holds for each
cycle from P, p:

g0+ Qo2+ - - + G0, >0,

and in particular no pure cycle can be formed.

Proof. First note that the basic equivalences (7) and (8) defining a representation
are equivalent to the following four implications

9) xPjy = f(x)=f(y)> o;,

(10) xPjy=f(x)=f(y) Z —aj,
xSiz = f(x) = f(2)> pi(2),
281y =f(2) = () 2 —pi(2).
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The last two imply
(11 x8;S7y=fix)—f(y)>0.

Assuming that a representation exists, consider a cycle with its associated quantities p;,
pjand sF . If we write the corresponding implications (9), (10) and (11) for all of its pairs,
and sum up the right-hand sides, we obtain

0> X (pj—Dp)o;

Jj=1
from which follows the thesis.
Conversely, suppose that we have the inequality in Proposition 6 for each cycle

from 2,,,, or equivalently, for each of the simple cycles. Since the last ones are in finite
number, there exists ¢ > 0 such that for each simple cycle

(12) 3 qjoj%e( ot 3 s;*).
j=1 =1 =1

As in the proof of Proposition 3, we now construct a weighted multiple graph G with
vertex set X. Define an edge xy with weight

oj+e whenever xP;y,
—og; whenever xPjy,

¢ whenever xS;S7y.
Inequality (12), rewritten as

m m n
02 > pi(s;j+e)+ > pi(—a)+ > sT'e,
j=1 j=1 I=1

ensures us that the graph G has no simple cycle with strictly positive sum. By Proposition
2, there exists a real-valued mapping f on X such that

xPiy=f)Zf(y)+o;te

xPjy= f(x)Zf(y)— 0,
(13) xS STy=f(X)Zf(y) +e
From the first two implications follows inequality (7) for a representation. It thus remains
to define real-valued mappings p; on X that satisfy (8). We first rewrite (13) as
(14) if xS;z and not ySiz, then f{x) = f(y)+e.
Now define

&i(2) = max { f(y)Inot ySiz},

agreeing that the maximum of the empty set is some real number less than all values
f(x), and then set
p1(2) = &i(2) — f(2).
We surely have
(not xSiz) = f(x) = gi(2),
and also from (14)
xSz = f(x)> gi(2).

The last two implications amount to (8). This ends the proof.
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For families 2, , consisting only of interval orders, a more direct, purely relational
approach leads to the particularization of Proposition 6 (that is, one precludes the existence
of alternating cycles in the following sense: pairs of the cycle would be alternatively taken
in S; and the corresponding 7). For this and many related results, we refer the reader to
Doignon, Monjardet, Roubens and Vincke [3], or Doignon [2].

Finally, a criterion for the existence of a representation can be derived from Prop-
osition 6, exactly as Proposition 4 was derived from Proposition 3. The requirement
m # 1 can be dispensed with as soon as the relation P; is assumed to be either reflexive
or irreflexive.

PROPOSITION 7. Assume m # 1. The family P, admits a threshold representation
iff no m-cyclone from P, , is balanced.
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ON THE NUMBER OF VERTICES OF RANDOM POLYHEDRA
WITH A GIVEN NUMBER OF FACETS*

CHRISTIAN BUCHTAfY

Abstract. The set of points x = (x;, - - , X,,) satisfying the linear inequalities 2. a,, x, =1 (u=1, -+ -,
m) is a convex polyhedron. If the m points a, = (a,,, - * * , a,,) are chosen independently and uniformly from
the unit sphere in n-space, the number V,,, of vertices of the polyhedron is a random variable. We give an
asymptotic expansion of the expected value EV,,, as m = oo and an explicit formula for EV,,, for any m
and n.

Key words. random polyhedra

AMS(MOS) subject classifications. Primary 52A22; secondary 60D05

1. Introduction. Two famous results, due, respectively, to McMullen [7] and Bar-
nette [1], state that the number of vertices of a simple bounded polyhedron with exactly

m facets is at most
e n+1 " n+2
2 2

m-—n m-—n

and at least
(m—n)(n—1)+2.

For unbounded polyhedra, the lower bound is considerably smaller, being m — n + 1.
Thus, the upper bound is of order const (n)m!™"?, whereas the lower bound is of order
const (n)m as m —> oo. The gap between the bounds suggests to ask for the number of
vertices in the “average” case.

We shall investigate this question for a particular class of polyhedra. We consider
the set of points x = (x, -+ - , X,) satisfying the linear inequalities

n

n
> a,x,=1 where > az=1 (u=1, - ,m).

v=1 v=1

This set is a convex (not necessarily bounded) polyhedron. The condition 27_; a2, = 1
implies that the hyperplanes 2/-, a,, X, = 1 are tangent to the unit sphere. If every
n + 1 of these m hyperplanes have empty intersection, it follows that the polyhedron has
exactly m facets (as no hyperplane is identical to another one) and is simple.

In order to derive the “average” number of vertices of such a polyhedron, we suppose
that the pointsa, = (a,1, - * *, a,n) (u = 1, - - - , m) are chosen independently and uniformly
at random from the unit sphere in n-space. Consequently, the number of vertices of the

polyhedron 2)_; a,, x, <1 (u =1, -+, m) is a random variable V,,,. Note that, with

* Received by the editors March 11, 1985; accepted for publication (in revised form) March 19, 1986.

+ Mathematisches Institut der Universitit, Albertstrasse 23 b, D-7800 Freiburg im Breisgau, Federal Republic
of Germany. Permanent address: Institut fiir Analysis, Technische Mathematik und Versicherungsmathematik,
Technische Universitit, Wiedner HauptstraB3e 8-10, A-1040 Wien, Austria.
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probability one, every n + 1 of the m hyperplanes 2)_, a4, x, = 1 have empty
intersection.

Kelly and Tolle [6] investigated the expected value EV,,, of V,,,: They derived an
integral expression for EV,,, and asymptotic bounds of the form

a2 < EV,, < B "™ 2m,

where the constants o and 8 are independent of m and n. Moreover, they gave some
tables of EV,,, computed numerically by means of Gaussian quadrature routine.
In §2 we prove that

EV,p= cf)n)m +c(ln)m1 —2/(n— 1)+c(2n)m1 —4/(n—1)
Foee ey m! DA Ye-D L o) (m—> o).

The constants ¢ (p =0, - - - , [n/2] — 1), which depend on the dimension 7 of the space,
are given explicitly. Especially,
2n—1( (n_ 1)2 )
(n—1)*/2

( n_l )n—ls
n
(n—1)/2

where, in the case of even n, the binominal coefficients are defined on replacing n! by
T'(n + 1). Note that

=

cf)n) ~ QM2 (n=2)[2 5= 1/4y (0 — 5)/2 (n - )’

whence it follows that the upper bound due to Kelly and Tolle gives the exact order of
convergence.

In §3 we derive an explicit formula for EV,,, for any m and n.

Quite a lot is already known about random polyhedra based on probabilistic models
which are different from that considered here. In contrast to the present paper, these
polyhedra generally do not have a given number of facets. Important contributions are
especially due to Rényi and Sulanke [9], Schmidt [10], Sulanke and Wintgen [12], Prékopa
[8] and Schneider [11]. Further references are contained in a recent survey [3]. Prékopa’s
work is partially extended in [4].

2. An asymptotic expansion of EV,,,.

THEOREM 1. The expected number EV,, of vertices of the polyhedron
2l aux, =1 (u=1,---, m), where the m points a, = (a,, *** , a,,) are chosen
independently and uniformly at random from the unit sphere in n-space, is given by

/21— 1
EVin= 2 cPm!'~2=D+0(1)  (m—> ).
p=0

The constants ¢\ are defined by

n—1 21 - 2
o =21 Py DY dg,')I‘(n+i—1+n—pl),
: i=0 -

where v, = 27®*DI(n + 1){T(n/2) + 1)}2 and where d\} is the coefficient of x” in the
polynomial
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(DR (n=3)2\ n—1 !
Pre==5, (E, ( l)j( j )n+2j——1x1)

. ([n/%— 1 (—1)"((n2 —2n— 1)/2)xk) '
k=0 k

Proof. For the sake of completeness, we first sketch the idea of Kelly and Tolle
leading to the integral expression of EV,,,. Consider the hyperplanes

zanvxv=l (u=l,-~°,n).

The n points a, = (a,, * * * , a,») lie on a hypercircle which divides the unit sphere S, _
into two caps; we denote the surface area of the smaller cap by S = S‘(al ,*** ,a,). The
intersection of the n hyperplanes is a vertex of the polyhedron in question if none of the
points a, = (@1, *** , A) (0 =n + 1, - - -, m) lies on the smaller cap. As all points are
independently and uniformly distributed, this event occurs with probability

2
Wn

where w, denotes the surface area of the unit sphere in n-space. As the points a, =
@u1, ", aum) (=1, - - - , m) are identically distributed and as there are (77) possibilities
of choosing # points out of m, it follows that

Ean=(m)f f (l_i)m—ndw(al)“_dw(an),
n Sp-1 Sn-1 wy, Wy W

where w is the spherical surface measure. A transformation due to Miles yields

m /2 wp1 " meno
EV,,,,,=2( )(n— l)z'y(,,-,)zf (1— f sin”"zxdx) sin™ ~2"rdr;
n ) 0

Wp

for details cf. the paper of Kelly and Tolle. (We use the symbol v, instead of Kelly and
Tolle’s symbol c(n). It is easy to see that v, = {mc(n)}~".)
Putting 1 — cos r = sand 1 — cos x = y, we obtain

1
EVpn= Z(r::)(n - l)z’y(,,_l)zf (1 = K ()"~ "(s(2 — 8))"* ~ 22~ D2 g5
0

where

w,

K.(s)=

fo (Y2 =) dy,

w,
We divide this integral into

m 1/2 5
I= 2( ) )(n —DPyeonn | (1=Kl 5@ = )72 D s,
(|

1
L= 2(’:)(71— D*Yn - 1)2J;/2(1 — K(8))""(s(2 — )" ~ 2= D2 g,
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Obviously,
L< 2( )(n -1) V(n—l)zf (1 = Ku(1))" = "(s(2 — 5))"*= 21~ D12 g,

As K, (s) is the ratio of the surface area of a cap of height s to the surface area of the unit
sphere, it follows that 0 < 1 — K,(3) < 1. Thus, I, exponentially tends to zero as m tends
to infinity.

To determine the asymptotic behaviour of I;, we note that

(n=3y2  [n2]-1 _ -
O e
ji=0 J 2

(n_3)/2 0y (n—3)/2—[n/2] y [n/2]
—1)\[n/2] — Z
D ( (2] )(l 2) (2) ’

s (,,2_2,,_1)/2_[n/2]-1 o (n2—2n‘1)/2 s y
(T )

+(— l)ln/2] (n2 —2n—-1)/2 | E_s (n?—2n—1)/2 = [n/2] s [n/2)
(/2] 2 1
where 0 < 0 < 1 and 0 < £ < 1. We now replace m — n by m and put

t=my,—(25)" "

taking into consideration that v, - = w,- 1{(n — 1)w,} "', we obtain

m+n mm-1 ] t \"7?
Ean=2( )(n_ 1)7(n l)zf ( )
n myp—1 \MYn-1

[7/2] -1 _ 2j/(n— 1)\ m
G e

=0 n+2j—1 my, -

/21— 1 2_ 9 2/(n— 1)
( > (—l)k((n ZZ 1)/2)2—21((#_) ! )dt+0(l) (m—> ).
k=0 n-1

As

[n/2] -1 — _ 2j/(n—1)\m
(l‘i 1 (=) _nol gy L
m j n+2j—1 MY -1

_[n/é _l([n/% - 1)]((’1 3)/2) n—1 2—21'( 1 )Zj/(n—l))i
i=0

il j=1 n+2j—l myn—1

.(1—é)m+o(—;;) (m—> ),

it follows that

n— 1 [n/2]1 -1
Ean 2— 7 Yn-12 z 2—2p —n+ 1=2ftn— 1)
p=0

[n/2] -1 My~ 1 £\
(1=

Z dlp 1__) tn+i—2+2p/(n—l)dt

m“z"’("")+0(l) (m—> ).
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To get rid of the remaining integrals, we use the relation
m t\" 1
f (l——) t“dt=l‘(a+1)+0(—) (m— o),
0 m m

which holds for 0 < r = 1 and a > 0. (For a proof of this relation cf., e.g., [2, Lemma
1].) Elementary calculations yield vo = 4, v, = /7, yo+1 = nv,-1/(n + 1), whence
vYn. = 1 for any n. Thus,

"Yn =1 t\" .. 2p 1
f (1——) t"*"2+21’/("“)dz=1‘(n+i—1+——)+0(—) (m—> ),
0 m n—1 m

and we obtain the claimed expansion

n—1 [n/2]1 -1
Ean=2—'—’;'_‘Y(n—l)2 z 2—21)7;’141-1—2"/(”_1)
! p=0
2=t . 2p — 2/~
> dﬁ,,)l‘(n+z—1+—_—)ml W=Dy O(l)  (m—> o). O
i=0
COROLLARY.

2n—1( (n_1)2 )

(n—1)%/2

EVyn~ n—1 \7-1 m (m— o).
”((n—l)/z)

Proof. For any n,

d(~'3= 1 fori=0,
Y0 fori=1,---,[n/2] -1,
hence
2n—l( (n_1)2 )
o 2 o (n—l)2/2
Cg)=;1‘7(n—1)2‘7n(—nl D= n—1 \»—1° a
”((n—l)/z)

To illustrate Theorem 1, we give some numerical values:
EV,y=1,00m+ O(1) (m— o0),
EV,3=2,00m+ O(1) (m— 0),
EV,y=6,7Tm—22,90m'* + O(1) (m— o0),
EV,s=31,78m—142,27Tm'?+ O(1) (m—> ),
EV,6=186,74m — 1007,64m>" + 1778,82m"'"> + O(1) (m— o).
3. An explicit formula for EV,,,.
THEOREM 2. The expected number EV,, of vertices of the polyhedron

Zio1au,x, = 1 (u=1, -+, m), where the m points a, = (a1, *** , Q) are chosen
independently and uniformly at random from the unit sphere in n-space, is given by
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[ (m m—n m—n
2( )(n— D*Yn-1p 2 (‘l)k( )‘Yﬁ"—”-k
n k=0 k

(n—3)k/2
- 2 Y02 s Yn-3yfJ0,m —2n+2j,k)  foroddn,
j=0

Ean=ﬁ 2 m
n

)(n—x)zm-nz » (—D"('",:”)w""-k
k=0

(n—4)k/2
- Y A3 s e Jim—n—k,n* —2n+2j+k,k)
j=0

forevenn,

where y, = 27+ PD(n + D{T((n/2) + 1}, {co, =", & * denotes the coefficient of x/
in the polynomial (2o ¢;x')~, and

J(I,p,q) = f t!sin”t cos?t dt.
/2

Proof. As shown in the proof of Theorem 1,

m /2 w1 7. m—n )
Ean=2( n)(n“ 1)2‘)’(n—1)2f (1 ———f 51n”’2xdx) sin™ ~ 2" rdr.
0

(i Wy

From the relation

, 1 r W, 1 '

n-— . _ - . _

11— fsm” 2xdx=—"——f sin” ~2xdx
vr

w, Jo Wp

it follows on putting f = # — rand z = = — X that

m ) (w1 [ s S SN
EV,n=2 " n—1"vpn-1y2 sin" " “zdz sin™ ~“"tdt.
/2 0

Wy

TABLE 1
EV,w/m n=2 n=3 n=4 n=>5 n==6
m=n+1 0,7500 0,6875 0,6594 0,6418 0,6292
m=n+2 0,8750 0,9750 1,1162 1,2647 1,4146
m=n+3 0,9375 1,1875 1,5521 1,9846 2,4750
m=n+4 0,9688 1,3393 1,9381 2,7331 3,7332
m=n+5 0,9844 1,4473 2,2685 3,4666 5,1134
m=n+6 0,9922 1,5252 2,5481 4,1628 6,5560
m=n+17 0,9961 1,5828 2,7851 4,8132 8,0196
m=n+38 0,9980 1,6268 2,9879 54171 9,4781
m=n+9 0,9990 1,6614 3,1637 5,9778 10,9168
m=n+10 0,9995 1,6894 3,3179 6,4996 12,3279
m-—> oo 1,0000 2,0000 6,7677 31,7778 186,7380
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Using the identity
(n-3)2 ‘
Yo—cost > 7asin®t foroddn,
t ji=0
W, — N
“ lf sin" " 2zdz= (- a2
Wn JO C it 1
yit—cost D yxuiisin®tlt forevenn,
Jj=0
we obtain

w 1 t m-—n
n— . —
—f sin"%zdz

w, Jo

-

m-—n m-—n
o i K
k=0 k
(=32 ‘
« 2 {Y0,72, " s Yn-3pf cosftsin¥s  for odd n,
_ j=0
B T m-—n m_n
L
k=0 k
(n—4)2 ‘
© 2 v s Yeesyft™ "k coskesin¥ Tkt for even n,
L j=0
and hence the claimed result. a

Table 1 gives some values of EV,,,,/m calculated by means of Theorem 2. The ratio
of the expected number of vertices to the number of inequalities provides a better insight
into the geometrical situation than the mere value EV,,,,.

4. Concluding remarks. (a) Denote by p,,, the probability that the considered
polyhedron is unbounded. As mentioned by Kelly and Tolle, p,,, = m/2™ . More
generally, already in 1962, Wendel [13] showed by an elegant argument that

1 "ym—1
Pmn=75m=T 2 ( )
n om lk=0 k

(b) The expected value EV,,, is closely related to the expected number EF,,, of
facets of the convex hull of m random points chosen independently and uniformly from
a sphere in n-space, which was determined in a recent paper [5, Thm. 3]. Using the above

notation,
Ean—Ean—_-(m)f f (i) dw(al),,,dw(an)’
n Sn—l Sn_|

Wp Wp Wp

and thus EV,,, < EF,,,. Further, S/w, < 1, hence it follows that EV,,, ~ EF,,, as m
tends to infinity. (Note that the definition of J(/, p, ¢) in Theorem 2 of the present article
is different from the definition of I(m, p, g) in [5, §2].)
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THE EXISTENCE OF A SUBSQUARE FREE LATIN SQUARE
OF SIDE 12*

P. B. GIBBONSt aND E. MENDELSOHN}

Abstract. A subsquare free Latin square of side 12 is displayed. The computational method for its con-
struction is outlined, and its significance is discussed.

Key words. Latin square, quasigroup, subsquare, backtracking

AMS(MOS) subject classifications. 05B15, 68E99

1. Introduction. In this paper a Latin square of side n will be an # X n matrix with
entries from the set of n integers {1, 2, - -+, n}. A quasigroup is an algebra with one
binary operation whose multiplication table is a Latin square. Thus we have a distinction
between a subsquare and a subquasigroup. A subsquare of side k of a Latin square is a
triple R, C, E, |R| = |C| = |E|, such that if R = {r,, 2, -+, 1} is a set of row names,
and C = {cy, ¢z, " **, ¢} is a set of column names, then the entry in the r;th row and
ctth column (i, j = 1, 2, - - -, k) is always contained in E. A subquasigroup requires in
addition that R = C = E.

The first major step in the resolution of the problem of the existence of Latin squares
with no proper subsquares was made by Heinrich [5] who managed to construct subsquare
free Latin squares (SFLS’s) of order n = pq, where p and g are distinct primes, and
n # 6. Her method was extended and generalized by Andersen and Mendelsohn [2],
who showed that such squares exist for all # not of the form n = 243%. When 7 is of the
form 243 it is known that SFLS’s do not exist for n = 4, 6, and that they do exist for
n = 8 (see [3], [5] and [6]).

There is also a relationship between one-factorizations and SFLS’s. From a one-
factorization of K, an idempotent Latin square of side » — 1 can be constructed. If the
one-factorization is perfect, then the union of any pair of distinct one-factors forms a
Hamiltonian cycle in K},. This means that in the corresponding Latin square, the smallest
subsquare containing any pair of distinct elements must be of size n — 1. That is,
the Latin square is subsquare free. (For details the reader is referred to the survey pa-
per of Mendelsohn and Rosa [8].) Perfect one-factorizations of K, are known to exist
when n — 1 is an odd prime, when n/2 is a prime, and when n = 16, 28, 244, and 344.
(See [8] for the relevant references.) Thus, for example, there exist SFLS’s of orders
3,9, 27, 81, and 243, but for no other known orders n = 3% < 3'2,

From the above we see that the first unsolved cases for SFLS’s are n = 12, 16,
and 18.

In other related work N. S. Mendelsohn ([9]) showed that for all #n there exists a
quasigroup of order n with no proper subquasigroup. Kotzig, Lindner and Rosa [4]
showed that if n # 2° there is a 2 X 2 subsquare free Latin square (N2LS). McLeish [7]
showed that an N2LS exists for n = 2%, a 2 6. Kotzig and Turgeon [6] constructed N2LS’s

* Received by the editors September 30, 1985; accepted for publication (in revised form) May 27, 1986.
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for all even orders » #* 0 (mod 3), n # 3 (mod 5), thus establishing existence for the
special cases n = 24, 25, They also presented an N2LS of order 8 due to Regener. Thus
N2LS’s exist for all n # 2, 4. Although the N2LS’s in these constructions contain larger
subsquares, the idea of N,-completion of a subsquare free Latin rectangle turned out to
be a useful heuristic in the search for a SFLS of order 12.

Finally in this section we note that the SFLS construction theorem of Andersen and
Mendelsohn [2] states that there is an SFLS of order pm where p is a prime greater than
3 and m is any positive integer. It is hoped that a multiplication by 8 and 9 using Regener’s
square and the SFLS of order 9 in place of the cyclic square of prime order might some-
day be found. This would leave only the case » = 12 in doubt. This paper removes
that doubt.

2. The construction. We begin this section by investigating conditions for a given
m X n (1 < m = n) Latin rectangle L to be subsquare free. In L any pair of rows defines
a permutation of the n elements—we shall call this a row permutation. The Latin rectangle
property prescribes that there is no row permutation containing fixed elements, i.e. cycles
of length 1. In addition, for L to be 2 X 2 subsquare free (IV,), a necessary and sufficient
condition is that there is no row permutation containing a 2-cycle. Unfortunately this
does not generalize for L to be p X p (2 < p = m) subsquare free (V,). However we can
say that a necessary condition for L to be N, is that there is no row which forms p-cycles
with p — 1 other rows on a common set of p elements. In attempting to construct an N,
Latin square L we could enforce the stronger condition that no row form p-cycles with
more than p — 2 other rows (whether on a common set of p elements or not). This is
the condition that we exploited in attempting to construct Latin rectangles, and hopefully
Latin squares, which were completely subsquare free.
As our aim is to produce an SFLS(12) we have the following extra information:
(a) The largest possible subsquare is of side 6.
(b) If a 6 X 6 subsquare exists then either a 2 X 2 or a 3 X 3 subsquare also exists.
(c) Ifa 5 X 5 subsquare exists then either
(i) there are 5 rows each pair of which contains a 5-cycle in its row permutation
(and on the same set of cells), or
(ii) there is a 2 X 2 subsquare.
(d) The existence of a 4 X 4 subsquare implies the existence of a 2 X 2 subsquare.
(e) The existence of a 3 X 3 subsquare implies the existence of a set of 3 rows each
pair of which has a 3-cycle in its row permutation (and on the same set of cells).
During the construction we placed restrictions on the types of row permutations
that might be formed. In particular we encouraged the use of row permutations containing
long cycles, in the hope that this would allow a large number of rows to be constructed
which should not contain a subsquare. In our case, n = 12, and the cycle types in our
choice of decreasing order of desirability are (12), (6, 6), (5, 7), (4, 8), (4, 4, 4), (3, 9),
3, 4, 5), (3, 3, 6), and (3, 3, 3, 3) (remembering of course that 2-cycles are banned
completely). The obvious starting point was to attempt to construct a square composed
only of 12-cycles. However this was found to be impossible. Our next attempt involved
using only the cycle types (12) and (6, 6). If a rectangle could be constructed containing
only these cycle types, it would be subsquare free. This suggested the use of a backtracking
algorithm to construct the rectangle row by row, allowing each new row to form a (12)
or (6, 6) cycle type with each previous row, and making sure that the new row forms a
(6, 6) cycle type with at most 4 previous rows.
This approach was generalized to allow other mixes of cycle types. With each per-
missible cycle type ¢ = (a1, a2, -, a), 3= a = a, = -+ £ a,, we allowed each new
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row to form a cycle type ¢ with a maximum of a; — 2 previous rows. (A stronger restriction
would have been to allow no new row to form any cycle type with the same a, with more
than a; — 2 previous rows. However this was not implemented.) Rows were constructed
in increasing lexicographical order. Moreover, for each row, all possible combinations
of allowable cycle types with previous rows were considered. The algorithm is summarized
by the following Pascal-like pseudocode:

{Attempt to construct an n X n Latin square with specified allowable cycle types and
limits on the use of each cycle type.}
begin
{Get set to start search}
Set first row and column of square to (1, 2, - - - , n);
current row:= 1,
next_row:
{Square found?}
if current row = n
then begin
{Search succeeds}
Output specified pattern Latin square;
halt;
end;
{Advance to next row}
current_row: = current_row+1;
Initialise cycle pattern of current_row with previous rows;
try row:
{Construct row}
Attempt to construct next current row in lexicographical order according to specified
cycle pattern with previous rows;
{Successful?}
if successful
then go to next row;
{Adjust cycle pattern}
Find next cycle pattern of current_row with previous rows;
if there is a next pattern
then begin
Prepare to start afresh with construction of current row;
go to Iry row;
end
else begin
{Backtrack to previous row}
if current row = 2
then begin
{Search fails}
Output “Search failed—no such Latin Square™;
halt;
end;
current row:= current_row—1;
go to iry row;
end;
end.
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Note that we were actually searching for a square of the form

This was not unduly restrictive since any completed square could be transformed into
such a form by performing appropriate row and column permutations. Also note that
we did not give up trying to construct a particular row until all possible cycle patterns
with previous rows had been tried.

The algorithm was implemented initially in the language Pascal on a Hewlett Packard
9836 16-bit microcomputer, and later in C on a PDP/11. Several cycle patterns were
tried, and in most cases the program had great difficulty in constructing more than the
first 7 or 8 rows of the square. In some cases a 9 X 12 rectangle was constructed, but in
no cases was the program able to proceed any further.

We then modified our approach so that the above algorithm was used only up to
row 8, at which stage we were very likely to have a subsquare free Latin rectangle. We
then tried to complete each such rectangle to an N, Latin square, hoping that the N,
constraint would be strong enough to preclude the existence of larger subsquares. Using
the allowable cycle types (12), (6, 6), and (5, 7) a large number of 8 X 12 rectangles were
constructed and tested for N, completion. Eventually the following rectangle, which can
be N, completed, was produced by the program. It turned out that its completion is
completely subsquare free, as we shall show.

6 7 8 9 10 11 12
1 8 9 10 11 12 7
8 4 10 6 12 9 11
9 11 12 8 3
7 9 11 12 4
100 2 7 11 9

6

1

—
O RO —= W
WO =30 Wn

—
WO =0 INWnbs

12 11 5 4 2
4 12 10 6 5§

O N\ WV B W -
— — N WLAW
QWA =N

_
VO WVWO

—

If we denote the allowable cycle types as follows:

1: (6,6)
2 (12)
3: 5,7)
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then the row permutation cycle type structure of the above rectangle is denoted by the
following matrix C:

I: - 1111122
2: 1 -1 111 2 2
3: 11 -3 3 3 2 2
4: 113 -3 322
St 1133 -3 22
6: 113 3 3 -2 2
T 22222 2 -3
8: 2222 2 2 3 -

where Cj; is the cycle type of the permutation formed by rows i and j. From C it is
immediately clear that the rectangle contains no subsquares of order 5, since no row in
C contains more than three 3’s. Furthermore, although row 1 forms 6-cycles with rows
2 through 6, these rows cannot contain a 6 X 6 subsquare since there are no 2 X 2 or
3 X 3 subsquares. Thus the rectangle is completely subsquare free. Furthermore, this
rectangle was able to be completed to the following N, Latin square:

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 1 8 9 10 11 12 7
3 1 5 2 7 8 410 6 12 9 11
4 5 6 7 1 9 11 12 8 3 2 10
5 6 2 8 10 7 9 11 12 4 1 3
6 12 8 1 3 10 2 7 11 9 4 5
7 8 1 10 12 11 S 4 2 6 3 9
8§ 9 11 3 4 12 10 6 5 1 7 2
9 11 7 12 2 5 1 3 4 8 10 6
100 7 12 11 9 4 6 1 3 2 5 8
Ir 4 10 9 8 3 12 7 5 6 1
12 10 9 6 11 2 3 5 1 7 8 4
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with the following row permutation cycle structure:

I: - 111112 2 2 2 25
2: 1 - 1 1 1 1 2 2 2 2 41
3: 11 - 33 3 2 2 4 2 2 3
4; 1 13 -3 3 2 2 2 2 2 6
5: 1 13 3 -3 2 2 7 2 2 3
6: 1 13 3 3 -2 22 2 73
7. 2 2 2 2 2 2 - 336 5 2
8: 2 22 2 2 2 3 - 13 32
9: 2 2 4 2 7 2 31 - 56 2
10: 2 22 2 2 2 6 3 5 - 52
11: 2 4 2 2 2 7 5 3 6 5 - 2
12: 513 6 3 3 2 2 2 2 2 -
where the cycle types are denoted as follows:
1: (6,6)
2: (12)
3: 6,7
4: 3,4,5)
5: 3,9
6: 4,8)
7: (3,3,6)

It is not immediately obvious that the above Latin square contains no subsquares. For
example, notice that row 10 forms 3-cycles with rows 9 and 11. However row 9 does not
form a 3-cycle with row 11, so that rows 9, 10 and 11 cannot contain a 3 X 3 subsquare.
Similarly, a small number of other cases can be checked by hand to verify that in fact
the square is completely subsquare free.

To be quite certain, we constructed a series of graphs G;, i = 2, 3, 5, in which the
vertices of G; represent the rows of the above square, and in which two vertices 4 and k
are adjacent if and only if rows ~ and k form a permutation containing an i-cycle. A
clique analysis was performed on each such graph G, to determine that it contained no
i-cliques, and therefore that the square contained no i X i subsquares.

3. Conclusions. The search for subsquare free Latin squares raises questions of a
different nature from some of the standard ones. The usual Latin square questions are
of the form “Can a set of cells be completed to form an »n X »n Latin square?”, or “Can
a quasigroup in a given variety be completed to a quasigroup within the variety?”. (The
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reader is referred to [1] for details.) Our sort of restricted completion is much more
difficult to analyse. In fact we would propose the following two open questions:
(a) What is the optimal time for an algorithm that will check whether a given Latin
square is subsquare free? The complexity of such an algorithm must be at least
O(n®), as that is the time needed to check that it is N,. (It is possible to construct
Latin squares of prime order with only one 2 X 2 subsquare, and it takes O(n®)
time to find it.) A “naive” subsquare checker works as follows. Choose any pair
of cells in the same row and generate the smallest square containing them. This
involves O(n?) amount of work for each pair. There are O(n>) pairs which means
that the naive subsquare checker has O(n°).
(b) Is the question “Does this Latin rectangle have an N, completion?” NP-
complete?

Acknowledgments. The authors would like to thank C. J. Colbourn for helpful
discussions relating to this paper. The comments of the referees are also appreciated.
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PROJECTIONALLY EXPOSED CONES*

GEORGE PHILLIP BARKERt, MICHAEL LAIDACKER} AND GEORGE POOLE}

Abstract. Programming problems, based on the objective function and types of constraints, may be classi-
fied as linear, nonlinear, discrete, integer, and Boolean, just to name a few. These programming problems
represent special cases of the more general Abstract Convex Programming Problem given by: Find Min
{ f(x): g(x)e— K, x€ 2} where @ = R"isconvex, K isa convex cone, and f, g are convex functions. Characterizations
of optimality to the Abstract Convex Programming Problem are of paramount importance in the investigation
of optimization problems. A cone K in R" is called projectionally exposed if for each face F of K there exists a
projection P of R” such that Pr(K) = F. In particular, it has been shown that when the constraint function g
of the Abstract Convex Programming Problem takes values in a projectionally exposed cone, then certain
multipliers, associated with optimality, may be chosen from a smaller set (see § 6 of [Borwein and Wolkowicz,
J. Math. Anal. Appl., 83 (1981), pp. 495-530]). This suggests that a study of such cones is both applicable and
intrinsically interesting. With this motivation, the authors have undertaken a project to characterize the cones
of R" which are projectionally exposed.

Key words. cones, exposed faces, projections
AMS(MOS) subject classifications. 15A48, 15A04, 90C25

Introduction. In connection with their study of the (abstract) convex program Bor-
wein and Wolkowicz [2] introduce the notion of a projectionally exposed cone (see the
definitions in the next section). In particular when the constraint function takes values
in a projectionally exposed cone, then certain multipliers may be chosen from a smaller
set (see [2, §6]). This suggests that a study of such cones may be both applicable and
intrinsically interesting. Although Borwein and Wolkowicz do not restrict their cones to
be either closed or pointed, we shall do so in order to simplify the initial study. It is
hoped that later work can relax these assumptions.

1. Definitions. Let V be a finite dimensional real inner product space of dimension
n. In the examples we shall take V' to be R” with the usual inner product. However, we
shall use functional notation, fx, in place of (f, x). That is, we shall use the inner product
to identify the dual space V* of linear functionals with V. A (convex) cone K in V'is a
subset such that for any x, y € K, a, 8 2 0 we have ax + 8y € K. The cone K is pointed
iff it contains no subspace (i.e., KN (—K) = {0}); it is closed iff K is closed in the natural
topology of V; K is full iff it has nonempty interior.

If K is a cone, the subspace spanned by K is K — K = {x — y|x, y € K}. Since K is
full in its span we shall assume that K has nonempty interior. We shall also assume that
K is closed. This is a significant restriction and it is hoped that in subsequent work this
assumption can be relaxed. Finally, we shall work primarily with pointed cones, but this
hypothesis will be made explicit in the statements of the results.

For a cone K the positive dual K* is the set of all nonnegative linear functionals
on K:

K*={f|fxz0all xeK}.

When X is closed we have K** = K. A face of K is a (convex) subcone F of K such that
x€K,y€F, and y—x€Kimply x€F.

* Received by the editors April 8, 1985; accepted for publication (in revised form) March 19, 1986.
+ Department of Mathematics, University of Missouri, Kansas City, Missouri 64110.
{ Department of Mathematics, Lamar University, Beaumont, Texas 77710.
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This is denoted by F < K. If we introduce an order relation in ¥ by x 2 0 iff x € K then
a subcone F is a face of K iff 0 = x = y and y € F imply x € F. When K is pointed the
order is a partial order.

DEFINITION 1.1. A face F is exposed iff there is an f € K* such that F =
{x € K| fx = 0}. The cone K is facially exposed iff every face of K is exposed.

DEFINITION 1.2. Let F < K.

(a) F is p-exposed (projectionally exposed) iff there is a projection P such that

PK = F. If every face is p-exposed we call K p-exposed.

(b) Fis o.p.-exposed iff there is an orthogonal projection P such that PK = F. If

every face of K is o.p.-exposed, then K is o.p.-exposed.

If S < K, then the intersection of all faces containing S is a face of K which we
denote by ¢(S). When S = {x} we write ¢(x) for simplicity. If F <l K and {F) is the
linear span of F, then dim F is defined to be dim (F). An extreme ray of K is a ray
which is a face. If 0 # x € F and F is a ray which is a face, we call x an extremal of K.

A special class of cones arises in studying the solvability of finite systems of in-
equalities. These are the polyhedral cones. A cone K is polyhedral iff it has a finite number
of extreme rays. An equivalent condition (cf. [4]) is that K should have a finite number
of maximal faces. A maximal (proper) face is, of course, a face different from K which
is contained in no other face of K.

2. Results and examples.

Remark 2.1. Since we are assuming that V is an inner product space, then K* <
V. Consequently, the statement K — K* makes sense. When it holds we call X subpolar.

PROPOSITION 2.2. Assume that closed full cone K is neither {0} nor V. Then every
extreme ray of K is p-exposed. If K — K*, then every extreme ray is o.p.-exposed. Finally,
if K is pointed and o.p.-exposed, then K is subpolar.

Remark. We shall see in the examples following the proof that o.p.-exposed faces
need not be exposed.

Proof. Let x be an extremal of K. Without loss we may take V' = R". Choose f€ K*
such that fx = 1. If K < K* we can normalize x so that x7x = 1 where x7x = (x, x). If
we then take P to be the rank one projection P = xf(P = xx”, respectively) where
xf () = (fy)x we have PK = ¢(x) so that P is the desired (orthogonal) projection. For
the converse assume that K is pointed and that y is an extremal. If P is an orthogonal
projection onto ¢(y), then P = ayyT where ™! = yTy > 0. But PK c K implies y” € K*.
Since K is the convex hull of its extreme rays, then K = K*. O

Examples 2.3. Consider the cone in Fig. 1(b) whose cross section is given in Fig.
1(a). The line gr is tangent to the circle (as is the symmetric line) and K = K*. The face
¢(q) is not exposed but is o.p.-exposed. Also the next theorem will show there are p-
exposed cones which are not subpolar. The subpolar simplicial cone K < R? of Fig. 2
shows that the conclusion of the proposition cannot be strengthened to K = K*. Note
that in this last example K* is p-exposed but not o.p.-exposed.

For a closed pointed cone if both K and K* are o.p.-exposed, then since K = K**
we have K = K*. But these are exactly the perfect cones [1] of which the nonnegative
orthant and the positive semidefinite matrices are examples. The nonsimplicial perfect
cones are thus (cf. [1]) nonpolyhedral examples of facially exposed cones (cf. our Definition
1.2(a) and [2, Def. 3.2]). Thus the only o.p.-exposed selfdual polyhedral cones are the
images of the nonnegative orthant under an orthogonal matrix. However, there are perfect
(i.e., o.p.-exposed selfdual) cones other than these examples which are homogeneous in
the sense of [5]. An extensive discussion of selfdual cones in finite and infinite dimensional
settings is found in [3].
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(a) (b)

FiG. 1

THEOREM 2.4. Let K be a pointed full polyhedral cone. Then K is p-exposed.
Proof. We show first that there is a cone preserving projection onto any maximal
face. Let Fy, - - - , F,, be the maximal faces of K, and let ;€ K*, i =1, - - - , m be linear
functionals such that
Fi={xeK|fix=0,i=1,--- ,m}.

We construct a projection onto F;. To this end set
Ko={xeV|fix<0, fixz0,i=2, --- ,m}.

K, # & since if x is in the relative interior of H; = span F; and if N(xp) is an open ball
around x, which meets no proper face of K other than H,, then N(x;) meets K,. So
choose p € Ko, let L = span {p} = {apla € R} and let Q be the projection onto {F;)
along L. Let k € K. Then for some ap € R and h € (F;) we have k = h + app and h =
Q(k). Now we have

h=k—aop,  fi(h)=fi(k)— aofi(D).
For i = 1 this becomes

0 =/i(h) =/i(k) — oo /i(p)-

FiG. 2
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But fi(k) 2 0, fi(p) < 0 so that oy = 0 or —p = 0. Next for i = 2, - - - , m we see that
fi(k) Z 0 since f; € K* and f;(p) = 0 since p € K. Thus fi(h) = 0,i = 2, - -+ , m. From
the choice of the f; this means that 4 € K, hence & € F,. Since F, was an arbitrary maximal
face we see that any maximal face is p-exposed.

Suppose H < K. We choose a chain

H=Hy<H < <1H,<4K,

where dim H; ., = dim H; + 1. Since each H; satisfies the hypothesis and H;_, is a
maximal face of H; there is a projection Qj of H; onto H;_, along some L;_,. Each
Qj can be extended to a projection Q; of ¥ onto (H;_ ) if we define Q; to be zero on
L,_,+ -+ + L;and extend by linearity. Then Q = Q, is the desired projection. O

We continue the notation of the statement and proof of Theorem 2.4. We may
normalize the f; so that | ;| = 1, where | f|> = (f;, f), fori =1, - - - , m. For each face F;
we define the complementary cone K; by

K;={x|fix<0and fix=O0 for j#i}.

With each pair of maximal support planes (F;) and {F;) we associate an angle 8 € (0, 7)
determined by

cos 0=—(f;,f)

(see Fig. 3). In the proof of Theorem 2.4 we showed that each point of K; determines a
projection which takes K onto F;. The next lemma shows that every cone preserving
projection arises this way.

LEMMA 2.5. Let P be a projection such that P(K) = F;. Then ker P N K; # {0}.

Proof. Since dim F; = n — 1 then dim ker P = 1. Let y be a nonzero vector in ker
P which satisfies f;y < 0. Then y and K; lie in the same open halfspace determined by
(F;). We wish to show that y € K;. Assume not. Then for some j # i, ;¥ < 0. Let z € F;
be nonzero so that f;z = 0 for ¢ # j and fiz = 0. Further we may take z €' F;. Let Pz =
w € F;. Since ker P = (y) we have w = z + ky. On the one hand,

0=fw=fz+kf;y
so that k = 0. However, on the other hand we have
0sfw=fiz+kfiy=kf;y
so that k = 0. Thus kK = 0 and z = w € F; N F;, a contradiction. Thus y € K;. O

CONE K

cos(0) - (fy, f2)

FiG. 3
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THEOREM 2.6. Let K be a pointed full polyhedral cone with maximal faces F,, - - - ,
F,, and corresponding functionals f,, - - - , f.. Then the face F; is o.p.~exposed iff

0=0=cos ' (~f,f;)=Sm/2 forall j#i.

Proof. Assume F; is o.p.-exposed. Then by Lemma 2.5, —f; € K;. Hence —(f;, f;})
0 for all j # i. Therefore cos™ (—f;, f;) = /2 for all j # i.

Conversely, if cos™ (=f;, f;) = m/2 for all j # i, then (—f;, f;) Z 0. Also (—f;, f;) <O,
hence —f; € K;. Thus the orthogonal projection onto {F) takes K onto F;. O

LetY = {v,, - -+, v,} be a basis of ¥ which consists of pairwise obtuse vectors, that
is (v;, ;) = 0 for all i # j. Apply the Gram-Schmidt process to obtain an orthonormal
set U = {u,, - -, u,} defined by

ur=vy/lvs, wi=vy, ui=willwil,  wil* =W, w)
where
W= 0;— O u)uy— - = O - Y-y fori=2, -+ ,n.

THEOREM 2.7. LetV and U denote the two sets of vectors in V previously described.
Thenfork=1,---,n

(i) o€ H(u) = {xl(uz, x) > 0};

(ii) there does not exist any vector w such that (w,v) =0fori= 1, -+, k and

weU% | H(u).

Proof. We induct on k. The result is clear for k = 1 from the definition of H(u,).
Suppose the result is true for all kK = m < n and let k = m + 1. First note that by Bessel’s
inequality we have (v, 4 |, Wp 4 1) > 080 V,,, + | € H(4,, + 1) Which is (i). We shall establish
part (ii) for £k = m + 1 by contradiction. Thus suppose there is a w for which (w, v;) =0
fori=1,---,m+ 1and we U4 H(). By the induction hypothesis with k = m we
must have w2 UL, H(u;) so that w € H(u,, + {). Thus (W, u,, + ;) > 0, and in the Gram-
Schmidt process we have

V1= O 1, U =+ Ot 1, Ul + Wi 1| U 1
Taking the inner product with w yields

¥ WVms )= O 1, U)Wy tty) + -+ Ot 1, U)W, U) + W i (W, Uy 4 1)

The vectors in V are pairwise obtuse so in particular (v, + , ;) =0fori=1,2,--- ,m
so that for these i we have v,, , | € H(u;) by the induction hypothesis. Consequently, for
i=1,,mOms1, ) W, u) = 0. But also |w,, , | > 0 and (W, w4 1) > 0, hence the
sum on the right side of () is strictly positive. This contradicts (w, v,,+ 1) = 0, and the
induction step is established. O

THEOREM 2.8. Suppose § = {w;, Wy, V1, Uz, * -+ , U} is a subset of V for which the

Jollowing are true:
(i) Any subset of § of cardinality n is linearly independent,
@) V={v, -+, v,} and U={uy, -+, u,} satisfy the hypotheses of
Theorem 2.7.
(lll) wi, Wz,z U,"l=1 H(u;).
Then (wy, wy) > 0.

Proof. First we show that neither w; nor w, lies in the hyperplane L =
{x|(t4, xX) = 0}. Suppose w; € L. Then from the orthogonality of the ¥; we have that w;
€ L = span (4, ***, U,—1) = span (v;, ---, U, ) which contradicts (i). Similarly,
w, € L. Thus from (iii) we have fori = 1,2, and k = 1, --- , n — 1 that (w;, ux) = 0.
Further, (w;, u,) < 0 and (w, u,) < 0. Thus there are coefficients -y; such that
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Wy =vyUytyaUyt+ - o vl
where v;=0(i=1, ---,n— 1) and v, < 0. Consequently,
Wi, W) =vi(wy,u)+ -+ - +vu(wy, u,)>0. O

Let card & denote the cardinality of a (finite) subset of V. We may rephrase the
conclusions of Theorems 2.7 and 2.8 as follows.

PROPOSITION 2.9. Let § be a finite subset of V such that

() if T = & and card T = n, then the vectors in T are linearly independent,

(ii) the vectors in 8 are pairwise obtuse.
Thencard & = n+ 1.

THEOREM 2.10. Let K be a pointed full polyhedral cone in V. If K is o.p.-exposed
then K has n = dim V extreme rays.

Remark. A closed pointed full polyhedral cone K with n = dim V extreme rays is
called simplicial.

Proof. 1t suffices to show that K* has exactly n extreme rays since K is simplicial
iff K* is simplicial. Suppose K* has k > n extreme rays. If H is a maximal face of K*
we can find n — 1 linearly independent extremals in H, say f;, - * - , f, - 1. Let f, be another
extremal of K* whichisnotin H. Let L;= (fi, -+, fi—1,fi+ 1, * = , fuy be the subspace
spanned by all the f; except f;. Then U}~ L; is not a subspace so in particular since K*
has nonempty interior we can find an extremal f, ., of K* which is not in UL;. Let
{My} be the collection of all subspaces spanned by subsets of cardinality » — 1 of
{fi, -, fa=1}. Again there are only finitely many such subspaces so there is a y €
interior K such that y€UM;. Let & = { fi, - - -, f,+ 1, —y}. From the construction of §
we see that any subset of cardinality =<# is linearly independent. Also as in the proof of
Theorem 2.6 since ker f; N K is a maximal face of K we have that (f, f;}) = 0 for i # j.
Also since y € interior K we have —(y, fi) = (—», fi) <O forall k. Butcard & = n + 2
which contradicts Proposition 2.9. Thus K* and hence K has only »n extremals. |

COROLLARY 2.11. The closed pointed full polyhedral cone K is o.p.-exposed if K is
a subpolar simplicial cone.
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THE SPECTRA OF MATRICES HAVING SUMS OF PRINCIPAL
MINORS WITH ALTERNATING SIGN*
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Abstract. We present an observation on the localization of the spectrum of a matrix having sums of
principal minors with alternating sign.

Key words. principal minors, PN-matrix, P-matrix, eigenvalues
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In the past fifteen years, considerable attention has been paid in the economic lit-
erature to the class of the so-called PN-matrices and semi-PN-matrices (see [3], [6],
[8, Chap. 7], [9]). A matrix is a (semi-) PN-matrix if every principal minor of odd order
is positive, and every principal minor of even order is negative (provided that the order
of the minors is greater than 1). We call a real matrix a SPN-matrix if all the sums of its
principal minors of odd order are nonnegative and all the sums of its principal minors
of even order are nonpositive. The class of the SPN-matrices obviously contains the
PN-matrices as well as the nonnegative semi-PN matrices.

Example. Let the n X n matrix A = (a;) be defined by

(U ifjzi im1
% {a,- ifj<i BITLm
see [7]. Then the principal minors of order k + 1 are of the form (1 —a;) (1 —a;,) +-- -+
(1 —ay), where 1 =i, <i; < -+- <ix =n— 1. Thus, 4 is a PN-matrix and a SPN-
matrix if and only if for all k, a;, > 1 and a; = 1, respectively.

The purpose of this note is to present an observation on the spectra of SPN-matrices.
We note that a matrix 4 with the sign of the sums of its principal minors of order k
equal to (—1)* or 0 can be transformed to a matrix having nonnegative sums of its
principal minors by considering —A4. Theorems concerning the spectra of such matrices
may be found in [1).

Let n = 2 and 4 be an n X n SPN-matrix. The characteristic polynomial of 4 is
given by

(1) PO =(—x)"+ 51(=0)" "+ 5p(—=x)" "2 - =5y 1 X+ Sy

where s;, denotes the sum of the principal minors of order k of 4. By definition, we have
sign s, = (—1)**!, k=1, - - -, n. Without loss of generality we may assume that A4 is
nonsingular since otherwise we can divide p(x) by x*, where u is the multiplicity of the
eigenvalue 0, to obtain a polynomial of lower degree whose coeflicients have the same
sign as the corresponding coefficients of p(x). By using the companion matrix of p and
the Perron-Frobenius theorem one obtains that 4 has a simple positive eigenvalue A,
say, equal to its spectral radius (see [4]).

Let the eigenvalues of 4 which are different from A, be denoted by \,, -+, A,.. It
is easy to see that \, is negative if n = 2. We therefore assume without loss of generality
that n = 3.

A matrix is called a P-matrix if all its principal minors are positive.

* Received by the editors August 7, 1985; accepted for publication (in revised form) April 21, 1986.
+ Institute for Applied Mathematics, University of Freiburg i. Br., Freiburg i. Br., West Germany.
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THEOREM. Let A be a nonsingular SPN-matrix with spectral radius \,. Then
=\, **+, —\, are the eigenvalues of a P-matrix.

Proof. We divide the characteristic polynomial p(x), cf. (1), of 4 by x — A, and
denote the resulting polynomial by p,(x). By the Horner scheme we obtain the following
recurrence formula for the coefficients a; of py(x) = apx" "'+ ax" "2+ -+ + a,_,

ao=(=1)",
ak=ak-1)\1+(-l)"‘ksk, k= 1, ,n-—l.

From the equality a,_ A\, + s, = 0 we conclude that sign a,_,; = (—1)" and by (2)
recursively, sign a, —; = (—1)", k = 2, --- , n — 1. Hence by Vieta’s formula, the kth
elementary symmetric function o of the eigenvalues A, - - - , A,

ak(AZ’.“’xn)= z )\il'....xik’ k=13.'.3n—l’

25ij<ip<- - <ix=n

)

has the sign (—1)%. Then ox(—),, + - -, —\,) is positive fork =1, - -+ , n — 1. By [1, Prop.
4] there exists a P-matrix such that —\,, —X3, ---, —\, are the eigenvalues of this
matrix. O

This theorem enables the use of the results on the localization of the spectra of
P-matrices [1], [2], [5] in order to localize the spectra of SPN-matrices. The most important
conclusions are given in the following corollary.

COROLLARY. Let A be a nonsingular SPN-matrix with spectral radius \,. Then

@) Iargkk|>n—7—5—l-, k=2,--,n.

(ii) There is at least one eigenvalue with negative real part; if there is exactly one
such eigenvalue then

T

3

this bound is independent of n and cannot be improved.

(iii) Ifn > 2m + 3 and there are exactly m + 1 eigenvalues with positive real parts
or exactly m eigenvalues with negative real parts then there exists o satisfying

|arg Ae| > k=2,---,m

|arg)\k|>a>z—i——l, k=2,~~-,n.
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Abstract. We generalize the concepts of sign symmetry and weak sign symmetry by defining k-sign symmetric
matrices. For a positive integer k, we show that all diagonal shifts of an irreducible matrix are k-sign symmetric
if and only if the matrix is diagonally similar to a Hermitian matrix. A similar result holds for scalar shifts, but
requires an additional condition in the case k = 1. Extensions are given to reducible matrices.

Key words. matrix, Hermitian, sign symmetric, diagonal shift, scalar shift, diagonal similarity, graph,
cordless circuit
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1. Introduction. A square complex matrix is said to be sign symmetric (weakly sign
symmetric) if it has nonnegative products of symmetrically located minors (almost prin-
cipal minors) (for detailed definition see Definition 2.11).

Weakly sign symmetric matrices were studied first by Gantmacher and Krein [8, p.
111] and by Koteljanskii [13]. That is why these matrices are also called GKK-matrices,
e.g., Fan [5]. One reason for the interest in these classes of matrices is that they contain
the important classes of the Hermitian matrices, the totally nonnegative matrices and
the M-matrices. Another reason is the strong linkage between weak sign symmetry and
the Fischer-Hadamard determinantal inequalities. This connection is studied in Gant-
macher and Krein [8], Koteljanskii [12], Carlson [1], Green [9] and Hershkowitz and
Berman [10].

A sufficient condition for positivity of the principal minors of a weakly sign symmetric
matrix in terms of leading principal minors is given by Koteljanskii [13].

Relations between weakly sign symmetric matrices and w-matrices are discussed in
Engel and Schneider [4] and in Hershkowitz and Berman [11].

Sign symmetry and weak sign symmetry are also related to stability. It was proved
by Carlson [2] that sign symmetric matrices whose principal minors are positive are
stable, i.e., their spectra lie in the open right half plane. The same result is conjectured
to hold for weakly sign symmetric matrices too.

In this paper we generalize the concepts of sign symmetry and weakly sign symmetry.
We define k-sign symmetric matrices, where k is a nonnegative integer (see Definition
2.11). In view of our definition an n X »n sign symmetric matrix is a k-sign symmetric
matrix whenever k = (n — 1)/2. The 1-sign symmetric matrices are those weakly sign
symmetric matrices whose principal minors are real. Since reality of principal minors is
assumed in all the results on weakly sign symmetric matrices quoted above, one may as
well consider those as assertions on 1-sign symmetric matrices.

* Received by the editors July 22, 1985; accepted for publication April 21, 1986.
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After giving graph theoretic preliminaries in § 3, we characterize in § 4 the matrices
all of whose diagonal shifts are k-sign symmetric, that is matrices A such that 4 + D is
k-sign symmetric for every real diagonal matrix D. Given a positive k, we show that an
irreducible matrix satisfies this condition if and only if it is diagonally similar to a Her-
mitian matrix. Thus, a matrix satisfies the above shift condition for some positive k if
and only if it satisfies the condition for every positive k.

For k 2 2, we prove in § 5 a similar result for a matrix A4 all of whose scalar shifts
A + tI, where t is real, are k-sign symmetric. If K = 1 then we need an additional graph
theoretic hypothesis, namely the reversibility of the chordless directed circuits of even
length in the directed graph of 4.

The extensions of our results to reducible matrices follow from a theorem in § 6
that a matrix A4 is k-sign symmetric if and only if every diagonal block in the Frobenius
normal form of A is k-sign symmetric.

2. Definitions and notation.
Notation 2.1. We denote

|al:  the cardinality of a set a.

R:  the field of real numbers.

C: the field of complex numbers.

[x]: the maximal integer which is less than or equal to the real number x.

Notation 2.2. For a positive integer n we denote

(n): theset{l,2,---,n}.
F™".  the set of all n X n matrices over a field F.

Notation 2.3. For a (nondirected, simple) graph T" we denote

V(T'): the vertex set of T'.
E(): the edge set of T'.
[i,j]: an edge between i and j, i, j € V(T'). Observe that [i, j] = [J, i].

DEFINITION 2.4. Let I' be a graph. A sequence of edges in I" which leads from i to
J, Ui, o1, (1> 2), = 5 [Pm= 15 D), [Pm» J), is called a path in T between i and j and is
denoted by [i, pi, P2, *** , Pm> J1. A path [i;, - -+, ij] in T is said to be a closed path if
i; = i,. A closed path [i;, - - -, i, ;] is said to be a circuit if i;, - - - , i, are distinct. A
circuit is said to be of length k, or a k-circuit, if it consists of k edges.

Notation 2.5. For a (simple) directed graph (or digraph) A we denote

V(A). the vertex set of A.

E(A): the arc set of A.

(i, j): anarc from i to j, i, j, € V(A). Observe that (i, j) = (J, i) if and only if
i=j.

DEFINITION 2.6. Let A be a digraph. A sequence of arcs in A from i to j, (i, p)),
(P1,D2), "+ » (Dm—1> Dm)> (Dm,)), 1s called a directed path in A from i to j and is denoted
by (i, p1, D2, *** 5 Dm» Jj)- A directed path (i;, - - - , i) in A is said to be a closed directed
path if i; = i;. A closed directed path (i;, - - - , i, i) is said to be a directed circuit (or
dicircuit) if i}, - - - , iy are distinct. A dicircuit is said to be of length k, or a k-dicircuit, if
it consists of k arcs.

DEFINITION 2.7. A digraph A is said to be strongly connected if either |V (A)|=1 or
for every i, j € V(A) there exists a directed path in A from i to j.

DEFINITION 2.8. A dicircuit (i}, - - - , i, i;), k 2 3, in a digraph A is said to have a
chord if E(A) contains an arc (i, i;) where
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{I-1,1+1}, 1<i<k,
t€ 4 {2,k}, I=1,
{k—1,1}, I=k.

A dicircuit of length greater than 2 in A is said to be chordless if it has no chord.
DEFINITION 2.9. (i) A directed path a = (iy, - - -, i}) in a digraph A is said to be
reversible in A if (i, - - - , i) is also a directed path in A. In this case we denote the
directed path (i, - - - , i;) by o*.
(ii) A digraph A is said to be reversible or symmetric if every directed path in A is
reversible. Observe that A is reversible if and only if

(5,)) € E(A) = (J,i)€ E(D).
Notation 2.10. Let A be an n X n matrix and let o, 8 = (n), o, 8 # ¢. We denote

A[a|B): the submatrix of 4 whose rows are indexed by a and whose columns
are indexed by @ in their natural orders.

Ala] = Alale],
A(alB) = A[{n)\al(n)\B],
Aa) = A(ala).

DEFINITION 2.11. (i) Let 4 € C*" and let a, 8 = (n), |a| = |8 > 0. The submatrix
A[al|B] of A4 is said to have dispersion k whenever k = |a] — |a N G| (see also [12]).
Submatrices with dispersion 1 are called almost principal submatrices.

(ii) Let k be a nonnegative integer. A square matrix A4 is said to be k-sign symmetric
if it satisfies

(2.12) det A[a|B] det A[Bla]Z0

for all submatrices A[a|8] of A with dispersion less than or equal to k. The set of all
k-sign symmetric matrices in C*" is denoted by SS%,s.

(iii) A square matrix is called sign symmetric if (2.12) holds for all square submatrices
A[al|B] of A (see also [13]). The set of all sign symmetric matrices in C™" is denoted
by SS<n>.

(iv) A square matrix is called weakly sign symmetric if (2.12) holds for all submatrices
A[a|B] of A4 with dispersion exactly 1 (see also [13]). The set of all weakly sign symmetric
matrices in C™” is denoted by WSS,.

Remark 2.13. (i) Observe that for nonnegative integers k and m, the inequality
m > k implies SS7;y = SS ’{,,>.

(i) Let a, B = (n), la| = |B] > 0, and let k = |a| — | N B|. Since

lal+18] = laN Bl =laUB|=n

and since k = | it follows that k = n/2. Thus, the dispersion of a square submatrix of
an n X n matrix cannot exceed n/2. It now follows that for a nonnegative integer m,
m Z (n — 1)/2 we have SS7, = SS(sy-

(iii) Since submatrices of a given matrix have dispersion 0 if and only if they are
principal submatrices, it follows from Definition 2.11(ii) that the 0-sign symmetric matrices
are just the matrices all of whose principal minors are real. Also, a k-sign symmetric
matrix has real principal minors for every positive integer k.

(iv) Observe that S\S {,,> is the set of those matrices in WSS, that have real principal
minors.
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DEFINITION 2.14. Let A be an n X n matrix. The graph I'(4) of A and the digraph
A(A) of A are defined by
V(L(4)) = V(AA)) ={n),

E(F(A)) = {[ia.]]a i,je <n>: aij # O or aj,‘ # 0},
E(AW) = {(i,)), i,j€{nY: a;#0}.

DEFINITION 2.15. Let 4 be an n X n matrix and let « = (i}, : - - , i) be a directed
path in A(A4). The corresponding path product is defined to be

k-1
Ha(A) = H al:,'l:,‘.'.l’
j=1

DEFINITION 2.16. An n X n matrix A is said to be combinatorially symmetric if
A(A) is reversible.

DEFINITION 2.17. Let A.B. € C™", The matrices 4 and B are said to be diagonally
similar if there exists a nonsingular diagonal matrix D such that

B=D7'4D.

The matrices 4 and B are said to be permutationally similar if there exists a permutation
matrix P such that
B=P74P.

DEFINITION 2.18. (i) A square matrix 4 is said to be in Frobenius normal form if
A may be written in the block form

Ay Ap e Ag
0 Axn
A= .

0 oo 0 Akk

where A4;; is an irreducible square matrix, i = 1, --- , k.

(ii) Let A, B € C™". The matrix B is said to be a Frobenius normal form of A if B is
in Frobenius normal form and if 4 and B are permutationally similar.

Remark 2.19. Observe that by Definition 2.18 the Frobenius normal form of a
square matrix A4 is unique up to permutation similarity, and so Frobenius normal forms
of A have the same diagonal blocks up to permutation similarity. Also, since, as is well
known, a square matrix is irreducible if and only if its digraph is strongly connected, it
follows that the diagonal blocks of the Frobenius normal form of 4 are the principal
submatrices of A that correspond to the maximal strongly connected subgraphs (com-
ponents) of A(A).

DEFINITION 2.20. Let 4 € C™". A diagonal shift of A is a matrix A + D where D is
a real diagonal n X n matrix. A scalar shift of A is a matrix 4 + ¢I where ¢ is a real
number.

3. Reversible digraphs.

PROPOSITION 3.1. Let A be a digraph. Then every dicircuit in A is reversible if and
only if every chordless dicircuit in A is reversible.

Proof. The “only if” part is trivial. Conversely we prove our assertion by induction
on the length of the dicircuits. Clearly, all dicircuits in A of length 1 and 2 are reversible.
Also all 3-dicircuits are chordless and hence reversible. Assume that all dicircuits in A
of length less than n (n > 3) are reversible, and let « = (iy, ** * , i,, i;) be an n-dicircuit
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in A. If « is chordless then it is reversible by the conditions of the proposition. Assume
that « is not chordless. Without loss of generality we may assume that (i, i) € E(A)
where [ # 1, 2, n. Observe that 8 = (i}, ij, {;+1, *** , I, i1) is a dicircuit in A of length
less than n and therefore, by the inductive assumption, 8 is reversible. Thus we have

(3.2) (i, k- €EL),  k=I+1,--,n,
(3.3) (i1, in) € E(D),

and

(3.4) (i1, i) € E(A).

By (3.4), v = (i}, * - - , i, I1) is also a dicircuit in A. Since the length of v is less than
n, it follows from the inductive assumption that v is reversible. Hence we have

3.3) (i, I - 1) € E(A), k=2,--- L

It now follows from (3.2), (3.3) and (3.5) that the dicircuit « is reversible. O

COROLLARY 3.6. Let A be a strongly connected digraph. Then A is reversible if and
only if every chordless dicircuit in A is reversible.

Proof. The “only if” part is again trivial. Conversely, since A is strongly connected
it follows that every arc (i, j) of A lies on some dicircuit « in A. By Proposition 3.1 the
dicircuit « is reversible and hence (j, i) € E(A). O

COROLLARY 3.7. Let A € C™". Then every diagonal block in the Frobenius normal
form of A is combinatorially symmetric if and only if every chordless dicircuit in A(A) is
reversible.

Proof. Our claim follows immediately from Corollary 3.6 and Remark 2.19. O

4. Irreducible matrices with sign symmetric diagonal shifts.

LEMMA 4.1. Let A € C™" be diagonally similar to a Hermitian matrix. Then A €
SS’{,,> Jfor every nonnegative integer k.

Proof. Let D be a diagonal matrix and B be a Hermitian matrix such that

A=D"'BD.
For all &, 8 < (n), |a| = |8] > 0 we have
det A[«|B] det A[Bla]
= det D[«a] det B[a|8] det D™'[8] det D[B] det B[B|a] det D~'[a]
= det B[«|B] det B[B|a] = det B[«|8] det B[«|B8]=0. O
LEMMA 4.2. Let a, b € C and let
p()=({t+a)t+Db).
() If p(ty), p(t2) € R for two distinct real numbers t, and t, then either a = b or
a,beR.
(i) Ifb> athenp(t) <O forallt,—b <t < —a.
Proof. (1) If p(¢,), p(t;) € R for two distinct real numbers ¢, and ¢, then necessarily
a + b, ab € R. Therefore, p(f) is a polynomial with real coefficients. Since the roots of
p(t) are —a and —b our claim follows.
(i) Immediate, since for —b <t < —awehavet+a<O0and ¢+ b > 0. O

COROLLARY 4.3. Leta, beC. If(t+a)(t+ b)=0forallt€R then a = b.
Proof. By Lemma 4.2(i) we have either a = b or a, b € R. In the latter case, by

Lemma 4.2(ii) we have a = b. Hence, in each case, a = b. O
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In the following results we discuss k-sign symmetric matrices, k = 1. As observed
in Remark 2.13(iii), a matrix 4 is 1-sign symmetric if and only if 4 is weakly sign symmetric
matrix with real principal minors. Note that a matrix 4 € C*" may have nonreal principal
minors even if all its diagonal shifts are in WSS,,;. This assertion can easily be verified
for n = 1, 2. However it holds for higher orders too as demonstrated by the following
irreducible 3 X 3 matrix

010
A= 1 i 1
010

The following theorem relates weakly sign symmetric matrices to 1-sign symmetric
matrices.

THEOREM 4.4. Let A € C™" be a weakly sign symmetric matrix and suppose that
all the principal submatrices of A of order less than or equal to n — 2 are nonsingular.
Then A has real principal minors if and only if the diagonal entries of A are real.

Proof. The “only if” direction is obvious. Conversely, assume that 4 is a weakly
sign symmetric matrix with real diagonal entries and nonsingular principal submatrices
of order less than or equal to n — 2. We prove that the principal minors 4 are real by
induction on the order of A. The claim is clear for matrices in WSSy and WSS .
Assume it holds for weakly sign symmetric matrices of order less than n, n 2 3, and let
A € WSS,y Since every principal submatrix of a weakly sign symmetric matrix is also
weakly sign symmetric, it follows from the inductive assumption that all principal minors
of A of order less than » are real. Thus, all we have to prove is that det A is real.

Let a; = (n)\{n} and a, = (n)\{n — 1}, and define a 2 X 2 matrix B by

b,‘j= det A[ailaj], i,j= 1, 2.

Since 4 € WSSy, it follows that B € WSS,,y. Furthermore, by, and b,, are principal
minors of 4 of order n — 1, and hence b,, and b,, are real by the inductive assumption.
Therefore, the determinant of B is real. By Sylvester’s identity, e.g., [7, Vol. I, p. 33], we
have

(4.5) det B= det A[{n—2)] det 4.

Since det A[{n — 2)] # 0 and by the inductive assumption det A[{n — 2)] is real, it now
follows from (4.5) that det A is real. O

The assumption of nonsingularity of the principal minors of 4 cannot be dropped
from Theorem 4.4 as demonstrated by the matrix

0 1 1
A=|1 0 i
2 —-i 0

It is easy to verify that 4 € WSS 3,. However, det 4 = i.
LEMMA 4.6. Let A € C*", n 2 3. Assume that o is an n-dicircuit in A(A) and that
T'(A) consists of a single circuit. IfA + D € SS{,O for all real diagonal matrices D then

[1uA4) = ITex(A4).

Proof. Without loss of generality assume that o = (1, - -+ , s, 1). Notice that I'(4)
consists of the single circuit [1, ---, n, 1]. Since 4 + D € SS{,,> for all real diagonal
matrices D, it follows that
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4.7) y(D) = [det (4 + D)(1|2)][det (4 + D)(2|1)]
=[ay2(D)+ (= 1)" " %an pllaz(D) +(—1)""*a1,q] 20
where
2z(D) = det (4+ D)(1,2),
n—1
b= H Qjj+1,

j=2

and

n-—1

q=11 Gj+1,5-
ji=2

Since « is a dicircuit in A(A4), it follows that
a2, P, @m # 0.

Since, as observed in Remark 2.13(iii), 4 has real principal minors, it follows that z(D)
attains every real value for suitable choices of D. Therefore, if a;; = 0 then for an ap-
propriate choice of D we have y(D) < 0, which contradicts (4.7). Thus we have a,, # 0.
Similarly we show that ;. ;#0,j =1, --+ ,n— 1 and a;, # 0. Since 4 € SS¢,,, we now
have a,,a,; > 0. Dividing (4.7) by a,,a,;, we obtain

(4.8) [2(D) + (—=1)"~2amp/ax][z(D) +(—1)" " *a1.9/a) Z 0.
Since z(D) attains every real value, it follows from (4.8) and Corollary 4.3 that
(4.9) an1 D/ Gy = 109/ Q12

Notice that since a;,a,; > 0 we have a,,a,; = a2a;,. Hence, by multiplying the left and
the right sides of (4.9) by a.a,; and a,a;;, respectively, we obtain

T1.(0) = TL+(4). O
LEMMA 4.10. Let A € C™" have real diagonal entries and assume that
4.11) a;a;€R  foralli,je(ny, i#j.
If the equality
@.12) T1.(4) = TL.s(4)

holds for all chordless dicircuits o in A(A) then it holds for all dicircuits a in A(A).
Proof. Since 4 has real diagonal entries, it follows that (4.12) holds for 1-dicircuits.
Also it follows from (4.11) that (4.12) holds for 2-dicircuits. Assume by induction that
(4.12) holds for dicircuits of length less than m, m = 3, and let a = (i), * -+ , im, I;) be
an m-dicircuit in A(A4). If « is chordless then by the lemma’s conditions (4.12) holds. If
a is not chordless, then necessarily m > 3, and without loss of generality we may assume
that (i, i) € E(A(A)), where [ # 1, 2, m. Since A = A(A[i;, - - - , i,,}) is strongly connected
and since by the conditions of the lemma every chordless dicircuit in A is reversible, it
follows from Corollary 3.6 that A is reversible. Hence, (i), i;) € E(A(A4)) and hence 8 =

Gy, B Bravy oy im, 1) and v = (iy, -+, I, iy) are dicircuits in A(4) with length less
than m. By the inductive assumption we have

(4.13) [Ts(4) =1 p(4),

and

(4.14) I14) =T1,(4).
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Observe that

(4.15) [T4) = I1 (DI, (A) @iy i, »

and

(4.16) [1x(A4) = [Tae(DI1 +(A)/ sy, -

Since we have (4.11), it now follows from (4.13), (4.14), (4.15) and (4.16) that

Ha(A) = Ha"‘(A)' O

We remark that Lemma 4.10 may be generalized. One can similarly prove the same
conclusion under the assumptions that (4.11) holds and that (4.12) holds for all the
dicircuits in an integral basis for the flow space of A(A4), see [14].

THEOREM 4.17. Let A € C™" be an irreducible matrix and let k be a positive integer.
Then the following are equivalent.

(i) 4 + D € SS&, for all real diagonal matrices D.

(ii) The matrix A is diagonally similar to a Hermitian matrix.

Proof. (i) = (i1). In view of Remark 2.13(i) it is enough to show this implication
for k = 1. Assume that 4 + D € SS/,, for all real diagonal matrices D. Observe that since
A is irreducible, the digraph A(A) is strongly connected. Let « = (iy, - -, i,n, i;) be a
chordless m-dicircuit in A(A4). By Definition 2.8 we have m 2 3. Let B = A[i;, - - - , in].
Notice that I'(B) consists of a single circuit. By Lemma 4.6 we have

(4.18) [1.(A) =T1.x(4).

It now follows from (4.18) that the chordless dicircuit « is reversible. By Corollary 3.6
the strongly connected digraph A(A) is reversible. Thus, since 4 is in SS{,O it
follows that

(4.19) a;#0=>a;a;>0 forall i,je{n).
Furthermore, by Lemma 4.10 we have
(4.20) ITa(4) = ITx(4),

for every dicircuit in A(A4). Therefore, by Corollary 4.20 of [3] it follows from (4.19) and
(4.20) that A is diagonally similar to a Hermitian matrix.

(ii) = (i). Assume that A satisfies (ii). Since 4 + D is diagonally similar to a Hermitian
matrix for all real diagonal matrices D, it follows by Lemma 4.1 that 4 + D is
in SS l(‘,,) . O

5. Irreducible matrices with sign symmetric scalar shifts. In this section we discuss
matrices A4 all of whose scalar shifts are k-sign symmetric. Although the condition here
is weaker than 4 + D € SS’<‘"> for all real diagonal matrices D, the results are similar to
those of the previous section.

The following lemma is well known and may be found in [8, p. 79, Remark 6°].

LEMMA 5.1. Let A € C™" be a tridiagonal matrix such that

aiielRa i=19 Y (A
and
Qi 18i+1,>0, i=1,---,n—1.
Then A has distinct real eigenvalues. Furthermore, if \, < - - - < \, are the eigenvalues

of A and p, < -+ < u,_ are the eigenvalues of A(n) or of A(1), then

M<p <A< <y <A
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An easy well-known consequence of Lemma 5.1 is:
LEMMA 5.2. Let A € C™" be a tridiagonal matrix such that

aiieR’ i= 1, Y (3
and
Qij+18i41,; =0, i=1,---,n—1.

Then A has real eigenvalues.

LEMMA 5.3. Let A € C™" n = 3, and suppose that if n is even then A is combinatorially
symmetric. Assume that o is an n-dicircuit in A(A) and that T(A) consists of a single
circuit. If A + tI € SS{, for all t € R then

ITu4) = ITer(A).

Proof. Without loss of generality assume that o« = (1, - - - , n, 1). Notice that I'(4)
consists of the single circuit [1, ---, n, 1]. Since 4 + t/ € SS{,,> for all ¢ € R, it follows
that

(5.4) S1)=det (A+I)(1]2) det (4 +I)(2|1)
= [a218())+ (=1)" " 2au pllai2g(t) + (—=1)" " 2a1,q] 20 for all t€R,

where
g(®) = det (4+1I)(1,2),
n-—1
r= H ajj+1,
j=2
and

n-—1
a=1II @+,

j=2
Observe that since A4 has real principal minors, if 7 is odd then g(¢) attains every real
value and our proof follows as the proof of Lemma 4.6 where (5.4), f(f) and g(¢) replace
(4.7), y(D) and z(D), respectively. If n is even then, since a;, # 0 and since A4 is combi-
natorially symmetric 1-sign symmetric matrix, it follows that a;,a,, > 0. Dividing (5.4)
by aj,a,;, we obtain

(5.5) [g(H)+allg(®)+b]=0 forallt€R
where
_anlp
a_——
ayy
and
b — alnq'
a

Since g(f) attains infinitely many real values, it follows from Lemma 4.2(i) that
either

(5.6) a=b,
or
(5.7 a,beR,.

If (5.6) holds, then we have (4.9) and we complete our proof as we do for Lemma 4.6.
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If (5.6) does not hold, then we have (5.7) where a # b. Without loss of generality we may
assume that
(5.8) b>a.

Observe that if g(f) attains the value x then g(¢) attains every value which is greater than
x. Thus, it follows from (5.5), (5.8) and Lemma 4.2(ii) that

(5.9 g()z—a>—b forallzteR.
Given that 4 + tI € SS{,, for all ¢ € R we have
(5.10) h(t) = [det (4 + tI)(1|n)][det (4 + tI)(n|1)]

= [anr() + angllair@®+a;pl20  forall teR

where
r(t)= det (4 +tI)(1,n).

Dividing (5.10) by the positive number a,,a,,, we obtain

(5.11) [r@+cllr(®)+d}=0 forall teR
where
_ang
c= s
any
and
d= 01217.
aln

Observe that (5.8) implies that

(5.12) c>d.
As before, by Lemma 4.2(ii) it follows from (5.11) and (5.12) that

(5.13) r(®)2—d>—c forall teR.

Observe that (4 + tI) (1, 2) and (4 + tI) (1, n) are tridiagonal matrices which satisfy
the conditions of Lemma 5.1. Hence by Lemma 5.1 their eigenvalues are simple. Thus,
for appropriate choices of ¢, the determinants of these matrices, which are g(r) and r(r)
respectively, attain negative values. Hence, it follows from (5.9) and (5.13) that

(5.14) a,b,c,d>0.
Let a; = (n)\{1, n} and a; = (n)\{1, 2}, and define a 2 X 2 matrix B by
bij= det (4 + tI)[O(,‘Iaj], Lj=1, 2.

Observe that
(5.15) bu=r@®), bp=g®), bn=p, bu=gq.
By Sylvester’s identity we have
(5.16) det B =[det (4 +1tI)(1,2,n)][det (4 +I)(1)] forall teR.

By Lemma 5.1 let A be the minimal eigenvalue of A(1, 2, n), and choose ¢, = —A. Thus

(5.17) det (4+1t,1)(1,2,n)=0.
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Furthermore, by Lemma 5.1 we have

(5.18) r(to), &(2) <O.
By (5.9), (5.13), (5.14) and (5.18) we now obtain
(5.19) r(to)g(to) <ac=pq.

On the other hand, by (5.15), (5.16) and (5.17) we obtain

r(to)g(to) = pg,

which is a contradiction to (5.19). Therefore, our assumption that (5.6) does not hold is
false, and our proof is completed. O

Lemma 5.3 does not hold for even n when we omit the combinatorial symmetry
requirement as demonstrated by the following example.

Example 5.20. Let

- o O O
(== -
(==

- o O

Let a, B = (4), |a] = |B| = la N B] + 1. To see that
(5.21) det (4 +tD)[«|B] det (A +tI)[Bla]Z0 forall teR,

observe that the left side of (5.21) is equal to zero whenever |a| = 2, and is equal to ¢>
whenever |a| = 3.

We remark that it is possible that a condition which is somewhat weaker t\an
combinatorial symmetry will do in Lemma 5.3.

However, for matrices with k-sign symmetric scalar shifts, k > 1, we do not need
to state the condition of combinatorial symmetry.

LEMMA 5.22. Let A € C*" n 2 3, and let k be a positive integer, k > 1. Assume
that « is an n-dicircuit in A(A) and that T(A) consists of a single circuit. If A + tI €
SS%y for all t € R then « is reversible in A(A).

Proof. Without loss of generality assume that a = (1, - - - , n, 1). Thus I'(4) consists
of the single circuit [1, - - - , n, 1]. Assume that « is not reversible. Without loss of generality
we may assume that a;, = 0. In view of Lemma 5.3 it is enough to consider the case
where 7 is even. Hence we may assume that #» = 4. Recall that

(5.23) A+1IeSSt,, forallteR
yields that A has real principal minors. Also, it follows from (5.23), that
h(t) = det (A4 +tI)(1|n) det (4 +tT)(n|1)
=[p+aur())G=0 forallteR

where
r(f) = det (4 +tI)(1, n),
p= H a1
j=2
and

n
g=T1l a1,
j=2
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Observe that A(f) is a polynomial in ¢ of degree n — 2. Since it is nonnegative for all
t € R it follows that the leading coefficient a,;§ must be nonnegative. In fact, since « is
a dicircuit in A(4) we have

(5.24) ang>0.

We distinguish between two cases:
Case 1. n = 4. By (5.23) we have

f(t) = det (A4+eI)(1]2) det (4 +¢I)(2]1)
(5.25) = [a218(8) + as1az3a34]a128()

=[a2|al2g(t)+a4lci]g(t)§0 for all teR
where
g(®)=det (A4 +1¢I)(1,2).

If a43 # O then, since a;4 # 0, g(¢) attains also negative values (for example for ¢ = —as3).
Thus, in view of (5.24) we can choose f, such that g(f,) < 0 and

|az1a128(t)| < asd.

But then f(f,) < 0 in contradiction to (5.25). Therefore we must assume that a,; = 0.
Since k > 1 we now obtain by (5.23) that

det (A + tI)(l, 3|2, 4) det (A + tI)(2, 4| 1, 3) = —0a41023412034 = 0,

which is a contradiction to (5.24).
Case 2. n> 4. By (5.23) we have

f(t) =det (4+tI)(1,n—1|2,n) det (4 +)(2,n|1,n—1)
(5.26) =[a21ann-1£(0) — amG/ai2a, - 1,p)[a120, - 1, &(D)]

= [@120210n 1 pnn—18(t) — amdlg(HZ0 forall teR
where
&(0) = det (4+1tI)1,2,n—1,n).

By Lemma 5.2 g(¢) attains every nonnegative value. Thus, in view of (5.24) we can
choose #;, such that g(¢,) > 0 and

|@12821G — 1 n@nn - 18(t0)| < Amd.

But then f(#,) < 0 in contradiction to (5.26).
In each case we obtain a contradiction, which means that our assumption that « is
not reversible is false. O
We now state the theorem for the irreducible case.
THEOREM 5.27. Let A € C™*" be an irreducible matrix and let k be a positive integer,
k = 2. Then the following are equivalent.
() A+ tleSSky forallteR.
(i) A + I € SSiy for all t € R and every chordless dicircuit in A(4) is
reversible.
(i) A+t € SS%,,> for all t € R and every chordless dicircuit of even length in A(A)
is reversible.
(iv) The matrix A is diagonally similar to a Hermitian matrix.
Proof. (i) = (ii). Lemma 5.22 yields that every chordless dicircuit in A(4) is re-
versible. The rest of the implication is trivial.
(ii) = (iii). Obvious.
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(iii) = (iv). The proof follows exactly as the proof of the part (i) = (ii) in Theorem
4.17, where D is replaced by tI, and where Lemma 5.3 is used instead of Lemma 4.6.

(iv) = (i). Since 4 + tI is diagonally similar to a Hermitian matrix for all z € R, it
follows by Lemma 4.1 that 4 + 1I € SS¢,. O

6. Reducible matrices with sign symmetric shifts.
THEOREM 6.1. Let A € C*" have the block form

A A
4= [An An
0 A

where A, and A, are square, and let k be a nonnegative integer. Then A is k-sign symmetric
if and only if A,, and Ay, are k-sign symmetric.

Proof. Clearly, if A is k-sign symmetric then so are 4, and 4,,. Conversely, assume
that A4,, and A,, are k-sign symmetric and let a, 8 = (n) be such that g = |a| = |8] > 0
and

(6.2) qg—laNB|=k.
We shall show that
(6.3) det A[«|B8] det A[B]a] = 0.

Let m be the order of 4;,. Denote by
a'=an(m), a"=a\a, B'=pN{m), B"=p\G"

Observe that

(6.4) la'l + 1" = 18" +18" = q,
and hence

(6.5) la'| +18" + 18 + || = 2g.

In view of (6.5) we need to consider only the following two cases.
Case 1. |a'| +|B"] > g or |a"] + |B'] > g. Assume that

(6.6) la'| +18" > q.

By (6.4) we have ||, |8”] > 0. Since A[8"|a'] = 0 it follows from (6.6) by the easy direction
of the Frobenius-K6nig theorem [6] that A[8|«] is singular and hence

det A[|B] det A[Bla] =0.

Case 2. || + |8"] = |a"| + 18| = ¢. If |a'| = g [I8”] = g] then |&"| = 0 [|8'| = 0]
and hence |8'| = ¢ [|la"] = g]. In this case A[«|8] and A[B]a] are submatrices of A;; [42]
and (6.3) follows. If |a'|, |8”| < ¢ then observe that A[«a|8] and A[Bla] are reducible.
Furthermore, we have

(6.7 det A[a|8] = det 4;,['|8'] det Ax[a"|B"]
and
(6.8) det A[B|a] = det 4;,[8|a’] det 45,[B"|a"].

By (6.2), the sets o’ and a” contain at most & indices which are not in 8’ and 3”, respectively.
Hence, since 4,; and A,, are k-sign symmetric, inequality (6.3) follows from (6.7)
and (6.8). O
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In view of Remark 2.13(i1)) we obtain the following immediate corollary to
Theorem 6.1.

COROLLARY 6.9. Let A € C*" have the block form

A, A
q=|4n A

where Ay, and A,, are square. Then A is sign symmetric if and only if A,, and A, are
sign symmetric.

We remark that the “only if” part of Theorem 6.1 holds trivially also when we
replace “k-sign symmetric” by “weakly sign symmetric.” On the other hand, weak sign
symmetry of A;; and A4,, does not imply in general the weak sign symmetry of 4 for
matrices with nonreal principal minors, as demonstrated by the following example.

Example 6.10. Let

i 00
A=10 0 1
010

where 4, is a 1 X 1 matrix. Obviously, the matrices 4, and 4,, are weakly sign symmetric.
However, the matrix 4 is not in WSS3, since

det A(3]2) det 4(2|3)=—1.

Since the class SS’<‘,,> is invariant under permutation similarity, the following is a
corollary to Theorem 6.1.

COROLLARY 6.11. Let k be a nonnegative integer. A square matrix A is k-sign
symmetric if and only if every diagonal block in the Frobenius normal form of A is k-sign
symmetric.

Let 4 be a square matrix. Observe that every dicircuit in A(A4) is a dicircuit in A(B)
where B is some diagonal block in the Frobenius normal form of 4. Thus, the following
theorem for the general case follows directly from Theorems 4.17 and 5.27 and Corollary
6.11.

THEOREM 6.12. Let A € C*" and let k and m be positive integers, m = 2. Then the
Jfollowing are equivalent.

(i) A+ De SS’<‘”> for all real diagonal matrices D.

(i) 4 +tI1 €SS, forallt€R.

(i) 4 + tI € SS¢w for all t € R and every chordless dicircuit in A(A4) is

reversible.

(iv) A + tI € SS{y for all t € R and every chordless dicircuit of even length in A(A4)

is reversible.
(v) Every diagonal block in the Frobenius normal form of A is diagonally similar
to a Hermitian matrix.
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COMBINATORIAL CANONICAL FORM OF LAYERED MIXED
MATRICES AND ITS APPLICATION TO BLOCK-TRIANGULARIZATION
OF SYSTEMS OF LINEAR/NONLINEAR EQUATIONS*

KAZUO MUROTAt, MASAO IRI} AND MASATAKA NAKAMURA}

Abstract. With a view to obtaining an efficient procedure for solving large-scale systems of equations,
canonical block-triangular forms are defined for layered mixed matrices and for mixed matrices, and some
practical examples are presented. The canonical forms are obtained from a straightforward application of the
decomposition principle for submodular functions. The relation to the existing decomposition techniques for
electrical networks, as well as to the Dulmage-Mendelsohn decomposition, is also discussed.

Key words. block-triangularization, layered mixed matrix, submodular function, Dulmage-Mendelsohn
decomposition
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1. Introduction. When solving a system of linear equations
(1.1) Ax=Db

repeatedly for various values of the right-hand side vector b = b(f) containing parameters
0, it is now standard to first decompose 4 (possibly with permutations of rows and columns)
into LU-factors as

(1.2) A=LU,

and then solve the triangular systems Ly = b, Ux = y for different values of b = b(6). It
is most important here that the LU-factors of 4 can be determined independently of the
parameters 6.

No less of interest are the cases where the coeflicient 4, as well as b, changes with
parameters, but with its zero/nonzero pattern kept fixed. Such situations often arise in
practice, for example, in solving a system of nonlinear equations by the Newton method,
or in determining the frequency characteristic of an electrical network by computing its
responses to inputs of various frequencies. In this case we cannot calculate the LU-factors
of 4 in advance, so that we usually resort to the so-called graph-theoretic methods and
rearrange the equations and the variables to obtain a block-triangular form (see, e.g.,
[11], [21], [22], [24]). In particular, the block-triangularization based on the structure
theory of bipartite graphs has proved to be effective, and is known as the Dulmage-
Mendelsohn decomposition (abbreviated to DM-decomposition) [4], [5], [6], [7]. Then,
each time the parameter values are specified, the equations corresponding to the DM-
blocks may be solved either by direct inversion through LU-decomposition or by some
iterative method.

The above two approaches, the LU-decomposition and the DM-decomposition, are
two extremes in that the former admits arbitrary elementary row transformations on 4
and the latter restricts itself to permutations only. In other words, the LU-decomposition
regards the entries of 4 as numbers belonging to a field in which arithmetic operations
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are defined, whereas the DM-decomposition treats them as if they were symbols, or
indeterminates if one prefers algebraic terms. It is often the case, however, that part of
the entries of 4 are to be regarded as numbers and the remaining as symbols.

To be more concrete, suppose a system of linear/nonlinear equations

(1.3) f(x)=0

is to be solved by the Newton method. The equations may be divided into linear and
nonlinear parts as

(1.4) f(x) = Ox + g(x)

where Q is a constant matrix. Accordingly, the Jacobian matrix J(x) of f(x) is expressed
as

(1.5) J(x)= Q@+ T(x)

where T(x) is the Jacobian matrix of g(x). Then we may regard the nonvanishing entries
of 7(x) as independent symbols on which no arithmetic operations are expected, whereas
the usual elimination operations could be defined for the matrix Q.

Another typical example is a system of equations describing an electrical network,
which is made up of equations for conservation laws (i.e., Kirchhoff’s laws) and those
for element characteristics (see Example 3.1). The former, stemming from the topological
incidence relations in the underlying graphs, involve only +1 as the coefficients and
hence are amenable to elimination operations. The latter, on the other hand, consist of
coefficients which are contaminated by various noises and errors, and therefore may be
modelled as independent transcendentals.

The present paper aims at establishing a decomposition technique for systems of
linear/nonlinear equations such that the coeflicients are classified into two groups as
explained above. A canonical form is introduced for a matrix 4 of the form

Y
w6 (-2

where the entries of Q belong to a subfield K and the nonvanishing entries of T are
transcendentals (in an extension field F) which are algebraically independent over K. A
uniquely determined block-triangular form is obtained with the diagonal square blocks
being nonsingular; for a singular A4, rectangular blocks (corresponding to horizontal and
vertical tails in the DM-decomposition) also appear, both being of full rank. The decom-
position can be found by an efficient algorithm so that it can be applied to large-scale
practical problems, of which some examples are given in §4.

The relations of the canonical form of this paper to the decompositions for electrical
networks so far proposed (mentioned below), as well as to the combinatorial canonical
form of a matrix with respect to its pivotal transforms introduced by Iri in [14], is also
discussed in §5 and §7 with special reference to the admissible row transformations on
matrices.

There have been several combinatorial studies on the rank of matrices in relation
to splitting like (1.6); e.g., “2-block rank” of [13], matroidal characterization (see Theorem
3.1 below) of the rank of the matrix (1.6), and “Rank-Identity for mixed matrices” of
[28] (see [18] for their relations).

In the literature on electrical network theory, it has been known that a system of
equations describing an electrical network can be put into a block-triangular form if one
chooses appropriate bases (tree-cotree pairs) for Kirchhoff’s laws and rearranges the vari-
ables and the equations (for both Kirchhoff’s laws and element characteristics). As far



LAYERED MIXED MATRIX 125

as the present authors know, the decomposition of a pair of current-graph and voltage-
graph is investigated in [35], [36] in graph-theoretic terms for the networks involving
controlled sources. Based on the result of [42], a decomposition of those networks which
have admittance expressions was considered by Iri around 1979 [16] (see [17] for explicit
illustration) using the notion of minimum-cover in an independent-matching problem.
An incomplete attempt has been made by Nakamura and Iri [30], [31], [32] to define a
block-triangularization for a system of equations describing the most general class of
networks with arbitrary mutual couplings (such as those containing controlled sources,
nullators and norators) following the theoretical framework ([15], [19], [20], [29], [33],
[40], [41]) for the principal partition of matroids, or the decomposition of submodular
functions.

Then it is shown by Murota in the unpublished report [25], which may be regarded
as a preliminary version of the present paper, that (i) the method proposed by Nakamura
and Iri in [30], [31], [32] produces too fine a partition for a useful block-triangularization
of electrical networks, as will be demonstrated in §5 below; (ii) nevertheless, if one notices
an appropriate identity characterizing the rank of the matrix (1.6), the basic idea of [30],
[31], [32] can be modified to yield a block-triangularization for the electrical networks
treated there; and moreover (iii) the modified method can be used in obtaining a block-
triangularization for more general systems of equations like those mentioned above.

The canonical form defined in this paper has been obtained by establishing a new
identity (Theorem 4.2) for the rank of a matrix of the form (1.6) and by applying the
same decomposition principle as that in [30], [31], [32] to the relevant submodular
function appearing in the identity. However, once the canonical form is found for a
specific problem, it would be possible to describe it without explicit reference to sub-
modularity or the decomposition principle for submodular functions. In fact, it could
be described in a constructive manner in terms of an algorithm which is composed of
pivoting operations on a matrix and path-searching in a graph. It should be emphasized,
nevertheless, that the approach based on the general principle is heuristically effective,
affords a proper perspective, clarifies the relation among various techniques for block-
triangularization and suggests further meaningful extensions.

2. Preliminaries. Some results on the decomposition principle for submodular
functions [15], [19], [20], [29], [33], [40], [41] are briefly summarized here for later
references.

Let C be a finite set, and p:2¢ — R be a submodular function defined on it, i.e.,

2.1 pXUY)+pXNY)=pX)+p(Y)

for X, Y C C. (Throughout this paper, X C C does not exclude X = C.) The family of
those subsets of C which give the minimum of p will be denoted by L(p):

2.2) L(p)={X|XCC,p(X)=p(Y)forall YCC}.
From the submodularity (2.1), it follows that
XUY,XNYeL(p) forX,YeL(p).

In other words, L(p) is a (distributive) sublattice [2] of the Boolean lattice 2€. Note that
the length of a maximal chain in L(p) from min L(p) to max L(p)is uniquely determined.

By the structure theory of distributive lattices [1], [2], there exists a one-to-one
correspondence between sublattices of 2¢ and partitions of C into partially ordered blocks.
Furthermore, when a sublattice is derived from a submodular function as (2.2), “minors”
are induced on the blocks. To be more specific, the following is known as (a version of)
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Jordan-Holder type theorem for submodular functions. (The proof is straightforward;
see, e.g., [19].)

THEOREM 2.1. Let p be a submodular function defined on a finite set C, and L(p)
the family of minimizers of p. Put X, = min L(p) and X, = max L(p).

(1) Any maximal chain in L(p)

XOQXI G- ng
determines a family of intervals (difference sets)
{CiICi=/Yi\Xi— lsi= 13 ce 3r}9

which is independent of the choice of a maximal chain, and hence provides a unique
partition of C into disjoint subsets (blocks)

P = {CO;CI’ tte 9Cr;Coo}

where Cy = Xo and C,, = C\X,. (Cy and/or C, can be empty.)
(2) The “minors” of p defined by

(2.3) pi(Y)=pX;-,UY)—pX;-) for YCC;
(i=1, ---,r) are uniquely determined independently of the choice of a maximal chain
[32], [33].

(3) A partial order (<) is defined on P\{Cy, C,} by the relation
C;<C; iff C;CXeL(p)implies C;CX
where 1 = i, j = r. The partial order is trivially extended over to P by
G<C<XC, fori=1,---,r,

if Co and/or C,, are nonempty.
(4) The “minors” defined in (2) above are expressed also ns

(2.4) pi(Y)=p(CHUY)—p(Cp), YCdq,
fori=1,--- r, where

Note that a linear extension (=) of the partial order defined in (3) above can be
obtained by choosing a maximal chain in L(p) as in (1) and by defining the total order
on # by

C=¢C; iffi=j.

We write C;|<C; iff C; < C; and there exists no C{(#C;, C;) such that C; < C; < C;.

3. Mixed matrices and layered mixed matrices. Let K be a field, which contains
Q, the field of rationals, and of which F is an extension field:

3.1 QCKCF.

The set of m X n matrices over F is denoted as .#(F; m, n) or simply as .#(F).
A matrix 4 € .4 (F) can be expressed as

(3.2) A=0Q,4+ T,

in such a way that Q4 € #(K) and the nonvanishing entries of T, are in F\K. To make
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the decomposition unique, we will assume that (Q,); = 0 if (T4); # 0. If, in addition,
the collection of the nonvanishing entries of 7, is algebraically independent [43]
over K, the matrix A4 is called a mixed matrix with respect to K. We denote by
M AM(F/K; m, n) the set of m X n mixed matrices over F with respect to K. The notion
of mixed matrix is introduced in [27], [28] as a mathematical tool for dealing with
structural aspects of physical/engineering systems. See [28] for detailed discussion of its
physical meanings.

A subclass of mixed matrices is defined here. We call a mixed matrix 4 €
M MF/K; m, n) a layered mixed matrix with respect to K, if the sets of nonzero rows
of Q4 and T, are disjoint in the expression (3.2) for a mixed matrix 4, i.e., if 4 can be
put into a partitioned matrix of the form

e
(3.3) A= (_%_)

where Q € M(K; mg, n), T € M(F; mr, n) (mg + my = m), and the collection of
the nonvanishing entries of 7T are algebraically independent over K. The set of m X n
layered mixed matrices consisting of my + my rows as above will be designated by
ZL M(F/K; mgy, mr, n) or simply by Z.#4(F/K). Obviously we have

3.4 L MF/K;mg, mr,n) C MMF/K; mg+ mr, n).

Consider a system of equations (1.1) where the coefficient matrix A4 €
M M(F/K;, m, n) is of the form (3.2). Introducing an auxiliary vector w € R”, we can
express it equivalently as

(3.5) (—IZ,, (sz)(:) ) (:;)

It may be assumed that we can choose m numbers in F, say ¢, - - -, t,,, that are alge-
braically independent over the subfield of F to which the entries of 7, belong. Then,
multiplying each of the last m equations by the transcendentals ¢,, - - - , £,,, we obtain
an augmented system of equations
1 w b

( 3. 6) m QA — ,

-D,, D,T,)\x 0
(3'7) Dm = diag(tl s T tm)a

which is still equivalent to the original system (1.1). The coefficient matrix of (3.6) is a
layered mixed matrix with respect to K since the nonvanishing entries of [—D,,|D,, T,]
are algebraically independent over K. In the case of a system of linear/nonlinear equations
(1.4), the above transformation from (1.1) to (3.5) may be interpreted as assigning w to
the nonlinear part g(x) to obtain

(3.8) w+0Ox=0, -w+g(x)=0,

which is equivalent to (1.4).
In generall with a mixed matrix A € #.#(F/K; m, n) we will associate a layered
mixed matrix 4 € LM (F/K; m, m, m + n):

(3.9) ,i=( L Qs )
_Dm DmTA
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FIG. 3.1. A simple electrical network of Example 3.1 (from [30]).

where D,, is given by (3.7). Note that the column-set of A has a natural one-to-one
correspondence with the union of the column- and the row-set of 4. Since we have the
obvious identity

(3.10) rank A = rank 4 +m,

we may restrict ourselves to layered mixed matrices when we deal with the unique solv-
ability of a system of equations having a mixed matrix as its coefficient matrix.

For a matrix G over a field in general, we will denote by M(G) the linear matroid
[44] defined on the column-set of G with respect to the linear dependence of the column-
vectors. The rank of a layered mixed matrix 4 of (3.3) is known [44] (cf. also [9]) to be
expressed as follows in terms of the rank of the union M(Q) V M(T) of two matroids
M(Q) and M(T). Both M(Q) and M(T) are defined on the column-set, say C, of the
matrix A4, and their rank functions will be denoted by p and 7, respectively.

THEOREM 3.1. Let A € LM(F/K; mgy, mr, n) be a layered mixed matrix of the
form (3.3). Then

rank 4 = rank (M(Q) V M(T))

= min {p(X)+7(X)— |X|XCC}+n.

Proof. By the generalized Laplace expansion and the well-known identity for matroid
union. O

Note that the rank of the union of two matroids can be found by an efficient practical
algorithm either for matroid union or for matroid intersection [3], [8], [20], [42].

COROLLARY 3.2 [28]. Let A € M M (F/K; m, n) be a mixed matrix of the form (3.2).
Then

rank 4 = rank (M| Q) vV M(U,,| T.0)) — m.

Proof. Immediate from (3.10) and Theorem 3.1. O

Example 3.1 [30, Example 4.1.3]. Consider the free electrical network of
Fig. 3.1, which is taken from [30]. It consists of 6 resistors of resistances r; (branch i)
(i=1,---,6), and 3 voltage-controlled current sources (branch i) with mutual con-
ductances v; (i = 7, 8, 9); the current sources of branches 7, 8, 9 are controlled, respectively,
by the voltages across branches 2, 4, 5. Then the current & in and the voltage 7,
across branch i (i = 1, - - -, 9) are to satisfy the structural equations (Kirchhoff’s laws)
and the constitutive equations, which altogether are expressed as in (1.1) with x =
(El, toe 359;7’19 e sn9)9b=0and
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The unique solvability of the network reduces to the nonsingularity of the matrix A4.

It may be justified for physical reasons (see, e.g., [28]) toregard r; (i = 1, - -+, 6)
and v; (i = 7, 8, 9) as real numbers which are collectively algebraically independent over
the field of rationals. Then we have 4 € # . #(R/Q; 18, 18), and the unique solvability
of the network can be determined efficiently by Corollary 3.2. Or alternatively [17], [31],
[32], [37], [38], [39], we may directly apply Theorem 3.1 with Q being the upper 9 rows
of A and T being the lower 9 rows of A4, since we can put 4 in the form of a layered
mixed matrix by multiplying the lower 9 rows by independent transcendentals, just as
we did for (3.5) to get (3.6). This example will be taken up again in Example 4.2.

4. Combinatorial canonical form of layered mixed matrices. This section
defines a block-triangular canonical form for an m X n layered mixed matrix 4 €
L M(F/K; mg, mr, n) of the form (3.3), where m = mg + mr. For A of (3.3), we consider
the transformation of the form

(4.1) P,(SQ O)(Q)Pc
o PJ)\T

where Sg is an mg X mg nonsingular matrix over K (i.e., Sg € GL(mg, K)); Pr, P, and
P, are permutation matrices of orders my, m and n, respectively. The transformed
matrix of (4.1) also belongs to L (F/K; mgy, mr, n) and is equivalent to A4 in the
ordinary sense in linear algebra. We will say that two matrices are LM-equivalent if they
are connected by the transformation above. In the following, we will look for a canonical
block-triangular matrix among the matrices LM-equivalent to 4. The canonical form to
be considered should reduce to the DM-decomposition when m = mr and mg = 0.

Let R and C denote the row- and the column-set of A4, respectively; the former is
the disjoint union of the row-sets, say Ry and Ry, of Q and T

(42) R =RQURT.

For I C R and J C C, A[l, J] means the submatrix of A with row-set I and column-
set J.



130 K. MUROTA, M. IRI AND M. NAKAMURA

Theorem 3.1 states that the rank of A[R, J] (J C C) can be expressed by p(X) =
rank Q[Ry, X] and 7(X) = rank T[R7, X] (X C J). On account of the algebraic inde-
pendence of the nonvanishing entries of 7, the rank 7(X) equals the term-rank [34] of
T[Rr, X], which is known [44] to be expressed by the adjacency associated with T’
namely we have

(4.3) 7(X) = min {y(Y)+|X\Y|YCX}, XCC,
where
4.4) I'(Y)={i€R|T;#0 for some j€Y}, YCC,
4.5) v(Y)=Tr(Y), YCcC.

We consider two functions:
(4.6) pX)=p(X)+7(X)—|X|, XCC,
4.7) p,(X)=pX)+y(X)—1X|, XCC
Since 7(X) = y(X) by definition, we have the obvious inequality
(4.8) pX)=py(X).
These functions, however, share a common minimum value when restricted to 2’ for
any JC C.

LEMMA 4.1. For J C C, we have
min {p,(X)|IXCJ} = min {p,(X)IXCJ}.
Proof. From (4.6) and (4.3) it follows that
min { p.(X)IXCJ}
= min {p(X)— |X|+ min {v(Y)+|X\Y|YCX}|IXCJ}
min {p(X)+y(Y)—|Y[|YCXCJ}
min {p(Y)+y(Y)—|Y|YCJ}
min {p(Y)|YCJ}.

Il

Il

Combined with Theorem 3.1, this gives a characterization of rank 4 in terms of p and
v, instead of p and 7.

THEOREM 4.2 [25]. Let A € LM (F/K; mg, mr, n) be of the form (3.3). Then
rank A[R,J]= min {p,(X)|IXCJ}+|J|,

for J C C, where p,, is defined by (4.7).

The important fact is that p, :2 — R of (4.7) is submodular, and hence, as explained
in §2, its minimizer L(p,) determines a unique partition of the column-set C of 4 into
partially ordered blocks. To be specific, we choose (cf. Theorem 2.1 (1)) a maximal chain
in L(p,):

4.9) XogXig - gX,
to get the blocks:
(4.10) Co=Xo; Ci=X\X;_, (J=1,,n; Co=C\X,.

We define Cy < C; (resp. C; < C,) forj=1, - - -, rif Cp (resp. C,,) is nonempty.
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A partition {Rz;|j =0, 1, ---, r, o} of the row-set Rz of T is induced from (4.9)
naturally as follows:

4.11) Rpp=Yrn; Rp=Y\Yg;_, (j=1,---,1r; Ryy,=RA\Yrp,
where
4.12) Y7 =T7(X)) (j=0,1,---,n.

By this construction, we have T[Rp;, Cj] = 0 for i > j, i.e., the matrix T is already
essentially ““block-triangularized” with respect to the partitions (4.10) and (4.11). Intro-
ducing permutation matrices P, and Py, we can make T = P;TP, in an explicit block-
triangular form in the ordinary sense, where, however, the column-sets (resp. row-sets)
of T and T are identified with each other by the one-to-one correspondence through the
permutation P, (resp. Pr), so that T[Ry;, Cj] = T[Rgpi, Cj] (0 = i, j < o0). To be more
precise, we have the following.
LEMMA 4.3.

Rzj=Tr((C) UGN C)))
=THCN\T'7C))  (j=1,---,7)
where {C;) is defined by (2.5), and therefore
T(Rr;,C1=0 unless C;<C;.

Proof. Since X;_, X;(=X;_1 U C)), {C;) and {C;) U C; all belong to L(p,), we
have p,(X;_, U C) — p(X;-1) = p,({C;y U C) — p,({C}}) (=0). This implies, by sub-
modularity, that

(4.13) p(Xj- 1 U C) = p(X;-1) = p{CpU C) — p({C})),
4.14) YX;- 1 UG —v(Xj- ) = v CpU C) = v(Cp).

The latter is equivalent to [T'7(C)\I'+(X; - ;)| = [T+(CH\I'r({C;))|, which means Ry; =
THCNTH(C)) since Ry = THC\F7(X;_ ) and T(X;- ) D T7((CY). O

As for the matrix Q, it can be transformed to a block-triangular matrix Q with
respect to the partition (4.10) by the usual elimination operations; that is, for some
So € GL(mg, K), the row-set of 0 = SpQP, is partitioned into disjoint subsets
{Rgjli=0,1,---,r, 00} such that

|Rgol = p(Xo),

(4.15) IRgjl=p(X)—pX;-)  (j=1,---,7),
|Rgeol = |Rgl = p(X,),

and

(4.16) OlRy,C1=0  (0=j<is o).

By the same argument as the proof of Lemma 4.3 (by (4.13) in particular), we see
IRg;| = p({C;pU C) = p({C})
and we may further assume that

(4.17) OlRi,C]=0 unless C;< C;.
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We will put
J
(418) YQJ‘-_- U.RQ,' (j=0,1, ,r),
i=0
(4.19) )’j=YQjUYTj (j=0, 1, ,r),
(4.20) R;=Rp;URy; (j=0,1,---,r,00).

It may be noted that, if we require (4.16) only (not necessarily (4.17)), we can choose S,
to be expressed as

4.21) So=LoPg

where Ly € GL(mg, K) is lower block-triangular and Py is a permutation matrix.
Consider the matrix

T _ Q - SQQPc
(9)-(2)

which is LM-equivalent to A (under the transformation (4.1)). The row-set R =
RoURy of A, as well as the column-set C, is now partitioned into blocks
{Rilj=0,1,---,r, 00}, on which the partial order (<) on {Cj|j=0,1, -+, r, 00} can
naturally be induced.
THEOREM 4.4. Let A be as above, whose row-set R and column-set C are partitioned
into partially ordered blocks.
(1) A[R;, C]] = 0 unless C; < C; (1 = i,j = r). In particular,
(4.23) A[R;,C]=0 ifi>}].
A[R;, C1# 0ifCI<C; (1=i,j=r).
(2) |R| < |Colif Co #+ &,
Ile = |q| (>0)f0r] = la R £
|Ro| > |Colif Co, #+ .
(From the last relation follows a more symmetric but weaker statement:
Rl > Clif R # D)
(3) rank A[Y}, X]] = rank A[R, X]] = |Y}| (G=0,1,---,0.
(4) rank Q:[YQJ9 ij] = |YQ1| (.l=09 19 e ’r)a
rank I:[YTZI’/YI]z |YTJ| (j=0, 1 - ,r).
(5) rank A[R,, Co] = |Rol,
rank A:[Rj’ q] = |-Rj| = |C1| (>0) (.] = la T r)9
rank A[R,,, C,] = |Cql.
(6) Forj=0,1, - ,r, o, the submatrix A[R;, C;]] (¢ L4 (F/K)) is irreducible in
the sense that the submodular function p; (defined on C)), the correspondent of
D, of (4.7), has no minimizers distinct from & and C;.
Proof. (1): Immediate from Lemma 4.3 and (4.17).
@) If Co # &, then 0 = p(P) > min p, = p,(Co) = p(Co) + Y(Co) — |Col =
|Rol — |Col.
Forj=1, -, r, wehave p,(X;_) = p,(X)), ie.,

p(Xj— )+ v(Xj- ) = X 1| = p(X) + (X)) — X

By (4.11), (4.12), and (4.15), this reduces to |C;| = |R;|.

If C, # &, then p(C) > min p, = p(X,), which implies |R| — |C] Z p(C) +
iY(Cl’) T |C|'I > p(Xy) + v(X) — |X| = |Y,| — |X|. Hence |R,| = |R| — |Y,| > |C] —
X,| = [Col.
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(3): From (1) above and Theorem 4.2, we have rank A[Y;, X;] = rank 4[R, X;] =
rank A[R, X} = min {p,(X)IX C X;} + |X;| = p,(X)) + IX;| = p(X)) + v(X)) = |Yg| +
|Yg| = |Y;l.

(4): Immediately from (3) above.

(5): The identities for j = 0, 1, - - - , r are immediate from (1) and (3) above. By
Theorem 4.2, we have

rank A[R,,,C,,]=min {p(Z)|ZCC,} +|C,|
where ~
i’_oo(Z) =rank Q[RQoo’ Z] + IPT(Z) nRTool - |Z|°
On the other hand, this turns out to be nonnegative for Z C C,,, since
Pu(Z) = (p(X,U Z) — p(X)) + (v(X,U Z) — v(X,)) — | Z|
(4.24) =p(X;UZ)—-p,(X))
=p,(X,UZ)—min p,.

(6): First consider the case of j = co. Recalling X, = max L(p,), we see from (4.24)
that p,, has the unique minimizer Z = . The second case of j = 0 is easy, since
Po(Z) = p,(Z) has the unique minimizer Z = C,. The other cases (1 = j = r) can be
treated similarly using the expression

p;(Z) = rank Q[Ryj, Z]+|T+(Z)N Ry — 2]
=p,X;-1UZ)— min p,. O
This theorem shows that with suitable permutation matrix P,, P,A is a block-tri-
angular matrix which is LM-equivalent to 4. The ordering of the blocks is uniquely
determined in the sense of the partial order (<). The following states that it is the finest
block-triangular form that is LM-equivalent to A4.
THEOREM 4.5. The matrix P,A constructed above based on p, is the finest block-
triangular matrix that is LM-equivalent to A and enjoys the properties (2) and (5) of
Theorem 4.4.

Proof. Suppose that A4 is such a block-triangular matrix with the row-set R and the
column-set C being partitioned as

(4.25) R=U{R}|j=0,1, --- ,r, 0}, C=U{Cjlj=0,1,---,r, o0},

where A[R;, Cj] = 0 for i > j. Since 4 is LM-equivalent to 4, we have from Theorem
42

(4.26) rank 4 = min {p,(X)|IXCC} +|C|
with the same p, as for 4. Put

J

(4.27) Xj=UC (=0,1,---.r),
J

(4.28) Yj=UR, (j=0,1,---,r).

i=0
Since 4 is block-triangularized and has the property (5) of Theorem 4.4, we have
(4.29) rank A= |C|—|Xj|+|Y}|  (j=0,1,---,r).
Combining (4.26) and (4.29), we obtain
min p, =|Yj|-|Xj|  (j=0,1,--,7).
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This shows that
(4.30) XjeL(p,),

since p,(X}) = p(X)) + v(X)) — |X}] = |Y}| — |Xj| = min p,. Therefore, the partition
(4.25) is coarser than or equal to (or an aggregation of) {C;|j =0, 1, - - - , r, 00} determined
by L(p,). O o

Thus, the matrix P,4 with A constructed above provides the finest block-triangular
form among the matrices LM-equivalent to 4. It is named here the combinatorial canonical
form of a layered mixed matrix. It is obvious that it agrees with the DM-decomposition
when 4 = T (i.e., mg = 0). In parallel with the DM-decomposition, the rectangular blocks
corresponding to Ry X Cyand R, X C,,, if any, will be called the horizontal tail and the
vertical tail, respectively.

A comment on the algorithm will be in order. From the point of view of practical
application, it is important to note that this canonical form can be constructed by an
efficient matroid-theoretic algorithm that involves O(n® log n) arithmetic operations [3]
in the subfield K and O((m + n)*n) operations for graph manipulations, as follows.

To be specific, with 4 € L (F/K; mg, mr, n) having the row-set R = Rop U Rr
and the column-set C we associate a bipartite graph G = (Ry U Cp, C; E) defined as
follows. The vertex-set V of G is given by

4.31) V=RrUCUC
where Cg is a disjoint copy of C, and the arc-set E of G is defined as
(4.32) E={(i,j))€RrX CIT;#0} U {(jio,j)€Co X CljeC}

where j, (€Cp) denotes the copy of j (€C).

We consider the independent-flow problem [10] (see also [20]) on the network with
the underlying graph G (or an independent-matching problem [44]); the direct sum of a
free matroid on Ry and the linear matroid M(Q) on Cj, is defined on the entrance-set
R7U Cyp, another free matroid is attached to the exit-set C, and each arc of E has infinite
capacity. For U C V we put

(4.33) J=C\U, I=Rp\U, Kp=Cy\U.
Then the capacity x(U) of U is given by

|+ p(K)+|C\J| ifT(J)CIand JCK,
+00 otherwise,

(4.34) k(U)= [

where Ky (CCp) and K (CC) are corresponding copies. The family L (k) of the minimizers
of k, namely the family of minimum cuts, determines L(p,) by

(4.35) L(p,)={JCClJ=C\U, Ue L(x)}.

This shows that the desired partition of C for the combinatorial canonical form can
be constructed by first finding the maximum independent flow (or independent matching)
and then decomposing the auxiliary graph associated with it into strongly connected
components, among which the partial order can be induced. (To be more precise, the
column-sets C, and C,, are determined by those vertices of C (C}") which are reachable
to the exit and from the entrance, respectively.) See, e.g., [20] for detail. Example 4.1
below will illustrate this procedure.

Example 4.1. Consider the following matrix 4 € L #(F/Q; 3, 6, 7), where
{t:li =1, - -+, 13} are indeterminates over Q and F is the field of rational functions in
t’s over Q:



LAYERED MIXED MATRIX 135

1 23 4 5 6 17
1 00 1 0 1 -1
-2 01 -2 0 0 2
1 00 1 1 1 -1
(4.36) A= t b
£} I
ts te Uy
Iy ty to I
13P)
L3

The graph G for the associated independent-flow problem is depicted in Fig. 4.1. The
auxiliary graph for a maximum independent flow is shown in Fig. 4.2, which provides
the partition (4.10) of the column-set C of A:

(4.37) C=CGUC,UGUC,

where Cy = &, C, = {2,4, 7}, C, = {3}, C, = {1, 5, 6}; C (resp. C,,) consists of those
vertices of C which are reachable to s~ (resp. from s*), and C; and C, are determined by
the strong components of the subgraph of the auxiliary graph that is obtained by deleting
the vertices reachable to s~ or from s*. Notice C; < C,, (i = 1, 2), and that C, and C,
have no order relation with each other. The combinatorial canonical form of 4 is given
by

2.4 73|15 6
01 -1 1 1
t5 t6 0 t7
g ty 1 to
(4.38) 1 2
010
tt 0 1
t3 ta O
0 0 ¢
0 0 ¢35

FIG. 4.1. Independent-flow problem for Example 4.1.
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FIG. 4.2. Auxiliary graph associated with a maximal independent flow for Example 4.1.

Example 4.2. Recall the electrical network of Example 3.1. With the understanding,
mentioned in Example 3.1, that the coefficient matrix 4 of (3.11) can be considered a
member of L4 (R/Q; 9, 9, 18), the combinatorial canonical form of 4 is found as (4.39)
below.

It has empty tails (Cp = R, = &) and 9 square diagonal blocks with the column-
sets given by Cy = {n7}, Co = {m}, C3 = {£'}, Cs = {ms}, Cs = {mo}, Cs = {n6}, C1 = {£°},
Cs= {ns, &, £}, Co={£, m, &, m3, £*, ma, £, £*}. The partial order among them is
given by:

C] <C2<C3<C9;C4<C8‘<C9;C5<C6'< C7<C8.

o

m mlé'lmlmln«lf‘lns £ E"E’ n £ m £ m & 8
—1] -1 1 1

-tln
1 -1
-1 -1 1
~1 | =1 -1
-1 Te
1 -1
(4.39) 01 -1]1 1 1
-1 s 0
Y 0 -1
1 01 00 0 1 0
1 00 o0 1 0 1 1
0 -1 0 1.0 1 0 0
n -1 0 0 0 0 0 0
0 0 rn -1 0 0 0 O
0 00 0 r -1 0 0
0 v, 0 0 0 0 -1 0
0 0 0 0 v 0 -1

This example will be considered again in Example 5.2.
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We now consider how the combinatorial canonical form can be applied to an efficient
solution of a system of equations A(6)x = b(f) for varying values of parameters §. We
express the coefficient matrix as

(4.40) A0)= Q4+ T40)

and regard it as a mixed matrix, treating the nonvanishing entries of 7 4(6) as if they were
algebraically independent. As discussed at the beginning of §3, we may introduce an
auxiliary variable w to obtain the augmented system of equations (3.5) or (3.6) with the
layered mixed matrix 4 of (3.9) as the coefficient matrix. The combinatorial canonical
form of 4 determines a hierarchical decomposition of the whole augmented system into
smaller subsystems; we may repeatedly solve the subproblems with the diagonal blocks
as the coefficient matrices.

For the subproblems to be solved, the diagonal blocks of the combinatorial canonical
form of 4 must be nonsingular. If the assumption of the algebraic independence of the
nonvanishing entries of 7 () is literally met, the nonsingularity of the diagonal blocks
is guaranteed by Theorem 4.4(5). It is obvious, however, from the block-triangular struc-
ture that even if the assumption is not satisfied, the diagonal blocks must be nonsingular
if the original coefficient matrix A4 is nonsingular at all. Therefore the decomposition
procedure above can be carried out successfully if the original system is uniquely solvable
at all.

Each subproblem may be solved as follows. Let /I, be the coefficient matrix of the
Jjth subproblem. Its row-set is divided as (4.20) into Rp; and Ry;. Its column-set C; may
also be partitioned as

4.41) Ci=C,UCy

where C,; and Cy; correspond to part of the variables w and x, respectively. It is easy to
see, by the irreducibility of 4;, that

(4.42) IRzl Z|Cyyl If Rpy# D
(and |Gj| = 1 if Rz; = &) and that the submatrix A;[Ryj, Cy;lis of the simple form

- -1
(4.43) Aj[R7;, Cyl= ( 0 )

if R7; # & and C,,; # &, where I is the identity matrix of order |C,;|. Thus the subproblem
can be expressed as

Cy Cy
(4.44) RQj: o QO W; bj
-1 T x; ) = 0
RTj: 0 T2 0

where I_)j = b;(6) is to be computed from b(f) each time @ is given. On eliminating the
auxiliary variables w;, we obtain the system of equations

on+0)\ b;
(4.45) ( . )x,._(o)

in |C,;| variables. The amount of computation needed to determine x; in this way may
be estimated roughly by

(4.46) [R; | Cui | Coyl +1C /3.

Another approach may be conceivable that makes no distinction between w; and
x;. We may assume that the subsystem is given by
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Roji [ 1 z b,
(47 oiln )= (o)

Rn': T1 T2 z 0
where (z,, z,) is a rearrangement of (w;, x;). The Gaussian elimination procedure applied
to (4.46), possibly with permutations of rows in Rz;, can be done with at most

(4.48) IRz *|Ro,| + [Rz;*/3

arithmetic operations. _
The above considerations reveal that the matrix 4; contains an identity matrix of
order no smaller than max (|C,,|, |Rg;|) as a submatrix. Thus, we may adopt

(4.49) min (|Cyl, |Rz;])

as a rough measure for the substantial size of the subproblem.

Example 4.3. This example is based on the reactor-separator model (EV-6) of [45].
The system of linear/nonlinear equations to be solved involves 120 unknowns and as
many equations. The Jacobian matrix, denoted as A4, is sparse, containing 351 nonvan-
ishing entries. The ordinary DM-decomposition yields 4 nontrivial blocks involving more
than one unknown variable. The maximum size of the blocks is 25 (see Table 4.1).

Of the nonvanishing entries of 4, 172 numbers are rational constants (1 or —1) and
the remaining 179 entries are regarded here as algebraically independent numbers (in a
field F) over Q. That is, we consider 4 € 4 .#(F/Q; 120, 120). As explained above, we
may then resort to the combinatorial canonical form of the corresponding layered mixed
matrix 4 € L. (F/Q; 120, 120, 240) to obtain a decomposition of the augmented system
of equations with auxiliary variables (see (3.2) and (3.9)). The canonical form of 4 has
empty tails and yields 5 nontrivial blocks, the maximum size of which being equal to
17. (The canonical form of A has been found by a slightly modified version of the FOR-
TRAN program originally coded by M. Ichikawa [12].) In Table 4.1, three different
decompositions are compared, where the number of rows of the T-part of each block,
i.., |Rg;l of (4.11), is indicated in brackets. The third decomposition will be explained
in §5.

Example 4.4. The system of equations considered here is compiled in [12] from a
real-world problem that has arisen from the analysis of an industrial hydrogen produc-
tion system. It involves 544 variables and equations, and the Jacobian matrix 4 con-
sists of 1142 rational constants (1 or —1) and 322 other numbers which are regarded
here as algebraically independent transcendentals in F over Q. Then we have 4 €
M M(F/Q; 544, 544). The combinatorial canonical form of the corresponding layered
mixed matrix A € Z.#(F/Q; 544, 544, 1088), computed as in Example 4.3, has empty

TABLE 4.1
Block-triangularizations for Example 4.3.

DM-decomposition
of 4 Combin. canon. form of 4 (by p,) Decomposition of 4 by p,
size blocks size blocks size blocks
Cy C=C,+C[R7] C=C,+ Cy[R7]
25 1 17=8+91[9] 1 16=8+8(8] 1
10 1 15=6+9[6] 1 14=6+8[5) 1
9 2 14=4+4+101[9] 1 13=4+9 (8] 1
8=0+8[4] 1 8=0+8(5] 1
5=0+5[5] 1
1 67 1 181 1 189
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tails and contains 23 nontrivial blocks with more than one variable. The DM-decom-
position of 4 and the combinatorial canonical form of A are summarized in Table 4.2.
Note that the substantial sizes of the subproblems in terms of (4.49) are much smaller
than the block sizes of the subproblems obtained by the DM-decomposition.

5. Relations to other decompositions. The first subsection clarifies the relation of
the combinatorial canonical form to the decomposition considered in [30], [31], [32], as
well as to the ordinary DM-decomposition. The second subsection points out that for a
certain class of electrical networks considered in [16], [17], [42], the combinatorial ca-
nonical form gives essentially the same block-triangularization as the method proposed
in [16], [17] by way of the structure of minimum covers in an independent-matching
problem.

5.1. Decomposition by L(p,) and the DM-decomposition. It has been claimed in
[30], [31], [32] that a block-triangularization of systems of equations, such as (3.11), for
electrical networks is obtained by the principal partition associated with a matroid in-
tersection problem. The method of [30], [31], [32], which we term here the principal
partition of M(Q)* A M(T), is based on Theorem 3.1 and adopts the submodular function
p- of (4.6) to obtain a decomposition of unknown variables (i.e., currents and voltages
of branches in the case of electrical networks) into partially ordered blocks; that is, the
principal partition of M(Q)* A M(T) for a layered mixed matrix (3.3) is the partition
of the column-set into partially ordered blocks produced by the lattice L(p,) (the family
of minimizers of p,) according to Theorem 2.1. This method, however, provides too fine
a partition for a block-triangularization, as is demonstrated below (see also Example 5.2).

Example 5.1. Consider an electrical network consisting of two separate branches
with mutual coupling given in terms of admittances. This network is described by the
matrix (cf. (5.5)):

1
1
A= |27 I
-1 y2l y22
TABLE 4.2

Block-triangularizations for Example 4.4.

DM-decomposition
of A Combin. canon. form of 4 (by Dy)
size blocks size blocks

Cx C=Cy+C,[Rd]

104 1 114 =75+ 39 [75] 1
28 1 24 =15+9[15] 1
23 1 18=10+8[10] 1
14 1 14=8+6 [8] 1
10 5 6=4+2[4] 1

8 1 4=2+212] 15
6 7 2=1+1[1] 3
4 2
3 9
1 240 1 846
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where ¢ and »; are the current in and the voltage across branch i (i = 1, 2). The family
of minimizers of p, is given by

L(p)={D,{m}, {m2}, {m,m}, {E",m,m}, {E% nm}, {5 m,ma} )

and therefore the principal partition of M(Q)* A M(T) based on p, yields the partition
of C = {£', £2, n,, n,} into 4 singletons with the partial order given by {n,;} < {&}
(i,j = 1, 2). However, it is clear by inspection that {n,, n,} cannot be split. On the other
hand, the method using p, gives the partition C = {£'} U {£2} U {n,, n,} with the partial
order {ny, m} < {£} (i = 1,2).

In the following, we compare the decompositions induced by the two submod-
ular functions p, of (4.6) and p, of (4.7) associated with a layered mixed matrix 4 €
L M(F/K; mg, mr, n) of the form (3.3). Remember that L(p) is defined in (2.2) as the
family of minimizers of p:2¢ — R and that L(p) is a distributive sublattice if p is sub-
modular.

LEMMA 5.1.

(1) pX) = p,(X) for X C C.

(2) min p, = min p,.

(3) L(p,) D L(p,).

(4) For X € L(p,) there exists Y € L(p,) such that Y C X.

(5) min L(p,) = min L(p,).

Proof. (1) and (2): Given in (4.8) and Lemma 4.1.

(3): Immediate from (1) and (2) above.

(4): Let Yo(C X) be a minimizer of min {y(Y) — |Y||Y C X} = 7(X) — |X|. From
(2), we have min p, = min p, = p(X) + v(¥o) — | Yol Z p(¥o) + v(¥o) — | Yol = p,(Yo),
i.e., Yo € L(p.y)

(5): This follows from (3) and (4) above. (]

In view of the correspondence between the distributive sublattices and the partition
into partially ordered blocks (§2), this lemma shows that the decomposition of the column-
set C (i.e., the set of variables) by the principal partition of M(Q)* A M(T) is finer
(including the partial order) than that of the combinatorial canonical form of the present
paper. In other words, the column-set of each block of the combinatorial canonical form
is an aggregation of the blocks of the principal partition of M(Q)* A M(T). It is indicated
by Lemma 5.1(5), however, that the column-sets of the horizontal tail are identical in
both decompositions.

In Theorem 4.5 we have seen that the decomposition of C based on p., provides the
finest block-triangular form under the equivalence transformation of the form (4.1). By
a similar argument it can be shown that the principal partition of C associated with
M(Q)* A M(T) leads to the finest block-triangularization with the property (5) (as well
as (2)) of Theorem 4.4, under a wider class of transformations of the following form:

Sy 0\(0
2 oo s)7)

where Sy € GL(my, K); S7 € GL(mz, F); and P, and P, are permutation matrices of
orders m and n, respectively.

This type of transformation, however, does not seem natural and would be different
from what is intended in considering a hierarchical decomposition of a system into
subsystems. Recall, for instance, the matrix 4 of Example 5.1. Since its column-set is
decomposed into singletons by L(p,), it can be put into a triangular form by the trans-
formation (5.1) with S7 = (3%)”!, which could be determined only after the parameter
values y¥ are fixed. This simple example would demonstrate that the transformation
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(4.1) is more suitable in practical situations than (5.1), and hence p, is more appropriate
than p,.

Note that the transformed matrix (5.1) no longer belongs to £.#(F/K; mg, mr, n).
This suggests that the block-triangularization by the principal partition of M(Q)* A
M(T) is more adequate when considered for a broader class of matrices. This issue will
be discussed in §7.

Let T'4 and T’y be defined as (4.4) respectively for 4 and Q. As is well known, the
DM-decomposition is induced by L(ppm), where

(5.2) PomX) =[TX)|~|X]  (XCO).
Since |T4(X)| = [To(X)| + ITHX)| Z p(X) + v(X), we have
(5.3) pX)=ppmX)  (XCO).

THEOREM 5.2. If A (¢ #(F/K)) is nonsingular, then

min p, = min p, = min ppy =0
and
L(p,) D L(py)2DL(pow)-

Proof. The relations between p, and p,, follow from Lemma 5.1. By Theorem 4.2,
the assumption is equivalent to min p, = 0, which, combined with (5.3) and ppu() =
0, yields min ppy = 0. The inclusion L(p,) DO L(ppw) is then evident from (5.3). O

Example 5.2. This is continued from Examples 3.1 and 4.2. As given in [30], the
principal partition of C = {¢/, n;|i = 1, - - -, 9} associated with M(Q)* A M(T) consists
of 10 blocks; the block Cg = {ns, £°, £°} of the combinatorial canonical form in Example
4.2 splits into two blocks {ns} and {£°, £°}. It should be mentioned that, as opposed to
the claim of [30], the unknown variables {£°, £°} cannot be determined independently
of ns even after the variables of Cy = {£2, n,, £, 03, £%, 14, &7, £8} are fixed.

Example 5.3. For a singular matrix the canonical form is not a refinement of the
DM-decomposition. Consider, e.g., the matrix

1 2 3 4
1 1 1 1
111

G4 A_0011’
0 0 1 1

which may be thought of as a member of Z.#(F/Q; 4, 0, 4) (F O Q). The canonical
form consists of tails only; Cp = {1, 2, 3, 4}, |Ro| = 2, C,, = &, |R,,| = 2. On the other
hand, the DM-decomposition evidently decomposes 4 into 2 square blocks.

Example 5.4. For the problem of Example 4.3 the decompositions based on p, and
p, are compared in Table 4.1.

5.2. Decomposition for electrical networks with admittance expression. In general,
an electrical network can be described by the structural equations and the constitutive
equations among currents £’ in and voltages 7; across the branches (cf. Example 3.1).
When the branch characteristics are given in terms of self- and mutual-admittances Y,
the coefficient matrix 4 of the system of equations in (£, n) takes the form:

& 1
D 0
(5.5) A= 0 R




142 K. MUROTA, M. IRI AND M. NAKAMURA

where D and R are the fundamental cutset and circuit matrices respectively. If the non-
vanishing entries of Y are assumed to be algebraically independent over Q, the trivial
transcendental scaling of the constitutive equations brings it into the class of £ #(R/
Q). In this extended sense, we will regard 4 as a member of Z.#(R/Q) of the form (3.3)
with

(5.6) o-(? 9 T=(-1 Y)
’ 0 R)’ ’
The column-set C of 4 of (5.5) is the disjoint union of two copies, say B; and B,,
of the set B of branches; i.e.,

(5.7) C=B,UB,.

This allows us to identify the Boolean lattice 2¢ with the direct product of 2% and 2%
It may also be noted that the row-set of Y is identified with B;, while its column-set
is B,,.

The decomposition of C proposed in [16], [17] is as follows. Let u(I) and »(I) denote
the rank and the nullity of the arc set J(CB) in the underlying graph. Obviously, we have

(5.8) wB\J) = v(J) = J| + u(B).

The nonsingularity of 4 of (5.5) can be formulated [42] in terms of an independent-
matching problem on the bipartite graph representing Y, where the matroid with rank
function p is attached to both B; and B,. Put

5.9 H = {I,J)\ICB;,JCB,,IDTyJ)}
where I'y is defined for Y as in (4.4), and
(5.10) P D) =)+ w(BN\)—u(B)  (ICB,JCB,).

Note that (1, J) € A iff (I, B,\J) is a cover of Y, and then p,(I, J) + u(B) is the rank of
the cover in the independent-matching problem. The set of minimizers of p,|s, the
restriction of p, to J#, is denoted simply as L(p,), i.e.,

(5.11) L(p)={U,))e #|p1,J)= l’f;;n Dubs

which is a sublattice of 25 X 28 ~ 2€ (cf. (5.7)), and hence determines a decomposition
of Cinto partially ordered blocks. We call this the decomposition by the minimum covers
of the admittance matrix.

The rest of this subsection is devoted to establishing Theorem 5.4 below, which
implies that the combinatorial canonical form for A4 of the particular form (5.5) gives an
essentially identical block-triangularization with the one provided by the decomposition
by the minimum covers of the admittance matrix.

From (5.8) and (5.10) we see that

(5.12) P, J)= p)+v(J)—|J| (ICB;,JCB,).
On the other hand, p, of (4.7) for 4 of (5.5) is written as
5.13) PAIUTY=p(IUD) +[TUT ()|~ 1UJ]
=) +u(J))-J|+ITyUN|  (ICB,,JCB,),
since the rank p of M(Q) is equal to u + ». Combining (5.12) and (5.13), we obtain
(5.14) P, (IUJ)=p, (I, J)+|Ty(I\| (ICB;,JCB,).
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LEMMA 5.3.
p, IV =p,J) for(,J)eH,
p,IVT)>p L, J) for(I,J)EH .

Proof. From (5.14) it follows that p,=p,, where the equality holds iff
ryw)ClrL O

THEOREM 5.4.

(1) min {p,(JUJ)IC B, JC B,} = min {p,, J)|(I, J) € H}.

2) L(p,) D L(p,).

(3) {(JC BIC B, TUJ € L(p,)} = {JC B,|(I, ) € L(p,)}.

Proof. (1): By (5.13), we have

(5.15) min p, = min {min {u(I)+|Ty(J)\ |ICB;} +v(J)— I |JCB,}
= min {u(Ty(J)) +»(J)— [J|JCB,},

since min {u(I) + |T'y(J/)\I||I C B;} = min {u(J) + |[Ty(/)\ I C Ty(J)} = w(Ty(J)).
This establishes (1) when combined with the rather obvious relation

min p, = min {u(J) +v(J)—|J|IDTy(J),JCB,}
(5.16) H
= min {u(T'y(J)) +»(J)—J[|JCB,}.

(2): Immediate from Lemma 5.3 and (1) above.

(3): From (5.15) and (5.16) it is easy to see that the families on both sides of (3)
agree with the minimizers J(CB,) of w(T'y(J)) + »(J) — |J|. O

Theorem 5.4(2) shows that the decomposition method of the present paper applied
to (5.5) yields a finer partition of the variables {£, n} than the decomposition by the
minimum covers of the admittance matrix. However, the difference is not substantial,
since, as indicated by Theorem 5.4(3), they provide the identical partition for the voltage-
variables n which play the primary role in (5.5); the current-variables £ are only secondary
as they are readily obtained from 5 by means of the admittance matrix Y. In this way,
we may say that they give essentially the same decomposition. The following exemplifies
that the inclusion in Theorem 5.4(2) is proper in general.

Example 5.5. For the following matrix

g2 m om

(5.17) 7 . JR— ,

the combinatorial canonical form based on L(p,) decomposes {£', £2, n,, 0.} into 4
singletons with the partial order:

{m}<{m}<{&'}, {m}=<{£}

The decomposition by the minimum covers of Y, on the other hand, gives the partition
into two blocks as

{52,712} < {Sl,m}-

6. Block-triangularization of mixed matrices. In thissection, we consider the block-
triangularization of a mixed matrix A = Q4 + T4 € M M(F/K; m, n) of (3.2) under the
transformation
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6.1) SAP,=S(Q4+ THP,,

where S € GL(m, K), and P, is a permutation matrix. It is derived from the combinatorial
canonical form of the associated layered mixed matrix 4 € LA (F/K; m, m, m + n)
of (3.9).

Let C, = {wy, -+, wp} and C, = {x;, * -+, X,,} be the row-set and the column-set
of A, respectively; the column-set C of A is then identified with C,, U C,. Suppose that
the transformation (4.1) with Sy € GL(m, K), and Pr, P, and P. permutation matrices
gives the combinatorial canonical form of 4 with the partition of column-set C =
U{Gjlj=0,1, -, r, o} and the row-set R = U{R;|j =0, 1, - - -, r, 0}. Asin §4, 0 =
SolllQ4)P. and T = Pr[~I|T,]P, are block-triangularized, i.., Q[Rg;, Cj] = 0 and
T[.RT,', q] =0 fori> j, where Rj = RQJ' U RTJ‘.

Put C,; = C,,N Cjand Cy; = C; N C;, and notice that the row-set Ry of T is in one-
to-one correspondence with C,,. With this correspondence in mind, we have seen in
(4.44) that Ry; D C,,jif Ry # .

LEMMA 6.1. Suppose wi € R1\C,,(CC\,). Then {wy}, as a subset of C, constitutes
a block, say C;, in the combinatorial canonical form, where Rr; = &, |Roi| = 1, and it
is an immediate successor of C;, that is, Cj|< C; = {wy}.

This lemma shows that {C; = Ry U Cy, j € J*}, where J* = {0, o0} U
{jlt =j=r Ry UCy # I}, gives a partition of C, which is coarser than
{Cili=0,1, ---,r, oo} and on which the partial order is induced from that on {C;} by
the natural order homomorphism. Let us denote by { R;|j € J*} the corresponding partition
of R; ie, R; = Ro;U {Rgi|C; C Ry;\C,;} U Ry;. Then, by the construction, we have
IRTjI = |ij| and

(6.2) TRz, Cu)=—1

where Ry; = Ryjand C,; = C, N C;.

Since {C;} and {R;} are aggregations of {C;} and {R;}, respectively, we have
QlRyi, Cj] = 0 and T[Ry;, C]] = 0 for i > j. If we choose St = Q[Rg, C,], we see that
the matrix Q + Sy T is block-triangularized with respect to {C;} and {R;}, and that its
submatrix corresponding to column-set C,, is the zero matrix. Denote by A the submatrix
of O + SrT corresponding to the column-set C,. In view of the identity:

(6 3) Im ST SQ Im QA _ SQ—STPT SQQA""STPTTA
' 0 I, PrJ]\-1,, T, —Pr PrT, ’

this means that the block-triangular matrix 4 is obtained from A by the ad-
missible transformation of the form (6.1), since we have S, = SyPr, and A=
(SoQu4 + STPrT)P, = So(Q4 + T4)P. = SuAP,, where P, is a permutation matrix.

Thus we have obtained a block-triangular form of a mixed matrix 4 under the
transformation of the form (6.1). Note that the partition of the column-set C, of 4 is
induced from that of the combinatorial canonical form of the corresponding layered
mixed matrix A. It is easy to see from Theorem 4.5 that this is the finest block-triangu-
larization under the transformation (6.1). Note, however, that the obtained matrix no
longer belongs to # .4 (F/K; m, n) in general. See [24] for more details.

It has been shown in [23] that if 4 € .# .#(F/K; n, n) satisfies det 4 € K\{0}, then
there exist permutation matrices P, and P,, a lower triangular matrix L € GL(n, K) and
an upper triangular matrix U over F such that P, AP, = LU. This result can be derived
easily from the present construction if one notices (4.21).

Example 6.1. Consider the mixed matrix 4 = Q4 + T, € M M (F/Q; 5, 5) given by
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X1 X2 X3 X4 Xs

Wy 1 1 t 1 1

-l—=1 =1 1 ¢t

Wy! 3
(6.4) A=ws: 0 0 1t &5 1
Wa: O 0 0 0 1

ws: |tz g 0 O

where {f;|i = 1, ---, 8} are indeterminates over Q, and F = Q(#;, - - - , f5). By the
combinatorial canonical form of the associated layered mixed matrix A €
LME/Q; 5, 5, 10) of (3.9), we see that

S 0 1 o
elo 7] L 2ln

X1 X2 Ws W Wy X3 X4 W3 Xs W4

11 1 1
Ws: t7 tg -1
_______ l —— -
(6.5) 1 1 1 1 \
|
= Wyp: -1 0 ¢ 0 : t
Wy 0O -1 O [£) \
|
W3! 0 0 I 15 -1 e
) 1
Lo
1 1
Wy -1
where
0 0 0 01
1 0 0 0O
(6.6) S=(1 1 0 0 O
0 01 0O
0 0 010

The column-set C of 4, identified with {w,, - -+, ws} U {x;, - - -, x5}, is divided into
six nonempty blocks: C; = {x;, X2}, C2 = {ws}, C3 = {w1, wa, X3, X4}, Cs = {ws},
Cs = {xs5}, Cs = {W4} (Co = C,, = &) with the partial order:

C1<C2; C3<C4, C1<C3<C5<C6
The aggregated partition {C;|j € J*} is given by J* = {0, w} U{lL,3,5,6} C =
CiU G = {xi, x, Ws} Cs = C3U Cy = {x3, Xa, i, W, w3}, Cs = Cs = {xs}, Cs =

Cs = {ws} (and C, = C,, = Q).
Then the followmg block-triangular form is obtained, where P, = I

X1 X2 X3 X4 Xs
;7 I3
1 1| 4 1 b

(6.7) SAP.= h+l 41|86

s ts 173
1




146 K. MUROTA, M. IRI AND M. NAKAMURA

7. Extensions and remarks. It has been mentioned in §5.1 that the principal partition
of M(Q)* A M(T), which corresponds to the transformation (5.1), should be considered
in a wider class of matrices than Z.#(F/K). Let F, be an intermediate field of F/K,
K C Fy CF, and consider a matrix A € .#(F; m, n):

[
(7.1) A—(— %_),

such that (i) Q € M (K; my, n), (i) T = O, T, € M(F; my, n) where Q, € M (Fy; mr, n)
and T, is a diagonal matrix of order n with its diagonal entries being algebraically
independent numbers in F over F,. The class of such matrices 4 will be denoted by
L €(F/Fo/K; mg, mr, n). It should be noted that 4 € L4 (F/K; mg, mr, n) belongs to
£ €(F/Fo/K; mg, mr, n) for some Fy, but not conversely.

It is known that the identity given in Theorem 3.1 still holds for 4 € £ €(F/F,/K)
with p and 7 being the rank functions of .#(Q) and .#(T) for the submatrices in (7.1).
Therefore, the partition of the column-set C based on L(p,), followed by appropriate
row transformations, brings about a block-triangular form with the properties (1) to (5)
of Theorem 4.4. Note that the block-triangular form is obtained from 4 by means of
the transformation (5.1), where we may assume without loss of generality that S €
GL(mr, Fy), and hence the transformed matrix remains in £ €(F/F/K).

The considerations above naturally suggest an extension to multi-layered matrices
of the form

Ao
(7.2) a=|

Ay
such that

Ao€ M (K; myo, n),

A= Qi T;€ M(F;;m;, n) @i=1,---,k),
where
(1.3) KCF,C---CF,

is a sequence of field extensions, Q; € #(F;_ ; m;, n), and T; € #(F;; n, n) is a diag-
onal matrix with its diagonal entries being algebraically independent over F;_,

(i=1, -+, k). Then, by Theorem 3.1, the rank of A4 is expressed in terms of the rank
functions p; of the associated matroids M(4,) i =0, 1, --- , k) as

(7.4) rank 4 = min {p(X)IXCC}+n

where

(7.5) PX)=po(X)+pi(X) + - - - + p(X) — |X|.

Based on L(p), we can obtain a block-triangular canonical form with the properties (1)
to (5) of Theorem 4.4 under the transformation

So Ay
Sy A,

(7.6) P, t. TP
Sk Ax
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where Sy € GL(my, K); S;€ GL(m;, ¥;_ ) (=1, --- , k); and P, and P, are permutation
matrices.

The canonical form for multi-layered matrix introduced above seems to have a
natural meaning for electrical networks involving multi-ports, which have been inves-
tigated in [37], [38], [39]. To be specific, consider an electrical network consisting of k
multi-ports, each of which is described by a set of equations with coefficient matrix A4;
(=1, .-, k). Let Ay denote the matrix (over Q) for Kirchhoff’s laws. Then the coefficient
matrix for the whole system is written as (7.2) (cf. Example 3.1), and the permissible
transformation (7.6) reflects the locality in the sense that we can choose an appropriate
description for each device. Furthermore, the assumption of the algebraic independence
among different devices would be fairly realistic.

Without the hierarchy of fields (7.3), we may likewise consider the block-triangu-
larization based on p of (7.5) for a matrix of (7.2). That is, we may define a canonical
form for a matrix 4 of (7.2) with 4; € 4(F; m;, n) (i = 0, 1, - - - , k) under the transfor-
mation (7.6) with S; € GL(m;, F) (i = 0, 1, - - -, k). In this case, however, the diagonal
blocks are no longer guaranteed to be nonsingular. Two special cases may be worth
mentioning. The one is the case where k = 1 and 4y = A4;. Then the transformation
(7.6), in which we may assume S, = S|, yields the combinatorial canonical form of a
matrix with respect to its pivotal transforms introduced in [14]. The other is where A4 is
nonsingular. Then it has empty tails and the square blocks must necessarily be nonsingular.

The combinatorial canonical form introduced in this paper should prove to be a
useful tool in the structural analysis of systems. For example, it is reported in [26] that
it plays a central role in deriving a necessary and sufficient combinatorial condition for
the structural controllability of a dynamical system described in the so-called “descriptor
form™: Fdx/dt = Ax + Bu, where the entries of F, A and B are assumed to be classified
into accurate and inaccurate numbers in the sense of [28].

- Finally, we mention the possibility of parametrizing the function p,, as

p(X; e, B)=ap(X)+By(X) - |XI, XCC.

According to the general framework [19], we then obtain a finer partition of the column-
set of a layered mixed matrix. The significance of such a decomposition is yet to be made
clear.
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BOUNDS ON THRESHOLD DIMENSION AND
DISJOINT THRESHOLD COVERINGS*

PAUL ERDOSt, EDWARD T. ORDMAN+tt AND YECHEZKEL ZALCSTEINt

Abstract. The threshold dimension (threshold covering number) of a graph G is the least number of
threshold graphs needed to edgecover the graph G. If tc (n) is the greatest threshold dimension of any graph of
n vertices, we show that for some constant A,

n—AVﬁlog n<tc(n)<n—\/r_1+ 1.

We establish the same bounds for edge-disjoint coverings of graphs by threshold graphs (threshold partitions).
We give an example to show there exist planar graphs on n vertices with a smallest covering of 4n threshold
graphs and a smallest partition of Bn threshold graphs, with B = 1.54. Thus the difference between these two
covering numbers can grow linearly in the number of vertices.

Key words. threshold graph, threshold dimension, threshold partition, graph partition
AMS(MOS) subject classifications. 05C, 68E

1. Preliminaries. By a graph G = (V, F) we mean a finite set V" of vertices and a
collection E of edges: distinct unordered pairs of distinct vertices. A subgraph of a graph
G is a subset V’ of V together with a subset E’ of E that consists only of edges between
vertices of V. An induced subgraph of a graph is a subset of the vertices together with
all edges of the original graph that connect those vertices. For further notation see [6].

If x is a vertex of a graph G, the star of x is the subgraph consisting of x, the edges
containing x, and the other vertices contained in those edges. A stable set of vertices
(also called an independent set) is a set of vertices which induces no edges. A dominating
set of vertices is one such that every vertex in the graph is connected to at least one of
them by an edge. If a single vertex is a dominating set, it is called a dominating vertex.
To build a cone on G means to add a new vertex to ¥ and connect it to all other vertices
by edges.

Threshold graphs were introduced in [2], [3], [8]. A graph is a threshold graph if it
meets one of the following equivalent conditions:

a) It does not have as an induced subgraph a square (Cj), two disconnected edges
(2K,) or a path of three consecutive edges (Ps).

b) The vertices can be labelled with integers /(v), and there is an integer constant
t (the threshold) such that a set {v;, v,, ---, v} of vertices is stable if and only if
)+ -+ + (v <t

c) The vertices can be labelled with integers /(v), and there is an integer constant ¢
(these numbers may be different than those in (b)) such that any two vertices x and y
are connected by an edge if and only if /(x) + I(y) = ¢.

d) Every induced subgraph of G, including G itself, has at most one nontrivial
component (there may be isolated vertices) and this component has a dominating vertex.

Since every edge of G is, taken by itself, a threshold graph, every graph G may be
covered by threshold graphs. The smallest number of threshold subgraphs (not necessarily
induced subgraphs) of G that cover G is called the threshold dimension of G; we will also
call it the threshold covering number of G and denote it by tc (G). From an applied
perspective, tc (G) is the smallest number of semaphores needed to synchronize a system

* Received by the editors October 29, 1984; accepted for publication (in revised form) April 23, 1986.
+ Memphis State University, Memphis, Tennessee 38152.
} The work of this author was partially supported by National Science Foundation grant DCR-8503922.
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of parallel processes definable by the graph G using PV-chunk synchronizing primitives
[8]; alternatively, it is the smallest number of 0-1 simultaneous linear inequalities which
can replace such a system of linear inequalities represented by G; see [3], [7], or [6, Chap.
10]. For other prior results on tc (G), see [3].

Two subgraphs of G are called edge-disjoint (or simply disjoint) if they have no
edges in common. Since the covering of a graph G by its edges is a covering by disjoint
threshold graphs, it follows that for every graph there is defined a unique integer tp (G),
the disjoint threshold dimension or threshold partition number of G, the smallest number
of edge-disjoint threshold graphs that will cover G.

Since every threshold partition is a threshold covering, tp (G) 2 tc (G). One goal of
this paper is to begin exploring the questions, when is tp (G) = tc (G)? How different can
they be? For example, for some corresponding results for clique coverings and clique
partitions, see [1].

It should be noted that while it is easy to determine if G is a threshold graph (that
is, if tc (G) = 1), determining tc (G) is in general NP-complete [3]; in fact, it is NP-
complete to test if tc (G) = 3 [10] or even if tc (G) = 2 [4].

LEMMA 1. If G is a triangle-free graph, tc (G) = tp (G).

Proof. As observed in [2], if G contains no triangle, every threshold graph con-
tained in G is a star. Suppose G is covered by k stars S, S,, - - -, Sk. Define S’ = S,
S5 =8, — Sy, and in general S} = S; — (S, U --- US;_y) for j = 2 to k. Clearly the
various S are disjoint stars and cover G, so tp (G) = tc (G) as required.

2. The size of a required threshold covering. In [3], Chvatal and Hammer raise the
issue: how big need tc (G) be? They prove [3, Thm. 3] that if «(G) is the size of the largest
stable set in a graph G with » vertices, then tc (G) = n — a(G) with equality holding if
G is triangle-free (and in some other cases). They also observe [3, Cor. 3A] that for every
positive ¢, there is a graph G on n vertices with tc (G) > (1 — &)n. In fact, the proof of
their Corollary 3A shows more than this. We restate it as follows:

THEOREM 1. There is a constant A such that for large enough n there is a graph G
with n vertices and

tp (G) =tc (G)>n—A Vn log (n).

Proof. In [5], Erdés shows that for a sufficiently large fixed constant 4, there is an
integer N such that for n > N there is a graph G on » vertices with no triangle and with
no stable set of 4 Vn log (n) vertices. Thus tp (G) = tc (G), and

a(G)<AVnlog(n) and tc(G)>n—AVnlog(n)
as desired.
This shows that there are graphs with relatively large values of tc (G). We now turn
to improving the upper bound on tp (G).
THEOREM 2. Let G be an arbitrary graph on n vertices. Then

tp (G)<n—Vn+1.

Proof. Suppose there is a stable set 4 in G of size Vnoor larger. Then Theorem 3 of
[3] points out that the stars on ¥V — A provide a covering of G by no more than n — Vn
threshold graphs; Lemma 1 above shows how to make this a threshold partition.

Now by contrast suppose that no stable set in G has as many as Vn elements. Pick
a vertex z in G; let x;, -+ -, x; be a maximal stable set in the star of z; hence k < Vn.
For each x;, in turn, we construct a graph T; consisting of all edges starting at x; together
with any triangles including the edge (z, Xx;); omit from this any edges included in a
previous T; to keep the T;’s disjoint. (To see that T is threshold, use definition (c). Label
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x; with 4; z with 3; any vertex which neighbors z and x; but no previous x;, j < i, with
2; other points adjoining x; with 1. Let t = 5.)

We have now constructed k edge-disjoint threshold graphs which cover the union
of the stars of the k + 1 vertices z, x;, - - , Xx. Delete the covered edges from G. This
eliminates at least k + 1 vertices. Since it deletes an edge only when deleting at least one
vertex on it, the reduced graph G’ cannot have a bigger independent set than G had.

Reduce G’ by choosing a new z. At each stage, we eliminate k + 1 vertices by
covering them with k threshold graphs;

k Vn

k<Vn so ——<
k+1 Vnt1

and the total number of graphs needed to cover all # vertices is not greater than

nyn
Vn+1

which completes the proof of Theorem 2.

We now let tc (n) denote the largest tc (G) for any G with » vertices; tp (G) is defined
similarly. The above results show that

n—AVﬁlog(n)<tc(n)<n—V;+l

<n—V_ﬁ+1

and
n—AVﬁlog (n)<tp (n)<n—V§+ 1.

It remains of interest to tighten these bounds, and to know whether the limits for tc (#)
and tp (n) are actually the same. A private communication from Janos Pach [9] improves
the upper bound in each case to n — Vn log » for triangle-free graphs only.

3. The difference between tc (G) and tp (G). Since the bounds we have established
for tc (G) and tp (G) are identical, it is reasonable to ask whether tc (G) and tp (G) are
ever very different. Our object in this section is to show that tp (G)-tc (G) can grow
proportionally to the number of vertices n in G, even if G is a planar connected graph
or a very highly-connected graph of low diameter.

We will make heavy use of a threshold graph H constructed as follows: consider six
vertices Xi, * ** , X¢ and connect x; and x;if i + j = 7. Note that the deletion of the single
edge x,x; would make it cease to be threshold since then xsx;x,x3; would be an in-
duced path.

Example 1. Let Gy be the graph made by taking two copies of H and identifying
the two copies of x,, x3, and the edge between them. This graph is shown in Fig. 1; it is
planar. Clearly tc (Gyo) = 2, since it is covered by two copies of H. The reader may verify
that tp (Gyo) = 3; two graphs in the partition are a copy of H and a path x4x3x,. The
proof that there is no partition into two threshold graphs hinges on the fact that x,x;
would have to be in the same graph as one “wing” x;x¢; the side of Gy lacking x,x3
cannot then be covered by one threshold graph.

The reader may also wish to verify that Gy is a critical example; deleting an x,x¢
from G results in tc = tp = 2, deleting any other edge yields tc = tp = 3.

The graph G may be used to build various examples in which the difference between
tc (G) and tp (G) grows linearly in the number of vertices or edges of G. For example, if
G’ is the disjoint union of r copies of Gy, tp (G") = 3r and tc (G") = 2r. This example
may be made planar and connected by joining successive copies Go together at the
“wingtips” (identify an xs of one Gy with an x5 from another). To build more highly
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X 6
.G X4 X4 ~
X4 Xg
X3

F1G. 1. The graph Go.

connected (but nonplanar) examples, we use the following lemma motivated by a dis-
cussion with V. Chvatal:
LEMMA 2. Let G denote the cone on the (arbitrary) graph G. Then

tc(G)=tc(G) and tp(G)=1tp(G).

Proof. Any threshold covering of G’ induces a (no larger) threshold covering of G
since an induced subgraph of a threshold graph is a threshold graph. Given a (disjoint)
threshold cover of G, we obtain a (disjoint) threshold cover of G’ by picking any threshold
graph D in the cover of G and enlarging it to include the new vertex of G’ and its star in
G'. That the enlarged D remains a threshold graph is easily seen by definition (d) of
threshold graphs; the new vertex of G’ is a dominating vertex in the enlarged version
of D.

Using this lemma, we can create an arbitrarily highly connected graph with
tc = 2r, tp = 3r, by taking G and erecting a cone on it as many times as desired (that
is, add 5 new points all connected to all original points and each other, to make it
5-connected).

It is now clear that there is a constant ¢; such that a graph G on # vertices can have
tp (G) — tc (G) = ¢,n. How big can ¢, be? Example Gy shows it can be at least 75. What
upper bound can be put on tp (G) — tc (G)? We know it cannot exceed #n — Vn— 1, but
we believe this can be improved. Finally, can tp (G)/tc (G) ever exceed 3? If so, how big
can it be?
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CHANGE OF BASIS FOR PRODUCTS OF
ORTHOGONAL POLYNOMIALS*

STEPHEN BARNETTY

Abstract. Given two sets of orthogonal polynomials & = { p,(\)} and {g;(\)}, simple procedures are given
for expressing the products Ap;(A), Ngi(A), pi(M)g;(N) and g;(\)¢;(\) in terms of the basis 8. The main computations
involved are multiplications of vectors by a tridiagonal matrix. The results are based on a previous theorem for
determining the product of two polynomials both expressed relative to 48.

Key words. orthogonal polynomials, matrix methods
AMS(MOS) subject classifications. Primary 42C05; secondary 15A99

1. Introduction. Consider a set 2 = { p;(\)} of orthogonal polynomials defined by
the usual formulae

(1.1) poM)=1,  pN)=ar+ B,

(1.2) Pi(N) = (oA + B)pi— 1(N) = viDi - 2(N), i=2,3, -+,
with o; > 0, and let

(1.3) a(N)=pu(N) +a1pn- 1N+ -+ + anpo(N)

be an nth degree generalized polynomial expressed relative to the basis 48. It has been
shown in a previous paper [2] that if

(1.4) b(N) =pm(N) +b1Dm - AN+ -+ +bup(N),  m=n

is a second generalized polynomial, then the product a(\)b(\) can be determined relative
to 4 by carrying out some very simple operations involving the N X N tridiagonal matrix

1 -
B 1 0 0
(23] 241
Y2 B 1 0 0
[0 5) [0 5) ol
- 1
0 RE} _‘83. —

a3 a3 Qa3

(1.5) A=

0 ) —Bn-1 1
0N -1 AN -1
N —Bn
(27 oy

It is convenient here to record this result in the following form:
LEMMA. The product of (1.3) and (1.4) is

m+n-—1

PnemN)+ 2 wipi(N)
m i=0

Qo oy,

(1.6) a(\)b(\) =

Opt+ 1042 """ Opy

* Received by the editors November 20, 1985; accepted for publication (in revised form) April 23, 1986.
+ School of Mathematical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, England.

155



156 STEPHEN BARNETT

where
(1°7) [anul"",um+n—l]=Rm+l+b1Rm+"'+mel

and R; is the ith row of the matrix a(A), in which A has order N = m + n. Furthermore,
these rows are given by

(1’8) Rl:[an’an'—l’"'9al9190".'9O]
and
(1.9) Ri=Ri_(ai-1A+Bi—1I)—7vi-1Ri -2, i=2,3,---

where I denotes the unit matrix of order N, and v, = 0.

In this paper it is shown how the products N'p;(N), Ng;(N), pi(M\)gj(A) and g;(N)g;(N),
where {g;(\)} is a second set of orthogonal polynomials, can all be expressed in terms
of 4. The results (Theorems 1 to 5) are all derived from the lemma, and so involve only
simple vector-matrix multiplications of the type occurring in (1.9). Throughout, no con-
versions of polynomials to power form are required. Some numerical examples emphasize
the simplicity of the approach and also illustrate how sequences of products of increasing
degrees are obtained.

The methods presented in this paper are more straightforward than those of Salzer
[9]-[11], and form part of a continuing programme on the algebraic manipulation of
generalized polynomials using matrix techniques [1]-[7].

2. The product A'p;(\). In the lemma set a(\) = N and b(\) = p;()) to obtain:
THEOREM 1. Let the (j + 1)th row of A’ be
2.1 Pj+1,i=[Vo, V1,02, =+ ,UN_4].
Then the product N'p;(\) is given by
i+j

22 NN = Z v,  i+j=N
k=0

where Vi+j = 1/0[j+ o7 Ollei +] = N.

Notice that when i + j = N the leading coefficient in (2.2) has to be modified from
that in (1.6) with m = j, n = i since a(\) = \ is not monic relative to 2. Note also that
the case i = 1 is trivial, since the expression for Ap;(\) can be obtained directly by rear-
ranging (1.2) in the form

(2.3) AiN) =[pj+ (M) = B+ 10i(N) + v+ 1D - 1N/ j 4 1.

The rows in (2.1) can be computed iteratively by a formula of the type (1.9), which
here becomes

(2.4) pj+ 1= pjii(aA+ B I)—vjpj— 1, Jjz1

and the first row of A’ can be conveniently determined from the following scheme. Write

(2.5) N= 3 tapi—(\)
k=0
in which ¢;,0 = 1/a o5 -+ ;. Then

i
(2.6) Nt =3 1 Api— N
k=0
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and substituting (2.3) into (2.6) and equating coefficients of terms in p;(\) gives
(2.7 (ivvivtstivris o stiva] =i tii—1, - S tioldiv1
where A4; denotes the i X i leading principal submatrix of 4. Since from (1.1)
1 B
A= (—)pl(x)— (—‘)po(x),

[+7] [+3]
repeated use of (2.7) enables the coefficients 7 in (2.5) to be determined fori = 2,3, --- .
By Theorem 1 with j = 0, we then have

(2.3) p1i=[ti, tii—1, = , 0,0, - -+ ,0].

Example 1. Throughout the illustrative examples in this paper the basis £ will
consist of the Legendre polynomials P;(\), for which
2i—1 i—1

(2'9) o i s Bi=09 ’Yiz——i——’ ig 1.

Let N = 5, so that from (1.5) and (1.9) we can write
B 1 1 [}
0 1101010]

[}
i o:%io:o
_———— |
(2.10) A= |0 2 oigio
00 2 0,4

The submatrices A4,, A3, A4 are indicated within (2.10) by dashed lines. Since
A = P;(N), (2.7) with i = 1 gives

[t22,2211= 10,114, =[},0]
so that
1

a0

2

1
A2 = 5Po()\) + P(\) = %Po()\) + EPz()\)

and from (2.8)

pP12= [%’05 %3030]-
Applying (2.4) with i = 2 produces

p22=p124=10,%,0,3,0],
p32=p2BA) — $p12=[%,0,31,0,33],
pa2 = p3(3A) — 3p22=[0,35,0,%,0],
so that from Theorem 1 with i = 2, j = 3 we obtain

AP\ = %P,(x) +2PO),

2

2 _Z
APy(N) T

11 12
Py(N) + Epz(k) + §§P4(>\),
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6 23 1
2 == =2 —_
APy(N) 35 PN+ 5 P\ + e Ps(M),

and 1/0(46!5 = %%.
For the next step, return to (2.7) with { = 2 to obtain
[t33, t329 t3l] = [%s 03 %]A3 = [03 %, 0]
so that
1

[231e%1e%]

3 2
A3 = %Pl()‘) + P\ = -S-Pl(X) + gpz.()\)

and hence
P13 = [O,%, Oa%sO]

Applying (2.4) with i = 3 produces p,3 and ps3, leading to the expressions for NP\
and A3P,()\); and so on.

3. Change of basis. Suppose that a second set of orthogonal polynomials go(}),
a1(\), g¢2(N), - - - is defined by

(3.1 qo(N) =1, @GN =8 At e,
(3.2) gi(A) = (A + €)gj - 1(N) — dgj - 2(N), Jjz2
with ¢; = 0 and §; > 0. We wish to express a given generalized polynomial
=2 fig:(N)
i=0

in terms of the basis 4. This has applications to the evaluation of integrals [8], [12]. It
is sufficient to consider the case f{\) = g;():
THEOREM 2. The first row ey; of g;(A) is generated by

(3.3) ej=e;j—1(0jA+el)—je -2, j=2

with ey = ey, the first row of I. Moreover, if

ei=[wo,wi, - ,wy_1]
then
J
(3.4 g\ = 2 wipdN),  J=N
k=0

where w; = 6162 e 3N/¢X1a2 ¢ 4 lfj = N.
Proof. Replace A by A4 in (3.2), multiply the resulting identity on the left by e, and
use the fact that g;_ (4) commutes with A, to obtain
e1gi(A) = e\gj - (AN6;A + 1) — pjeg; - o(A)

which is the desired expression (3.3), since e;; = e,g;(4). The formula (3.4) then follows
by setting a(\) = g;(A) and b(A) = 1 in the lemma. Again, a modification is necessary

when j = N since gy(\) is not monic with respect to 4. O
Notice that ey is the first row of 6,4 + ¢, I, namely
(3'5) [fl_alﬁl/al,al/alsoso’ e 30]

which corresponds to the obvious expression

qi(N) = (€1 — 6181/ )Po(N) + (81/a)pi(N).
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Example 2. Let the set {g;(\)} be the Hermite polynomials H;(\) for which
H(AN)=2M\06,=2,¢ =0, ¢; = 2(i — 1). From (3.5) the first row of H,(A4) is
e = [Oa 2a 09 07 O]‘
From (3.3) the first row of H,(A) is, using A4 in (2.10),

(3.6) ez =e11(24) —2e10=[-},0,5,0,0]

whence by (3.4) Ho(\) = —3Py(\) + $P,(\). Continuing this process gives
e13 = e12(24) — 4e;; =[0,—%,0,%,0],
Hy\)=—%P(\) + PN,
e =e(24) —6ei=[—4,0,—45%,0, 4%,

Hi(\) = =3P\ — 5 P(N) + 45 PV,

and finally
e;s=e14(24)—8e;3=[0,5 % ,0,— 448 ,0],

Hy\)=%P() — 2P0 + B Ps(N)

since for Hs(N), ws = §;0,030405/aic20300405 =%, where the «; are defined in Ex-
ample 1.
In fact, if we write

J
(3.7 4N = 2 qupN)
k=0

then it is easy to obtain a recurrence formula for the coefficients g;. Comparing (3.4)
and (3.7) shows that
(3.8) e =gjoer +gpex+ - tg;ey
where ¢; denotes the jth row of . When (3.8) is substituted into (3.3), we need the fact,
seen by inspection of (1.5), that

1
(3.9) ekA='(;c('Ykek—l_ﬁkek+ek+l), kz1.

Now replace eyj, e;,;—; and e, ;—, in (3.3) by the expressions obtained from (3.8). On
using (3.9) and equating coefficients of ¢, , ; we obtain

0; 0ivk 0; Bk
(3.10) ij——qj -1+ +ij—-1,k+l_¢ij—2,k+(fj'_ Sk ] qi- 1k
Ok +2 O + 1

and this five-term recurrence formula is identical to one given in [12]. However, our

rederivation of (3.10) is interesting since it implies that Theorem 2 can be regarded as a
convenient form of (3.10) for computational purposes.

4. Change of basis for products. The original lemma shows how the prpduct
D:(M)p;(N) can be expressed in terms of . We now extend this to the products Ng;(\),
pi(M)g;(N) and ¢;(N)g;(N).

THEOREM 3. If ey; is as defined in Theorem 2, and

elei': [anxla et 9xN—1]
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then
) i+j
4.1) Ngi(N) = 2 XD, i+j=N
k=0

where X; ;= 8162 -+ * /ooy -+ an ifi+j=N.

Proof. In the lemma set a(\) = N'g;(A) and b(\) = 1 to obtain (4.1) from (1.6), again
taking care that when [ + j = N the leading coefficient in the sum is appropriately
modified. O

THEOREM 4. The ith row of e; of q;(A) satisfies the relation
4.2) ei=e—1j(ai-1A+Bi-1I)—vi-1€i-2, iz2

with e; defined in Theorem 2. Moreover, if

e+ =[yo, ¥, ", ¥n-1]

then
i+j

4.3) piNg(N) = 2 yDr, i+j=N
k=0

where y;.; = 06182 -+ /a2 - anifi+j=N.

Proof. Since g;(A) is a polynomial in A, the recurrence formula (4.2) follows im-
mediately from (1.9). Setting a(\) = g;(\) and b(A) = p;(M) in the lemma reduces (1.6)
to (4.3), with an appropriately modified leading coefficient when i + j = N. O

THEOREM 5. Let e'; denote the row vector consisting of the first i + 1 elements of
ey, and let B denote the (i + 1) X N matrix consisting of the first i + 1 rows of g;(A). If

eiB=[z0,z1, ** ,zn-1]
then
it
4.4) aMNgN) = 2 zpe(N), [+j=N; i=j
k=0

where Zitj = (5162 ce 6,‘)(5152 te 6j)/0£10(2 Tt Ay lfl +] = N.

Proof. Setting a(\) = g;(\)g;(\) and b(A) = 1 in the lemma shows that the desired
expression (4.4) for g;(A\)g;(\) is obtained from the elements in the first row of the matrix
qi(A)g;(4), in other words from e,,q;(4). However, since g;(\) has degree i, Theorem 2
implies that only the first i + 1 elements of e,; are nonzero, so that product e,;g;(4) can
be replaced by that in the statement of the theorem, where B consists of the rows ey;,
€, " 5 €it1,j- O

Notice that to construct e;; in Theorem 5 required (i — 1) applications of the re-
currence formula (3.3), and to construct the rows of B requires (j — 1) applications of
(3.3), followed by i applications of (4.2). The recurrence formulae thus need to be used
a total of 2i + (j — 2) times, which explains why in general in Theorem 5 it will be
preferable to take i < j.

The results in Theorems 4 and 5 are particularly appealing because of the rather
nice way in which the recurrence formulae for the two sets of orthogonal polynomials
are intertwined via (3.3) and (4.2). As with all the procedures presented in this paper,
the main computational effort arises only from the multiplication of row vectors by the
tridiagonal matrix A4, and the algorithms are simpler than those in [11].
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Example 3. Continue with the Hermite and Legendre polynomials of Example 2.
Using e, in (3.6) and 4 in (2.10) we can readily compute

e12A2 = [12—59 921 909 35
so by (4.1)

NHy(N) = 5Po(N) + 31 Po(N) + 35 Pa(N)

and similarly
o enA*=10,3%,0,%,0]

giving

NHy(\) = EPi(N) + 52PN +FPs()
since in Theorem 3 x5 = 6,6,/ 130405 = 33, where the o;and §; are defined in Examples
1 and 2, respectively.

Next, from (4.2) and (3.6) we obtain the second row of H,(A4)
€= e12A = [03 %9 09 %’ 0]
so from (4.3)
PAVH(N) =3P\ +EP().

Returning to (4.2) with i = 3, 4 and j = 2 we obtain
en=3end—ten=[3%,0,%,0,%],
en=3end—}en=[0,3%,0,%,0]

so by Theorem 4 we obtain, respectively,
PAVHAN) = 15Po(N) + 51 Po(N) + 55 P4(N),
POVH(N) = 5PN +FE PN +GPs(N)
where the last term comes from 6,0,/ asas = %.

The procedure can be continued, using (4.2) with j = 3 and ¢35 in Example 2, to

obtain e,3 and e3; and hence the expressions for P;(A\)H3(\) and Po(A)H3(N).

Finally, to illustrate Theorem 5 we consider the product H,(A\)H3(\). We need to
evaluate

4.5) ey | exn

where from (3.6) €', = [-2, 0, 8], e3 is given in Example 2 and e,; and e33 are determined
as just described above. The product (4.5) is then found to be [0, —%2, 0, —3}2, 0], so
from (4.4)

Hy(\H3(N) = —%Pi(\) — 32 P;(\) + Z£Ps(N)

where the last coefficient is 5152616253/0[10[2(13(14(15.
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ON FOUR PROBLEMS IN GRAPH THEORY*
ELLIS L. JOHNSON}{ AND SEBASTIANO MOSTERTS}

Abstract. The four problems considered are: the Chinese postman problem, the co-postman problem, the
odd cut problem, and the odd circuit problem. Relationships are developed between these problems using results
from dual matroids and blocking clutters. Connections with Gomory’s group problem are shown. The notion
of representations of these binary group problems on augmented graphs is developed along with a discussion
of the class of augmented graphs having the same solution set. After some blocking and duality results, we give
forbidden augmented minors for problems of one type (e.g., Chinese postman) to be also a second type of
problem (e.g., odd cut). Some results are given on b-regular problems and are used in the forbidden augmented
minor characterizations.

Key words. Chinese postman problem, graphs, matroids, duality
AMS(MOS) subject classifications. 05B35, 05B40, 05C50

1. Four problems. A graph is an undirected graph, G = (¥, E), which may not be
connected and which may have duplicate edges, loops, and isolated nodes. That is, an
edge e € E is an unordered pair of nodes e = [i, j] with i, j € V but with no restrictions
on what pairs of nodes constitute the edge set. Let c:E — R, be a nonnegative cost
function. We refer to c(e) as the cost of edge e. The cost of a set S of edges is defined to
be 2 c(e) summed over e € S.

Problem 1. In the Chinese postman problem we are given a cost function ¢ and a
given subset of the nodes U < V, called odd nodes. Before stating the problem, let us
define the degree d;(.S) of a node i for a subset S of edges to be the total number of times
an edge e € S includes the node i. A loop e = [i, i] includes the node i twice. Then, the
Chinese postman problem is to find a minimum cost subset .S of edges such that d;(S)
is an odd integer for i € U and an even integer otherwise. A set .S of edges satisfying the
above condition on d;(S) is called a postman set. In order that there exist a postman set,
every connected component must be even, that is, must contain an even number of odd
nodes. We make that assumption in order to avoid having to consider infeasible problems.

The original version of this problem came from the problem of finding a minimum
cost postman tour in a graph. A tour of a graph is a path, not necessarily simple, which
returns to its origin. A postman tour is a tour which uses every edge at least once. The
problem of finding a minimum cost postman tour, following the Mei-Ko Kwan devel-
opment [10], is equivalent to the special case of the above described problem where the
graph G is connected and odd nodes U are those nodes having odd degree for the entire
edge set E. Then, the edges e € S'in a postman set are the edges which have to be traversed
twice in a postman tour. In fact, if the edges in a postman set are duplicated in the graph,
then the resulting graph has an Euler tour, because it has even degree and is assumed to
be connected, which is the desired postman tour of the original graph. There is a good
algorithm [1] for solving this problem.

Problem 2. The odd cut problem has the same data given as for the Chinese postman
problem: a cost function c(e), e € E, and a designation of a subset U of the nodes as odd
nodes. Define a cuf to be a set of edges whose removal from G would increase the number
of connected components and which is minimal with respect to this property. Define an
odd cut to be a cut which has a nonempty intersection with every postman set, for the
same designated set of odd nodes. Otherwise, a cut is an even cut. Alternatively, we could

* Received by the editors August 28, 1985; accepted for publication (in revised form) May 9, 1986.
+ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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call a cut an odd cut if its removal leads to an infeasible Chinese postman problem, that
is, one with an odd connected component (an odd number of odd nodes). Then, there
are necessarily two odd components. The odd cut problem is to find a minimum cost
odd cut. Padberg and Rao [12] gave a good algorithm for solving this problem. Their
method involves finding a minimum cut and then changing it to an odd cut.

Problem 3. For the co-postman problem, we are given a subset D of the edges E,
called odd edges. The edges in E\D are even edges. The problem is to find a minimum
cost subset S of edges such that in the remaining graph, with edge set E\S, there are no
odd circuits, where a circuit is a node-simple tour and an odd circuit is one containing
an odd number of odd edges.

When every edge of G is considered to be odd, then the co-postman problem is to
remove a minimum cost set of edges so that the remaining graph is bipartite (has no odd
length circuits). This problem is equivalent to finding a maximum weight bipartite
subgraph of a graph and is known to be an NP-complete problem [5].

Problem 4. The odd circuit problem is, simply, to find the minimum cost odd circuit
in a graph, where odd circuit is defined as in Problem 3. This problem has a good algorithm
[5] by contrast with the co-postman problem.

The main purpose of this paper is to establish connections between these four problem
classes and to investigate their intersections. As a preliminary, the Chinese postman and
co-postman problems can be restated in a more symmetric fashion.

Let us consider first the Chinese postman problem. The degree constraints as given
in Problem 1 can be thought of in terms of cuts. Each node defines a cut, namely the
edges meeting the node, provided the node is not a cut node. The degree constraints,
then, say that the subset S of edges must meet certain odd cuts (those given by one odd
node) an odd number of times and must meet certain even cuts (those given by one even
node) an even number of times. The set .S will then meet every odd cut an odd number
of times and every even cut an even number of times. However, there is another way to
define a postman solution. Take any spanning forest, that is, a spanning tree of each
connected component. Then each edge f of the spanning forest can be associated with a
cut consisting of the edge f'and every edge in that connected component whose insertion
into the tree causes a circuit containing the edge f. The edges f whose associated cut is
an odd cut form a postman set, but in fact the problem can be defined as a problem of
finding a set of edges which meets these odd cuts an odd number of times and these even
cuts an even number of times. The edges f of the spanning forest whose associated cut
is odd form a particular postman solution, and the odd cuts are precisely those cuts
containing an odd number of the edges of the particular postmen solution.

In a similar way, for any spanning forest the edges out of the forest form a circuit
when adjoined to the forest. Some of these circuits are odd (if they contain an odd
number of odd edges) and the rest are even. The out-of-forest-edges which form odd
circuits are a co-postman solution, and we obtain an equivalent co-postman problem by
considering them to be the odd edges. That is, every odd circuit (using the original odd
set of edges) will contain an odd number of edges of this particular co-postman set and
every even circuit will contain an even number of edges of this particular co-postman
set. The co-postman solutions are those sets of edges which intersect correctly (even or
odd) these circuits formed by out-of-forest edges.

Thus, we see a duality in that the Chinese postman problem requires an even or
odd intersection with a fundamental set of cuts whereas the co-postman problem requires
edge sets having even or odd intersections with a fundamental set of circuits. However,
the Chinese postman problem is better understood both from an algorithmic and poly-
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hedral point of view, and in fact the co-postman problem is, in general, hard to solve.
Somehow, intersections with cuts give an easier problem than intersections with circuits.

Mei-Ko Kwan [10] showed that one can get from one Chinese postman solution to
any other by a sequence of interchanging edges in the solution and not in the solution
around a circuit. In the previous terminology, we can interchange odd and even edges
around a circuit and get the same problem, and any designation of odd edges giving the
same solutions can be reached in this way. For co-postman problems [3], odd and even
edges are interchanged on a cut.

2. Binary group problems and binary clutters. Gomory’s development [4] of the
group problem relates to these problems in that each of our four problems can be viewed
as special cases of the group m%,. They were posed in that way by Gastou and Johnson
[3]. We first review their development.

A binary group is the group m%, whose elements can be represented as all 0-1
vectors of length m with addition taken modulo 2. For a subset .# of the elements of
mE.,, let M be the 0-1 matrix with » rows and a column corresponding to each element
g € M. The binary group problem is to minimize ct subject to

Mt=b(mod?2), t= 0 and integer,

where c is a nonnegative real n-vector of costs, M is an m X n 0-1 matrix, b is a m-vector
of 0’s and 1’s, and ¢ is an n-vector of variables.

A binary group problem is a Chinese postman problem when M is the node-edge
incidence matrix of a graph. In order to pose the other problems as binary group problems,
we need to develop some duality notions.

Any binary matrix M can be brought to standard form [I N] by pivot steps using
modulo 2 addition; that is, by elementary row operations consisting here of adding (mod-
ulo 2) some rows to other rows. Any rows consisting of all 0’s can be deleted. For an
augmented matrix [M | b], we bring it to standard form without pivoting on the b-column:
[IN] B]. The columns in I are called basic columns. If any row is all 0’s except in the
b-column, then the corresponding binary group problem is infeasible. Thus, for any
feasible binary group problem, we can bring it to this standard form. For a Chinese
postman problem in standard form, the columns in the identity I correspond to edges
of a spanning forest of G, the right-hand side  tells which of those edges in the spanning
forest should be equal to one in a postman solution, and the columns of N have entries
of one corresponding to edges in the spanning forest in the circuit formed by adjoining
an edge out of the forest to the forest.

The dual matrix to M = [I N] is the matrix M* = [NT I] of size m* X n where
m* = n — m. It has the property that every row has inner product zero with every row
of M.

A matrix M is graphic if it can be brought to the form of a node-edge incidence
matrix of graph by elementary row operations. Alternatively, it is graphic if in standard
form [I N] there is some forest with edges corresponding to column of I such that the
columns of N correspond to paths in the forest. There is a forbidden minor characterization
of Tutte [15] for graphic matrices. A matrix is co-graphic if it is the dual of a graphic
matrix. The co-postman problem is precisely the binary group problem with constraints

M*t*Eb*

where M* = [N Iis cographic. The columns in I correspond to edges out of a spanning
forest and the columns of N7 correspond to cut sets in the graph. We thus obtain a co-
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postman problem by taking the dual of a graphic matrix and any right-hand side unrelated
to the odd nodes of a postman problem.
The dual of an augmented matrix [M | b] = [I N | b] is the matrix

NT 1 0
M* b* —_
per=3r o | ]
In this form, the right-hand side b* = (0, ---, 0, 1)T is basic, and the binary group
problem
M*t* = b*

is feasible if, and only if, the original b is not all 0’s. The form above, with the right-hand
side b* is the basis, is called right-hand form, as compared to standard form. Of course,
we could pivot on the bottom row to bring the right-hand side out of the basis.

For a given binary group problem with constraints

t= 0 and integer, Mt=b(mod 2),
we get another problem, called its blocking problem:
t*=0 and integer, M*t* =b* (mod 2),

where [M* | b*] is the dual matrix of [M | b]. The odd cut problem is the blocking
problem of the Chinese postman problem, and the odd circuit problem is the blocking
problem of the co-postman problem [2].

We now turn to another way of representing these problems: binary clutters. 4
clutter is simply a family of nonnested sets. Given any family of sets, we can always form
a clutter from it by removing all sets which are supersets of other sets in the family. That
is, the minimal sets in any family form a clutter. Given a clutter Q of subset of E, its
blocking clutter [2] is Q* defined by

OQ*={A*cE|A*NA+# I forall A€ Q,
and 4* is minimal with respect to this property}.

It is clear that the blocking clutter of the blocking clutter is the original clutter.

A clutter Q is called a binary clutter if the cardinality of 4 N A* is odd for every
A € Q and A* € Q¥ its blocking clutter. Obviously, Q is a binary clutter if and only if
Q* is. Lehman [7] gave several results on binary clutters, and Seymour [13] named them
binary clutters and gave additional characterizations of them including a forbidden minor
characterization. Lehman’s prototype was source-to-sink paths as members of Q and
source-sink separating cuts as member of Q*. Lehman [8] refers to the members of the
clutter as ports of a matroid.

Lehman’s results [7] are in terms of binary matroids, not binary group problems.
His results can be restated as follows. Given a binary group problem with augmented
matrix [M | b], form the 0-1 matrix Q of the minimal rows among all rows that are
formed as row sums of M, taken modulo 2, such that the corresponding sum in the right-
hand side column b is 1. This Q is a 0-1 matrix whose rows are incidence vectors of a
binary clutter and every binary clutter is formed in this way. The blocking clutter is the
clutter formed in this way from the blocking problem of [M | b]. These results are due
to Lehman [7], but a development of them in this form can be found in [3].

We now give an example illustrating the four problems and their binary clutters.
Consider the graph shown in Fig. 1. The Chinese postman problem (for odd nodes 1, 2,
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4, 5) has constraints Mt = b where [M | b] is the augmented matrix in Fig. 1. In standard
form, it and its blocking problem (in right-hand form) are

1 11 0 1 1 0
0 1 0
1 1 1 1 0
1 1 1 1 1
Their associated binary clutters Q and Q* have incidence matrices
111 ] - 7
1 1
1 1 1 1
1 1 1 1 i R 1
o= |1 1 1 , O*=
1 1 1
1 1 1
1 11
L ! L 1 1 1 1
1 1 L i

The above binary clutters are blocking clutters that are the odd cuts and the postman
sets (solutions to the Chinese postman problem). We see that the rows of the clutter
matrix Q of odd cuts are solutions to the blocking problem [M* | b*], i.e., the odd cut
problem, and the rows of the clutter matrix Q* of postman sets are solutions to the
original problem [M | b], i.e. the Chinese postman problem.

The co-postman problem and its blocking problem are defined by the augmented
matrices [M | b] and [M* | b*]

1 1 1 0

1 1 1 1 1 1 0
[11 1 1 1 1 0
1 11 1 0 1 1 0
1 1

We take a right-hand side giving as odd circuits those circuits with an odd number of
edges. The blocking binary clutters Q and Q* of odd circuits and co-postman sets are

i 111
o 11 11
11 1
11 11111111
Lo | L
|11 ]
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We conclude this section with a brief review of some polyhedral results. Given the
two binary group problems

t=0 and integer, t* 20 and integer,
Mt=b(mod 2), M*t* = b* (mod 2),
min z = ct, min z* = c*t*,

where [M* | b*] is the blocking matrix of [M | b], we can form the two blocking clutters
QO and O* with their corresponding incidence matrices Q and Q* as in the previous
section. Gomory’s corner polyhedra [4] are given by (see [3])

P(M, b)=conv {t=0 and integer | Mt=b(mod 2)}
=conv {g* |g* arow of O0*} + R,
P(M*, b*¥) = conv {t* Z0 and integer | M** = b* (mod 2)}
=conv {¢g|qarowof Q} +R}.
Define [M | b] to have the Fulkerson property [3] if
' P(M,b)={t=0|Qt=1}.

Fulkerson [2] showed that [M | b] has the property if and only if [M* | b*] does, and he
refers to P(M, b) and P(M*, b*) as blocking pairs of polyhedra. We refer to a given
problem, or simply the associated augmented matrix [M | b], as having the Fulkerson
property. Fulkerson’s work was based on the earlier work of Lehman [9], which concerned
itself with the clutters rather than the polyhedra. Lehman [9] gave several equivalent
conditions on the clutters Q and O* for [M | b] to have the Fulkerson property. In general,
co-postman problems and odd circuit problems do not have the Fulkerson property, but
Chinese postman problems do [1] and hence so do odd cut problems [2].

3. Minors and majors. Given a binary matrix M, a minor M of M is another binary
matrix obtained by sequentially performing two operations:

Deletion of a column of M means simply leaving it out;

Contraction of a column of M is performed by pivoting on a column and then

deleting the row and column pivoted on.

In case we are trying to contract a column of all 0’s, we obviously cannot pivot on the
column, and in that case contraction of the column means just deleting it. On the other
hand, if we delete a column which has the only nonzero in some row, then we could
delete the resulting row of 0’s and deletion is the same as contraction.

For our purposes and in order to be precise, let us first bring M to standard form
M = [I'| N]. For a matrix in standard form, the columns in I are called basic columns
and the columns in N are called nonbasic columns. We get the same minors of M by
restricting deletion to nonbasic columns and contraction to basic columns. To contract
basic column i, we leave out the ith row and the ith column. If we want to contract a
nonbasic column, we must first bring it into the basis by pivoting on any 1, which can
be done unless the column is all 0’s in which case it can be deleted rather than contracted
but with the same effect.

For a graphic matrix M, deletion of a column gives a minor whose corresponding
graph is formed by deleting the edge corresponding to the deleted column. Contracting
a column of M corresponds to contracting an edge: identifying its two nodes as one node.
If we contract an edge in a triangle, we cause duplicate edges to appear in the minor; if
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we contract an edge having a duplicate edge, then a loop appears in the minor. However,
a loop has a column of all 0’s in the matrix.

Our convention is to delete loops but not to contract them and to contract cut edges
(one edge cut sets) but not to delete them. This convention has no effect on the matrices
M which can be obtained as minors of M.

Define a feasible minor of an augmented matrix [M | b] to be a minor [M | b] such
that

(i) b is not deleted or contracted;

(ii) The image b of b in the minor is not all 0’s;

(iii) There is a 0-1 solution f to M = b (mod 2).
A feasible contraction is a feasible minor formed by contractions and no deletions, and
a feasible deletion is a feasible minor formed by deletions only. We have two special
forms of binary matrices, the first of which is standard form [ | b] = [I N | b]. In this
form, we form a feasible minor by contracting a subset of the columns of I and deleting
a subset of the columns of N (but not b) such that not all of the rows where b; = 1 have
the corresponding column I’ contracted. Condition (iii) is automatically satisfied. For a
feasible deletion, both conditions (ii) and (iii) are always satisfied.

In right-hand form

0
)

a feasible minor is performed by deleting nonbasic columns or by contracting columns
of I. In contracting basic columns, the right-hand side should not be contracted, and in
deleting nonbasic columns not all columns of 57 having b7 = 1 can be deleted in order
that condition (iii) is satisfied. Condition (ii) is always satisfied in this case.

Given a feasible minor [ | 5] of an augmented matrix [M | b], the blocking matrix
[A1* | b*] of [M | b] is a feasible minor of the blocking augmented matrix [M* | b*] of
[M | b] (see [14], also [3]). This result should be clear from the previous discussion and
the well-known corresponding theorem [16] for minors of dual matrixes. The latter theo-
rem follows from the fact that deletion (contracting) of a column in M gives a minor of
M whose dual is obtained by contracting (deleting) the same column of AM*, the dual
of M.

Our interest is in augmented matrices [M | b] which are either graphic or co-graphic
after deleting or contracting b. The graph can be augmented as follows. For [M | b]
graphic after deleting b (the Chinese postman problem), we can bring M to the form of
a node-edge incidence matrix and indicate b by designating the node i to be even if
b; = 0 and odd if b; = 1. However, while the Chinese postman problem and its blocking
odd cut problem can be treated in this way, the co-postman and odd circuit problems
cannot be represented by a graph with some odd nodes and the rest even nodes. A more
general procedure is to bring M to standard form [/ N | 4], so that the edges in I, forming
a spanning tree, for which b; = 1 are called odd edges and indicated in figures by being
drawn darker than the other edges. That is to say, take any particular Chinese postman
solution and consider its edge set to be the odd edges. This way of viewing the problem
was discussed at the end of § 1. A cut is even or odd depending on whether it includes
an even or an odd number of edges of the particular postman solution, i.e., of odd edges.
Any spanning forest including the odd edges determines a fundamental set of cuts, some
of which are even and some of which are odd. A set of edges is a postman solution if,
and only if, it intersects every odd cut of this fundamental set an odd number of times
and every even cut of this fundamental set an even number of times. Thus, for a Chinese

NT 1
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postman problem and its associated blocking problem, an odd cut problem, the problem
can be represented either by designating some subset of the nodes as odd nodes or by
designating some subset of the edges as odd edges. The odd edge set should not include
a circuit, i.e., should be a forest, and if it contained a circuit we could just remove the
edges in the circuit to obtain an equivalent problem.

For co-postman and odd circuit problems, we only know the second way of specifying
the problem. That is, given a graph and a subset of edges called odd edges, an odd circuit
is a circuit containing an odd number of odd edges. The odd edges can now be assumed
to be in the complement of some spanning forest, and each odd edge induces an odd
circuit when adjoined to that spanning forest. The even edges outside of the spanning
forest induce even circuits. The set of circuits, some odd and some even, formed in this
way constitute a fundamental set of circuits of the graphic matroid. The co-postman sets
are the sets of edges meeting the odd circuits of this fundamental set an odd number of
times and the even circuits an even number of times. Thus, a co-postman problem and
its blocking odd circuit problem are specified by a graph and a subset of edges outside
of some spanning forest, i.e., not containing a cut set. If the set of odd edges included a
cut set, then we could remove the cut set from the odd edge set and obtain an equivalent
problem.

The first question we address is: which graphs and odd subset of edges give the same
problem? To be specific, let us discuss Chinese postman problems. The remarks apply
equally to the other three problem classes. When we say “the same problem” we mean
that the clutter Q* of solutions is equal under permutation of the rows and columns.
For example, all three graphs in Fig. 2 give the same problem. This example illustrates
the fact that strongly connected components can be treated separately. When we take
the odd edge representation of the problem, the odd edges stay the same and the strongly
connected components can be connected or disconnected in any manner provided they
are not connected so as to change the strongly connected components.

Graphs that are strongly connected and not isomorphic may have the same Chinese
postman solutions. It should be clear that the graphs in Figs. 3(a) and (b) are not isomorphic
because one has a degree four node and the other does not. However, they do have the
same Chinese postman solutions. Whitney [17] called such graphs 2-isomorphic. The
construction is to take any two node cut set (the two middle nodes of Fig. 3) and “turn
over” one of the two disconnected pieces. More precisely, if i and j disconnect G into
H, and H,, then in H, connect all edges that were connected to i to j instead, and vice

Db S
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versa. Define this operation to be a 2-flip on i, j. Two graphs are 2-isomorphic if one can
be reached from the other by a finite sequence of such interchanges. He showed, as is
easy to see, that 2-isomorphic graphs have the same circuits. Since we have preserved
one particular Chinese postman solution and since the graphs have exactly the same
circuits and by Mei-Ko Kwan’s result (see [10]), 2-isomorphic graphs have the same
Chinese postman solutions. Whitney [17] showed the converse as well; a result that seems
to be deep and not easy to prove: every two strongly connected graphs with the same
sets of circuits (allowing reordering the edges) are 2-isomorphic. Thus, the class of graphs
that represent a graphic matrix M is those graphs obtained from one by moving around
strongly connected components and substituting any 2-isomorphic graph in place of a
component.

Lehman [7, (46)] gives the result that the clutter Q determines the matrix [M | b]
provided that Q has no zero columns, which can be shown to be equivalent to the matrix
[M | b], including the right-hand side b, being nonseparable, i.e. [M | b] is not block
diagonal when brought to standard form. Note that M could be separable, but then the
right-hand side column b must have nonzero entries for each separable component. A
Chinese postman problem is nonseparable if and only if there is no strongly connected
component with no odd edges. Since circuits are completely contained in a strongly
connected component, interchanging odd and even edges around a circuit will always
maintain some odd edges in every strongly connected component. When we “move
around strongly connected components,” i.e. connect or disconnect the strongly connected
components in such a way that the strongly connected components remain the same,
the odd and even nodes may change, but the odd and even edges remain the same. In
essence, one must fix a particular Chinese postman solution before moving around the
strongly connected components, and the odd and even nodes are determined so as to be
consistent with that particular solution. Similar remarks apply to the co-postman problem.

THEOREM 3.1. Two augmented graphs (graphs with odd edges) have the same sets
of Chinese postman solutions (allowing reordering the edges) if and only if one can be
brought to the other by sequences of the following three operations:

(1) Interchanging the odd and even edges around any circuit;

(ii) Moving around any strongly connected component,

(iii) Making a 2-flip on any two-node cut set.

Proof. Let us emphasize that the odd edges do not change (but odd nodes might)
under a 2-flip (see Fig. 3). The “if”” direction should be clear from the previous discussion,
so we only prove the other direction.

Let G and H be any two augmented graphs with the same clutter Q of Chinese
postman solutions. By Lehman’s result [7], they have the same sets of circuits as well.
Since they have the same circuits, they are 2-isomorphic, by Whitney’s theorem [17].
Since G and H have the same Chinese postman clutters O, we can bring the odd edges
of one to be the same as the other using step (i). Since G and H are 2-isomorphic, we
can bring one to be the other by steps (ii) and (iii), completing the proof.

Since the blocking clutter @* is uniquely determined by Q, the same results hold
by replacing Chinese postman by odd cut in the statement. For the odd circuit problem,
there is one obvious difference: we interchange on cuts rather than circuits. Otherwise,
the theorem is the same because the circuits uniquely determine the cuts. Thus, we have
the theorem below.

THEOREM 3.2. Two augmented graphs have the same sets of odd circuits (allowing
reordering of the edges) if and only if one can be brought to the other by a sequence of
the following three operations:

(i) Interchanging the odd and even edges in a cut;
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(i) Moving around any strongly connected component;

(iii) Making a 2-flip on any two-node cut set.

By the same remarks applied to the odd cut problem, the same theorem holds for
“odd circuits” replaced by “co-postman solutions.”

When we say that a problem is, e.g., a co-postman problem, we are really talking
about an augmented matrix [M | b] which is co-graphic after deleting b. The graph we
draw for it is the graph that M is co-graphic with respect to. An odd set of edges is the
subset of basic edges of M (i.€., in a co-basis of the graph) which have a one in the right-
hand side position when brought to standard form. When we form the blocking odd-
circuit problem [M* | b], the augmented matrix is graphic after contracting b*. The odd
edges (the same as for the co-postman problem) can now be thought of as the nonbasic
edges having a one in the row that is deleted after bringing b* into the basis (or b* may
already be in the basis if the problem is in right-hand form).

That is to say, when we refer, for example, to a class of problems that is odd cut
but not Chinese postman, we are not referring to the graph, but to the augmented matrix
[M | b] that, in this case, must be graphic after contracting b but not graphic after deleting
b. An augmented graph only becomes meaningful when we say which problem class it
represents because the same augmented graph is used for both the Chinese postman
problem and its blocking odd cut problem, and could even represent an odd circuit and
a co-postman problem if the odd edges do not contain a cut.

Consider now taking a feasible minor of an augmented matrix and what happens
to its augmented matrix. For a Chinese postman (and odd cut) problem, the problem
can be represented by an augmented graph having some nodes odd and the rest even.
For this type of augmented graph, minors are formed by just deleting any edge not a cut
edge, by our convention, or by contracting any edge not a loop. When contracting an
edge, the new node is odd if the edge met one odd node and one even node, and the new
node is even otherwise. By not allowing deletion of cut edges, the problem cannot become
infeasible.

When the augmented graph is represented by having the edges in a particular solution
be designated as odd edges and the other edges are even, any even edge other than a cut
edge can be deleted since it can be made nonbasic. Any odd edge or even edge not a
loop can be contracted. However, in this case we also allow changes of the type in Theorem
3.1(i), i.e., interchanging even and odd edges around a circuit. In fact, any of the changes
in Theorem 3.1 can be made because we are really thinking of the augmented graph as
representing an augmented matrix. Theorem 3.1 is stated for this representation of an
augmented graph, i.e. with some odd edges forming a particular solution. When operation
3.1(ii) is done, strongly connected components can be moved around or just made separate
connected components. In drawing forbidden minors we resolve the ambiguity of how
to connect up the strongly connected components by drawing them as separate connected
components. What we are saying is that these are Chinese postman problems on these
connected components so that putting together, in any way, one solution for each com-
ponent gives a solution to the Chinese postman problem. For example, in Fig. 2 the three
problems are equivalent. Note that the odd node designation may change but the odd
edge set does not.

DEFINITION 3.3. An augmented minor of the graph of Chinese postman problem is
a graph obtained from a given augmented graph, with odd edges representing a particular
Chinese postman solution containing no circuits by the following five operations:

(1)-(iii) As in Theorem 3.1;

(iv) Deleting any even edge that is not a bridge;
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(v) Contracting any odd edge that is not the only odd edge; or
(vi) Contracting any even edge that does not form a circuit when adjoined to the
odd edges.

Condition (iv) requires that the edge not be a bridge (an edge whose removal increases
the number of connected components) because of our convention of not deleting edges
in every basis. Similarly, condition (v) insures that we keep a nonzero right-hand side
and that we contract edges in a basis. One could, of course, interchange odd edges around
circuits as in (i) before doing (v).

The graph for an odd cut problem is the same as for its blocking Chinese postman
problem so 3.3(i)—(v) also define augmented minors of graphs representing odd cut
problems.

DEFINITION 3.4. An augmented minor of the graph of a co-postman problem is a
graph obtained from a given augmented graph, with odd edges representing a particular
co-postman solution containing no cut, by the following five operations:

(i)—(iii) As in Theorem 3.2;

(iv) Contracting any even edge not a loop;

(v) Deleting any odd edge that is not the only odd edge;
(vi) Deleting any even edge that is not a bridge in the subgraph of even edges.

4. Duality relationships between four problems. In this section we introduce the
relationships between the four problems defined in the previous sections. We study their
blocking connections and begin to show the dualities between them. In the next sections
this subject will be discussed in more detail.

Let us consider the class of group problems with an associated augmented binary
matrix [M | b] which is graphic or co-graphic after deletion or contraction of the right-
hand side b. This class can be split into fifteen regions which represent all of the possible
intersections between postman, odd cut, odd circuit and co-postman problems—it is
clear that for every problem belonging to any region there is a one-to-one correspondence
with its blocking problem that might, or not, belong to the same region. However, all of
the blocking problems of problems in any one region belong to only one region. If the
blocking problems are in the same region as the original ones, we refer to this class as a
self-blocking region.

THEOREM 4.1. The self-blocking regions are those defined by the following inter-
sections of problem classes:

1) Postman, odd cut, odd circuit, and co-postman,

2) Co-postman and odd circuit but neither postman nor odd cut;

3) Postman and odd cut but neither odd circuit nor co-postman.

For example, if the augmented matrix is graphic but not co-graphic after deletion
of b and co-graphic but not graphic after contraction of b then the blocking matrix
[M* | b*] is co-graphic but not graphic after contraction and graphic but not co-graphic
after deletion.

We give here an example for each of the two first cases. The augmented matrix

1 1 1 1

1 1 1 1

is K, after deleting b so is both graphic and co-graphic, and it is K%, the dual of K, 3,
after contracting b. The four augmented graphs associated with it are shown in Fig. 4.
Thus, this augmented matrix is all four problems but on four different augmented graphs.
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CHINESE CO-POSTMAN
POSTMAN CIRCUlT CUT

FIG. 4

A matrix giving case 2 is
1 2 3 45 6 7 8 9 10

[ 1 1 1
1 1 1

1 1 1
1 11 1 1 1

1 1 1
L .

As an odd circuit problem, its associated augmented graph is shown in Fig. 15 and is
called G; there. As a co-postman problem we must pivot column six into the basis in
place of the right-hand side. The associated augmented graph is K5 with two odd edges.
Since neither of the two graphs is planar, it should be clear that [M | ] is neither a
Chinese postman nor an odd cut problem. An example of Case 3 is an odd K33 graph
as discussed after Theorem 6.5.

In general it is well known that the class of Chinese postman problems is the blocker
of the class of odd-cut problems and that the class of the co-postman problems is the
blocker of the class of the odd circuit problems. Theorem 4.1 is a refinement of this fact.
For example, a problem that is neither postman nor odd cut must have a blocking
problem that is neither postman nor odd cut.

The problems belonging to the first region could be called b-planar problems because,
whether we delete the right-hand side b or contract it, we get a matrix that is the incidence
matrix of a planar graph.

We now turn our attention to planar problems after deletion or in other words to
problems that are both Chinese postman and co-postman. This region can be clearly
split into four subregions corresponding to odd circuit problems, or odd cut problems,
or neither of them or both of them. This last region is the b-planar region already men-
tioned. The blocking region to the problems that are neither odd cut nor odd circuit is
the odd cut and odd circuit problems. Examples of such problems are given by the
Chinese postman problem on G}, G5, or G5. Examples of the other two classes are
given by

1 1 1 1|1 1

—
—
—
=== = ]

—
—
—
—
—
[ N ey

The corresponding planar graphs are shown in Figs. 5(a) and (c). They are G¥, and G¥¢
in Figs. 16 and 10. The black nodes represent the odd nodes associated with the corre-
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sponding Chinese postman problem, and the darker edges correspond to postman sets,
which are, in these two cases, spanning trees. Since the graphs are planar, the problems
are also co-postman problems on the dual graphs in Figs. 5(b) and (d). Note that odd
edges correspond in the primal and dual graphs. Contracting the right-hand side of the
first matrix gives K33, so it is an odd cut problem but not an odd circuit problem.
Contracting the right-hand side of the second matrix gives K5, so it is an odd circuit
problem, but is not an odd cut problem.

It is easy to find examples for the remaining six regions. We give here only the
blocking relationships: only odd circuit problems have blocking problems that are only
co-postman problems; odd-circuit and postman problems have blocking problems that
are co-postman and odd cut problems; only postman problems have blocking problems
that are only odd cut problems.

5. Regular problems. A matrix M is regular if it does not contain an F; or F7
minor. Define an augmented matrix [M | b] (and its associated binary group problem)
to be deletion regular if M is regular and contraction regular if [M | b], after contracting
b, is regular. Define [M | b] to be b-regular if it is both deletion regular and contraction
regular. Clearly, a Chinese postman problem or a co-postman problem is deletion regular,
while an odd cut problem or an odd circuit problem is contraction regular.

Consider first the case of an F; minor in M. It is interesting, for cases to be considered
later, to ask what augmented minors of [M | b] might be present. There are only two.
The first is

1 1 1 1

1 I 1 1
1

—
—
-0 O O

which we call an even F; minor of [M | b]. The fourth column cannot be contracted
because it would lead to a zero right-hand side. Neither can it be deleted because a zero
row with a nonzero right-hand side would result. The other possibility is that

1 1 1 1

is an augmented minor of [M | b], where by, b,, bs are not all zero. However, by pivoting
and reordering rows and columns, we can bring the minor to the form M, below:

1 1 1 1

M, = 1 11 1
1 1 11

In fact, any right-hand side can be assumed, other than all zeros.
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The case of F5 is similar but there are three forbidden augmented minors:

1 1 1 0
1 1 1 0
even Fr 1 1 o |,
1 1 1 1 0
1 1
1 11 0]
3 1 1 1 0
M,= 1 11| ol
L 111 1 1]
1 11 17]
B 1 1 1 1
M;= 1 11 1
L 1 1 1 1|

The minor M, includes the case of either one or three of the right-hand side elements
by, by, bs, bs equal to one. The minor M; includes the case of either two or all four of
the b;/s equal to one. Thus we have proven the first assertion of the theorem below.

THEOREM 5.1. The problem [M | b] is deletion regular if, and only if, it does not
include any even F;, or even F¥ minor or any of M, M,, M as augmented minors. It is
contraction regular if, and only if, it does not include any even F; or even F3 minor or
any of

11 1 0]
11 1 0
ME=| 1 1 1 0 |,
11 1 1 0
[ 1 1 1 1
11 11 0]
« |1 1 1 1 0
M3 = 1 1 1 1 0o
11 1 1 0]
« | 1 11 1 0
M3 = 111 1| o
Ll 1 1 1 1]

as augmented minors. It is b-regular if, and only if, it does not include any even F; or
even F% minor or any of My, M, M5, Mt , M%, M%.

Proof. The proof is obvious from the preceding discussion and from duality.

THEOREM 5.2. A Chinese postman problem is b-regular if, and only if, the associated
graph does not contain any of the three augmented minors in Fig. 6.

Proof. Because it is a Chinese postman problem, it is deletion regular. Hence, it
cannot contain an even F; or even F3 minor or any of M, M,, M;. The graphs given
are derived from MY, M3, and M3 by pivoting to standard form.

THEOREM 5.3. An odd cut problem is b-regular if and only if its blocking Chinese

postman problem is b-regular, i.e. if, and only if, its associated augmented graph does
not contain G, G5, or G3 as augmented minors.
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* * *
G, G, G3
FIG. 6

For an odd cut problem [M* | b*], the augmented matrix

1 1 1 1
M, = 1 1 1 1
1 1 1 1

is an example of one that can be an augmented minor of [M* | b*] but is forbidden in
order for [M* | b*] to be a Chinese postman problem. The associated augmented graph
for the odd cut problem by contracting the right-hand side of M, is G¥. The augmented
matrix M; could not be an augmented minor of a Chinese postman problem [M | b].
However, its dual matrix M7 could be, and that matrix is forbidden for the Chinese
postman problem to be an odd cut problem. But the graph associated with M as a
Chinese postman problem is exactly the G¥ associated with M, as an odd circuit problem.

Thus, we see that the forbidden augmented matrices are the duals of those in Theorem
5.2, but the graphs forbidden as augmented minors are the same. Theorem 5.3 is, thus,
a duality result once the framework is understood.

THEOREM 5.4. A co-postman problem is b-regular if, and only if, the associated
graph does not contain any of the three augmented minors in Fig. 7.

Proof. As for the Chinese postman problem, a co-postman problem is deletion
regular. The augmented matrix [M | b] can, therefore, only contain M, M5, M . How-
ever, the graph we now draw is the dual because for the co-postman problem we draw
the graph with respect to which the matrix is co-graphic.

THEOREM 5.5. An odd circuit problem is b-regular if, and only if, the associated
graph does not contain any of the three augmented minors G, G,, Gs.

6. Problems not co-postman. For [M | b] a Chinese postman problem, it is easy to
say when it is not a co-postman problem: if, and only if, the associated graph is not
planar, i.e., contains a K or a K33 minor. By duality, the same answer applies to when
an odd cut problem is an odd circuit problem. That is, let [M* | b*] be an odd cut
problem, let [M | b] be its blocking Chinese postman problem, and let G be the augmented
graph of the Chinese postman (and the odd cut) problem. Then, [M | b] is also a co-
postman problem if, and only if, G is planar, and then [M | b] is the co-postman problem

vV XK O
. .

FG. 7
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on the dual augmented graph. Its blocking problem is, thus, an odd circuit problem on
the dual augmented graph.

These two cases were relatively easy because we were considering the intersection
of classes of problems that both involve deletion of b or both involve contraction of b.
The other intersections require more work.

A problem [M | b] is not a co-postman problem if, and only if, M is not co-graphic,
ie., M contains an F;, F7, Ks, or K33 minor. Again we look for critical aug-
mented minors of [M | b]. Clearly, [M | b] must be b-regular, i.e., have no F; or F7 in
M as considered in § 5.

Consider next Ks. The matrix M contains a K5 minor means that [M | b] contains
as a minor either

even K5
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0 |or
1 1 1 1 0
1 1
1 1 1 1 b,
1 1 1 1 b,
1 1 1 1 by |’

where not all of the b,’s are equal to zero.

For the second of these two augmented matrices, there is an associated aug-
mented graph. The question is how many and which are not isomorphic. Here, iso-
morphic means simply changing the odd edges by interchanging on a circuit. Clearly, all
b = (b,, by, bs, by) with exactly one or exactly two b;’s equal to zero give isomorphic
problems. Furthermore, all b with exactly three or all four b;’s equal to zero give isomorphic
problems.

Consider next K3 3. The matrix M contains a Kj; 3, minor if, and only if [ | b]
contains as a minor one of the following two:

even K3 3

1 1 1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
1 11 0

1 1 1 11 b,

1 1 1 b,
1 1 1 bs |,

1 1 1 bs

1 1 1 bs

o

where not all b;’s are equal to zero.
For the second of these two above augmented matrices, there is an associated aug-
mented graph. There are five different right-hand sides b; given in the following theorem.
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THEOREM 6.1. A problem [M | b] is a co-postman problem if, and only if, it satisfies
all of the following:

(i) [M | b] is deletion regular;
(i) [M | b] contains no even Ks or K3 3 minor;

(iii) [M | b] contains none of the following seven augmented minors (indicated by
the different right-hand sides):

' b
1 111 0 1
1 1 11 0 1|,

1 1 1 1 0 1

1 1 11 11
B v b b b
1 1111 1 1 1 0 1
1 11 0 1 0 1 1
1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 1 0 0 0 1 1

Proof. From the previous remarks, we need only prove that the seven different 5*’s
are the only ones needed. Since M is either K5 or Kj 3 the question is equivalent to the
question: what are the different (not 2-isomorphic) Chinese postman problems on K
and on Kj33? We give a lemma completing the proof.

LEMMA 6.2. There are two different Chinese postman problems on Ks: one having
two odd nodes and the other having four odd nodes. On K3, there are five different
Chinese postman problems with odd nodes as given in Fig. 8.

Proof. There must be an even number of odd nodes, and no matter which even set
of nodes is odd, we can renumber the nodes to be one of the augmented graphs given.

THEOREM 6.3. An odd circuit problem is also a co-postman problem if, and only if,
the associated augmented graph G of the odd circuit problem satisfies

(i) G is b-regular, i.e. contains no G,, G,, G3 augmented minor;

(ii) G contains no even Ks or K3 3 minor;

(iii) G contains none of the four augmented minors in Fig. 9.

Proof. Condition (i) of Theorem 6.1 implies that [A | b] must be b-regular because
it is contraction regular by being an odd circuit problem. By Theorem 5.5, an odd circuit
problem is b-regular if, and only if, it contains no G, G,, G; augmented minor.

Condition (ii) of Theorem 6.1 could occur because being an odd circuit problem
only requires [M | b] to be graphic, but not co-graphic, after contracting b.

Condition (iii) here is obtained from condition (iii) of Theorem 6.1 by drawing the
augmented graphs for the matrices there with right-hand sides b', %, b*, b°. The rest of
the proof consists of showing that the right-hand sides 42, %, and b” need not be considered.

ST
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Contracting ? gives an F; minor, contracting b° gives an F7 minor, and contracting b’
gives a K33 minor in their respective augmented matrices. Since [M | 4] is an odd circuit
problem, it can have no F;, F7, K33 minor after contracting b, completing the proof.

The augmented graph corresponding to an odd circuit problem is obtained by con-
tracting b giving a graph G whose edges are even if the row deleted, after pivoting on b,
had an entry equal to one. We draw the same graph for the odd circuit problem and the
blocking co-postman problem. Thus, we have the following theorem.

THEOREM 6.4. A co-postman problem is also an odd circuit problem if, and only if,
the associated augmented graph G of the co-postman problem satisfies

(1) G is b-regular, i.e., contains no G,, Gy, Gy augmented minors,

(ii) G contains no even Ks or K3 3 minor;

(iii) G contains no G4, Gs, Gg, or G; augmented minor.

THEOREM 6.5. An odd cut problem is also a co-postman problem if, and only if, the
associated augmented graph G of the odd cut problem satisfies:

() G is b-regular, i.e. contains no G}, G5, G augmented minor;

(ii) G contains no odd K33 minor;

(iii) G contains none of the four augmented minors in Fig. 10.

Proof. The proofis similar to that of Theorem 6.3. Condition (iii) is as in Theorem
6.3 (ii), and the graphs listed are the augmented dual graphs there.

The reason that the even K5 and Kj ; need not be forbidden is that the corresponding
augmented minor, e.g., for an even K as a minor of an odd cut problem would be
1 1 1 0

—
—
—
-0 OO0 OO

Fic. 10
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and that augmented matrix is not forbidden for a co-postman problem because it is co-
graphic after deletion of the right-hand side.

The odd K;; minor arises from b’ as a right-hand side in Theorem 6.1(iii). That
case was éxcluded for an odd circuit problem but cannot be excluded for an odd cut
problem. However, % and b° can be excluded as before. The odd Ks minor does not
arise but is, in fact, excluded by G5, which is an augmented minor of an odd K5 minor.
That is, an odd Ks minor is not b-regular, but an odd Kj;3; minor is b-regular.

THEOREM 6.6. A Chinese postman problem is also an odd circuit problem if, and
only if, the associated augmented graph G of the Chinese postman problem satisfies

() G is b regular, i.e. contains no Gt , G5, G3 augmented minor;

(ii) G contains no odd K 3 minor;

(iii) G contains none of the four augmented minors G}, G¥, G¢, G7.

7. Problems not Chinese postman.
THEOREM 7.1. A problem [M | b] is a Chinese postman problem if, and only if, it
satisfies all of the following:
(i) [M | B] is deletion regular;
(ii) [M | b] contains no even K5 or K33 minor;
(iii) [M | b] contains none of the following augmented minors indicated by the dif-

ferent right-hand sides
' ¥ b b b B
1 11 0 0 1 1 0 1]
1 1 1 0O 0 0 0 O 1
1 1 1 0O 0 0 0 0 1
1 1 1 0O 0 0 0 1 1}¢°
1 1 1 0O 1 0 1 1 1
L 1 1 1 1 1 1 1 1 1]
b b
1 1 1100 0 1
1 1 1010 0 0
1 1 01 0 1 0 0
1 1 0 0 1 1 1 1

Proof. The proof is similar to that of Lemma 6.2 except for the proof that the right-
hand sides given in (iii) suffice. That proof is provided by Lemmas 7.2 and 7.3.

LEMMA 7.2. There are six different co-postman problems on Ks given by the aug-
mented graphs in Fig. 11.

Proof. The proof is given by Fig. 12. In that figure, we start with one of the six
augmented graphs in Fig. 11 and show what cuts to interchange to get the next graph.
In Fig. 12, the six augmented graphs are across the bottom, and the changes are from
bottom to top.

LEMMA 7.3. There are two different co-postman problems on K 5 given by the aug-
mented graphs in Fig. 13.

REEE AR

FiG. 11
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Proof. The proof is similar to that of Lemma 7.2 and is given by Fig. 14. The two
different problems are on the left and changes are made from left to right. The assertion
here is that every co-independent subset of edges of Kj ; is present here.

THEOREM 7.4. An odd circuit problem is also a Chinese postman problem if, and
only if, the associated augmented graph G of the odd circuit problem satisfies

(1) G is b-regular, i.e., contains no G,, G, Gy augmented minor;

(ii) G contains none of the six augmented minors Gg, Gy, G1o, G11, G12, G13 given

in Fig. 15.

Proof. An even K or K33 could not be present in an odd circuit problem so need
not be excluded.

The right-hand side ' in Theorem 7.1(iii) gives Gg; b? gives Go; b3 gives Gy3; b*
gives G o; b°, after contraction, gives a K33 minor, and so does 4°. The right-hand sides
b" and b8 give Gy; and G,. The reason that G,; is listed last is that it is the only one that
is not planar.

THEOREM 7.5. A co-postman problem is also an odd cut problem if, and only if, the
associated augmented graph G of the co-postman problem satisfies

(1) G is b-regular; i.e., contains no G,, G,, G3 augmented minor;
(ii) G contains none of the six augmented minors: Gg, G, G9, G, G2, or Gi3.

P B

FiG. 13
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THEOREM 7.6. An odd cut problem is also a Chinese postman problem if, and only
if, the associated augmented graph G of the odd cut problem satisfies
() G is b-regular, i.e. contains no Gt, Gx, G¥ augumented minor;
(ii)) G contains no even Ks or K3 3 minor;
(iii) G contains none of the six augmented minors Gy , Gs , Gy, G11, G2, G4 in
Fig. 16.
THEOREM 7.7. A Chinese postman problem is also an odd cut problem if, and only
if, the associated augmented graph for the Chinese postman problem satisfies
(i) G is b-regular, i.e. contains no Gt, G5, G¥ augmented minor;
(ii) G contains no even Ks or K3 3 minor;
(iii) G contains none of the six augmented minors Gy, Gs , Glo, G11, G2, Gua in
Fig. 16.
Proof. The proof is similar to that of the previous theorems. Here, contracting b!
in Theorem 7.1 (iii) gives a matrix which is co-graphic with respect to G . Similarly, 4
gives G3 , b* gives G1o, b’ gives G4, b’ gives G1;, and b® gives G15. The other right-hand
sides give augmented matrices that could not be odd cut problems because contracting
b? or b8 gives a K33 minor.

8. Some special cases and examples. Define a graph to be outer planar if it can be
drawn so that every node is on the outside of the graph. A graph is outer planar if, and
only if, it has no K, or K, ; minor [6]. Define a graph to be inner planar if it has no
K% (=K,) or K33 minor. By duality, a graph is inner planar if, and only if, it can be
drawn so that some one node is in every region.

THEOREM 8.1. A Chinese postman problem [M | b] on a graph G that is outer planar
is also a co-postman problem and an odd cut problem.

HEKAAT

Gg Gg Gio Gy G2 Gi3

FI1G. 15
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Proof. Since the graph must be planar, [M | b] is also a co-postman problem. It is
an odd cut problem because all of the forbidden augmented minors in Theorem 7.7
include K, or K, ; minors.

The Chinese postman problem on G, is an example of the theorem. The co-postman
problem over the same matrix was given in Fig. 5(b). As discussed in § 4, the same matrix
is an odd cut problem on K3 3, which is not planar, so the problem is not an odd circuit
problem.

THEOREM 8.2. A co-postman problem on a graph G that is inner planar is also a
Chinese postman problem and an odd circuit problem.

There are corresponding results from duality for odd cut and odd circuit problems:
an odd cut problem on an outer planar graph is also an odd circuit problem and a Chinese
postman problem; and an odd circuit problem on an inner planar graph is also an odd
cut problem and is a co-postman problem. These results apply regardless of the right-
hand side.

We remark that the problems given as forbidden minors provide the following ex-
amples of intersections of problems: only Chinese postman—K with 4 odd nodes; Chinese
postman and co-postman—M7, M5, M%; Chinese postman and odd cut—odd Kj3;
Chinese postman and odd circuit—AM ¥, even Ks; Chinese postman, co-postman, and
odd cut—M3, - -+, M},; Chinese postman, co-postman, and odd circuit—M7, - - -,
M?%; co-postman and odd circuit—AM,3; only co-postman—KS5 with all odd edges. The
other intersections are blocking to one of these except for all four problems for which
an example was given in § 4.

The problem M 3 is neither Chinese postman nor odd cut yet does have the Fulkerson
property. The facets of the associated polyhedron have been explicitly calculated and
verified to be equal to the facets given by the appropriate clutter. Thus, we have a counter-
example to the conjecture that every binary group problem satisfying the Fulkerson
property is either a Chinese postman problem or an odd cut problem. We conjecture
that the only problems among these problems for which the Fulkerson property does
not hold are the problems that are only co-postman or only odd circuit. Since the Fulkerson
property is known to hold for Chinese postman and odd cut problems, this conjecture
is equivalent to saying that the Fulkerson property holds for problems that are both odd
circuit and co-postman problems.

There are only three known critical cases where the Fulkerson property does not
hold [3], [14]. One involves F7 so is not among the problems considered here, and the
other two are the blocking pair: the co-postman and odd circuit problems on K with all
edges odd (the first case in Fig. 12). There are six different odd circuit (or co-postman)
problems on K (Fig. 11). For these six odd circuit problems, the six right-hand sides
give a Chinese postman problem (on G3 , G5 , G1o, and G,,) for four different right-hand
sides; one right-hand side gives the augmented matrix A,; that has the Fulkerson property
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and is both co-postman and odd circuit (on G,; and Kj, respectively); and the sixth right-
hand side gives R,y when deleted, and this problem does not have the Fulkerson property
and is only an odd circuit problem. Thus, no K5 minor is sufficient for the Fulkerson
property to hold but seems to be far from necessary.

Seymour’s results [14] on matroids having the max-flow min-cut property show
that a Chinese postman problem has that property if and only if it has no odd K; minor
(K4 with all odd nodes). The forbidden augmented minor for the odd cut problem is K 3
with four odd nodes including all of the degree two nodes. For the odd circuit problem,
the forbidden minor is K3 3, i.e. a doubled triangle. It is interesting to note how frequently
those minors occur as augmented minors of our forbidden minors here. Both the Chinese
postman and its blocking odd cut problem have the max-flow min-cut property on the
outer planar graphs previously discussed.
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QUADRATIC CONES INVARIANT UNDER SOME LINEAR OPERATORS*
DRAGOMIR Z. DOKOVICH

Abstract. A (solid) quadratic cone K in a finite-dimensional vector space V (over R, C, or H) is the set of
all x € Vsatisfying f(x, x) 2 0, where f is a fixed indefinite hermitian form. Given such a cone K, we characterize
the linear operators 4 for which AK < K, and also those for which 4K = K. We also show that if p(4) = »(4)
for some (multiplicative) norm » on the algebra of linear operators (p denotes the spectral radius) then there
exists an 4-invariant quadratic cone of specified signature. For this purpose we strengthen a result of Mott and
Schneider characterizing the operators 4 for which p(4) = »(A4) is possible.

Key words. spectral radius, multiplicative norm, semisimple operator, Jordan decomposition, ice-cream
cone, hermitian form, real quaternions

AMS(MOS) subject classifications. 15A48, 15A60, 15A63

1. Introduction. If A4 is a linear operator on a finite-dimensional complex vector
space V and v is a (multiplicative) norm on the algebra &/ of operators on V then it is
well known that p(4) = »(4), where p denotes the spectral radius. Mott and Schneider
[8], see also [5, § 2.3], have shown that

p(Ad)= iI}f v(A).

Furthermore they have shown that there exists a » such that p(4) = »(4) iff every eigenvalue
A of A with |A| = p(4) is a simple root of the minimal polynomial of 4.

The above results remain valid (Theorem 5) when the class of all (multiplicative)
norms on &/ is replaced by the class of norms on &/ induced by inner products on V;
such norms we call Hilbert norms. We also show that the same results are valid for real
and quaternionic spaces.

The problem of characterizing linear operators 4 on R" which leave invariant a
fixed proper cone K (or alternatively, which leave invariant a proper cone K belonging
to a specified class of cones) has been extensively studied, see for instance [7], [10], [11]
and the references mentioned therein. The class of quadratic cones K in V = D" (D
= R, C, or H) is of special interest. Such a cone consists of all x € V satisfying f(x, x) = 0
where f'is an indefinite hermitian form on V. Our Theorem 7 shows that two theorems
of Loewy and Schneider [7, Thms. 2.3 and 2.4] generalize to arbitrary quadratic cones.

Theorem 7 admits a nice geometric interpretation. Namely let P be the projective
space attached to ¥ and let .S be the hermitian hyperquadric in P defined by the equation
f(x, x) = 0 (fis an indefinite hermitian form). The complement of S in P has two
connected components and let P* be the closure of one of them. Then Theorem 7 gives
a characterization of those projective transformations of P which leave P* invariant, and
of those which map P onto itself.

As an application of Theorem 5 we show that if p(4) = »(4) for some norm » and
if p(4) is an eigenvalue of 4 then A leaves invariant a quadratic cone of signature
(n—1,0,1).

We conclude with an improvement of a result of Vandergraft [11] characterizing
operators A, in the case D = R, for which there exists a proper cone K such that 4 maps
K — {0} in the interior of K. We show that his characterization remains valid when K is
restricted to be an ice-cream cone.

* Received by the editors March 8, 1983; accepted for publication (in revised form) May 27, 1986.
1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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2. Notation and terminology. We denote by D one of the three classical fields R,
C, or H and by F the center of D. By o/ we denote the F-algebra of n X n matrices over
D. When convenient we shall view &7 as the algebra of linear operators of the right D-
vector space V = D". The elements of V are viewed as column vectors.

For 4 € of and \ € C we define 4, € & by

A—\, if AéRorD=C,
| 42— +NA+\PL, otherwise

where I, is the identity matrix.
For A € of we define its spectrum ¢(4) < C by

o(A4) = {\€C: A, is singular}.

Observe that o(A) is a finite subset of C and its cardinality is at most nif D = R or C
and at most 2n if D = H.
The spectral radius p(A) of A is defined by

p(A) = sup {|\:\€a(4)}.

We say that A is semisimple at \ € C if A, and (4,)* have the same rank. Clearly 4
is semisimple at \ if N\ € o(A4). If 4 is semisimple at A, VA € C, then A4 is said to be
semisimple. 1t is well known that every 4 € o/ can be written uniquely as 4 = S + N
where SN = NS, S is semisimple, and N is nilpotent. This is known as the Jordan de-
composition of A.

A norm on &/ is a map v./ — R satisfying the conditions

1° A)Z0, VAe A,

2° A)=0<=4=0,

3° v(AM) = \p(4) VA€ of, VYNEF,

4° A+ B)=v(4)+v(B) VA,Be oA,

5° v(AB) = v(Aw(B) VA, Be .

Let f:¥V X V — D be an inner product on V i.e., f'is a positive definite hermitian
form. Then (V, f) is a finite-dimensional Hilbert space over D. The norm in V induced
by f will be denoted by | - |7; thus |x|7 = f(x, x), Vx € V. The norm | - |yon V induces
a norm vyon &/ which is defined by

IAX I 7.

v (A) =sup {W.xe V— {0}].

Such norms v, will be called Hilbert norms.

3. Norm and spectral radius. Let » be a norm on & and let U be the closed unit
ball in &, i.e.,

3.1) U= {Xedm(X)=1}.

It is well known that U is a compact subset of «/. Lemma 1 is a simple consequence of
the compactness of U.

LEMMA 1. For A € of we have p(A) = v(A). Furthermore if p(A) = v(A) then A is
semisimple at every \ such that |\| = p(4).

Proof. The case D = R (resp. D = H) can be reduced to the case D = C by com-
plexification (resp. restriction of scalars). Thus we assume that D = C. Then the first
assertion was proved by Mott and Schneider [8, Thm. 2].

To prove the second assertion, we may assume (without any loss of generality) that
v(A4) = p(4) = 1. Let X € o(4) with |A| = 1. Assume that 4 is not semisimple at \. Then
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there exists linearly independent vectors v, w € V such that 4v = vA and Aw = w\ + v.
It follows that A*w = wA\* + A\~ 'kv for each k = 0. Since 4w € Uw and Uw is compact,
the sequence wA* + A\~ !kv must be bounded. Since |\| = 1, this implies that v = 0,
which is a contradiction. Hence 4 must be semisimple at A,

LEMMA 2. Let A = S + N be the Jordan decomposition of A€ . Ife € F, ¢ # 0,
then S + ¢N is similar to A.

Proof. If D = C or H this follows immediately from the existence of the canonical
Jordan form. The case D = R reduces to the case D = C via complexification.

LEMMA 3. Let g be an inner product in V, T € o a nonsingular matrix and f a new
inner product defined by f(x, y) = g(Tx, Ty). Then v;(A) = v, (TAT "), VA € oA.

Proof. This follows from the fact that |x| = | Txl,, Vx € V.

Mott and Schneider [8, Thm. 1] have shown that (in the case D = C) for all 4 € &/
we have p(4) = inf »(4) where inf is taken over all norms on /. A similar statement is
valid when inf is taken over all transform absolute norms. This stronger result is stated,
without proof in [3], and is attributed to Saunders and Schneider [9]. The next lemma
is a consequence of this stronger result. For the convenience of the reader we shall include
its proof.

LEMMA 4. For A € o we have p(4) = inf v, (A) where inf is taken over all inner
products fon V.

Proof. In view of Lemma 1 it suffices to show that if r > p(A4) then there exists an
inner product fon ¥V such that v,(4) < r. Let A = S + N be the Jordan decomposition
of A (with S semisimple and N nilpotent). There exists an inner product g on V such
that S is a normal operator of the Hilbert space (V, g). Hence

vg(S)=p(S)=p(4) <r.

Choose ¢ > 0 small enough so that »,(S + eN) < r. By Lemma 2 there exists an invertible
matrix T € &/ such that TAT™' = S + eN. Define a new inner product f on V by
f(x, y) = g(Tx, Ty). Then by Lemma 3 we have

vy (A) = vg(TAT ") = v,(S+eN) <. QED

In the case D = C, Mott and Schneider [8, Thm. 2] have characterized the operators
A € of for which there exists a norm » on &/ such that »(4) = p(A4). This is contained as
the part (ii) <> (iii) of the next theorem. This theorem is probably not new but for the
lack of reference we shall include a proof.

THEOREM 5. For A € of the following are equivalent:

@) 3 inner product fon V such that vy (4) = p(A);

(ii) 3 norm v on o such that v(4) = p(A),

(iii) A is semisimple at every \ € a(A) with |\| = p(4).

Proof. (i) = (ii) is trivial.

(ii) = (iii) is contained in Lemma 1.

(iii) = (i) We may assume that 4 # 0. Then (iii) implies that p(4) > 0. Replac-
ing 4 by p(4)"'4, we may assume that p(4) = 1. There is a unique decomposition
V = V; ® V, into A-invariant subspaces such that the restrictions 4; = 4|V (k = 1, 2)
satisfy:

o(4;)c {A€C:]\| =1},

o(A) = {\eC:I\| < 1}.

In view of Lemma 4 and Lemma 6 (below) it suffices to consider the case V = V.
Then (iii) implies that 4 is semisimple and consequently there exists an inner product
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f: VX V= D such that 4 is a unitary operator of the Hilbert space (V, f). In particu-
lar vo(4) = 1.

This concludes the proof of the theorem.

LEMMA 6. Let A€ of and let V = V; ® V, be a decomposition into A-invariant
subspaces. Let f be an inner product on V such that V| L V, and let fi (resp. A) be the
restriction of f (resp. A) to Vi X Vi (resp. V). Then writing v, = vy, (k = 1, 2) we have

vr(A) = max (vi(4y), v2(42)).
Proof. Observe first that if «, 3, v, 6 > O then

atB_ ax (28
v+~ v'8)

This implies that (we write |x| instead of |x|,)

|41 + |45,/
su _—

<max (v1(4,)% v(42))
L 0,0 X1+ X ’ ’

where x €V, (k=1,2). For x€V we can write x=x; +Xx; (xx€ V) and so
Ax = A1x; + Ayx; and

lAx® =4 P+ 142l I =l + [l

Hence the above inequality implies that v, (4) = max (v,(4;), v2(42)). On the other hand
the inequalities v, (A4) = vi(4y) (k = 1, 2) are obvious.

Remark 1. Lemma 4 and the equivalence (i) <> (iii) of Theorem 5 as well as their
proofs are reminiscent of two theorems of W. Givens [4]. For 4 € &/, in the case
D = C, and for an inner product fon V the field of values of A is defined as

O, (A) = { f(x,Ax):|x|y = 1}.

It is well known that o(4) = ®,(4). Givens showed that if A(4) is the convex hull of o(4)
then A(4) = N ®,(4), where the intersection is over all inner products fon V. He also
showed that there exists an inner product f such that A(4) = ®,(4) iff 4 is semisimple
at every A on the boundary of A(A).

4. Invariant Quadratic Cones. Let /.7 X V' — D be a hermitian form. Its signature
sign (f) is the triple (n_, ny, n.) where n_ (resp. n,) is the maximum dimension (over
D) of a subspace of V on which the restriction of f is negative definite (resp. positive
definite) and n_ + ny + n,. = n. Thus n_ + n, = ris the rank of f, and n, is the dimension
of its radical Rad f. We say that fis indefinite if n. = 1 and ny, 2 1. If n_ = 0
(resp. n. = 0) we write = 0 (resp. f = 0).

A (solid) quadratic cone in V is a subset

Vi={xeV:f(x,x)20}

where fis an indefinite hermitian form on V. We say that this cone has type (n_, no, n.)
if sign (f) = (n-, no, n4).

We raise two problems about linear operators preserving quadratic cones.

PROBLEM 1. Characterize linear operators 4 € &/ which leave invariant a fixed
quadratic cone Kin V.

PROBLEM 2. Characterize linear operators 4 € & which leave invariant some qua-
dratic cone K in V of fixed type (n-, no, n).

In the case D = R the first problem was attacked by Loewy and Schneider [7] for
the cones of type (n — 1, 0, 1). Some of their results are generalized in the following:
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THEOREM 7. Let f be an indefinite hermitian form on V, A € o/, and let g be the

hermitian form on V defined by g(x, y) = f (Ax, Ay). Then for the statements
@ A-VicVvy,
(ii) =20, g—tfz0,

(iii) A-Vi=V},

(iv) >0, g=tf
we have (i) <> (ii) and (iii) = (iv). If A is invertible then (iv) = (iii).

Proof. (i) = (ii) From (i) we have f(x, x) 2 0 = g(x, x) 2 0. Hence (ii) follows
from [2, Thm. 5].

(i) = (i) If x € V} then (ii) implies that f(4x, Ax) = g(x, x) 2 f(x, x) = 0, i.e,,
AxeV}.

(iii) = (iv) It follows from (iii) that 4 is invertible and that it maps the boundary A
of V} onto itself. Thus f(x, x) = 0 = g(x, x) = 0. By applying a result of Krein and
Smul’jan [6] (see also [2, Thm. 3]) we conclude that g = ¢f for some ¢ € R. Since fis
indefinite, (iii) implies that ¢ > 0.

The proof of the last assertion of the theorem is straightforward.

Remark 2. If H is the matrix of f (with respect to the standard basis of V' = D")
then (ii) and (iv) can be written as: 3t = 0, A¥HA — tH = 0, and 3¢ > 0, A*HA = tH,
respectively, where 4* denotes the conjugate transpose of 4.

Our next theorem deals with Problem 2. By K° we denote the interior of the
cone K.

THEOREM 8. Let n = 2 and A € of. Then we have the following:

(1) Assume that p(A) € o(A) and that A is semisimple at every N with |\| = p(A).
Then A leaves invariant a quadratic cone K of type (n — 1, 0, 1).

(ii) Assume that p(A) is a simple eigenvalue of A and that |\| < p(A) for all other
N € o(A). Then there exists a quadratic cone K of type (n—1,0,1) such that
x€K— {0} = Ax € K°.

Proof. We shall prove (i) and (ii) simultaneously. Let a€V, a+# 0, satisfy
Aa = a - p(A4). The hypotheses imply that there exists an 4-invariant hyperplane W such
that a £ W. If B is the restriction of 4 to W then p(B) = p(A) with strict inequality in
case (ii).

If p(4) = 0, which is possible only in case (i), then 4 = 0 and (i) trivially holds. Thus
we may assume that p(4) > 0. Multiplying 4 by a suitable positive scalar we may assume
that

4.1 p(B)= 1 = p(A)

with strict second inequality in case (ii).
By Theorem 5 there exists an inner product g on W such that p(B) = v,(B) = 1.
Hence for x € W we have

4.2) IXl;=1=|Bx|;=1.

For x, X' € Vwe can write x = y + at, X' = y' + at' where y, y' € Wand ¢, t' € D.
We define a hermitian form fon V by

(4.3) fex)=fp+aty +at')=1'—g,y).
It is clear that sign (f) = (n — 1, 0, 1) and so K = V¥ is a quadratic cone of type
(n—1,0,1).

Letx=y+ate K— {0}, y€ W, te€ D. 1t follows from (4.3) that |¢| = |y|, and so
t # 0. Using (4.1) and (4.2) we obtain that
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(4.4) ld0(4)* 2 14> 2 Iy; Z | By

Since Ax = A(y + at) = By + ap(A), it follows from (4.4) and (4.3) that f(4x, Ax) = 0,
i.e., Ax € K. Thus A leaves K invariant. In the case (ii) the first inequality in (4.4) is strict
and consequently Ax € K°. This completes the proof.

Remark 3. Let D = R and let K be a quadratic cone of type (n — 1, 0, 1). Then K°
has two connected components. If K9 is one of these components then its closure K; will
be called an ice-cream cone. Furthermore K| is a proper cone, i.e., it is a closed convex
cone with nonempty interior satisfying K; N (—=K;) = {0}. It is easy to see that both
assertions of Theorem 8 remain valid for ice-cream cones.

THEOREM 9. When D = R then for A € A the following are equivalent:

@) p(A) is a simple eigenvalue of A, greater than the magnitude of any other
eigenvalue;
(ii) 3 proper cone K such that x € K — {0} = Ax € K9

(iii) 3 ice-cream cone K such that x € K — {0} = Ax € K°.

Proof. (i) <> (ii) is a result of Vandergraft [11, Thm. 4.4].

(i) = (iii) follows from Theorem 8 (ii) and Remark 3.

(iii) => (ii) is trivial.

Acknowledgments. I would like to thank S. Campbell, H. Schneider, and a referee
for supplying some important references.
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DISCRETE TIME-BAND LIMITING OPERATORS AND
COMMUTING TRIDIAGONAL MATRICES*

RONALD KEITH PERLINEft

Abstract. Time-band limiting operators, corresponding to classical discrete orthogonal families, admit
commuting second order difference operators. A new proof is presented.

Key words. time-band limiting operators, commuting tridiagonal matrices

AMS(MOS) subject classification. 33A70

1. Introduction. Let p;(x) {i, x =0, 1,2, ---, N} be a collection of linearly inde-
pendent discrete functions orthogonal with respect to some weight w(x). Following [G2],
[P1] and [P2], we consider the analogue of “time limiting” and “band limiting” for
ordinary Fourier analysis on the line. Let f(x) be any discrete function; denote by Mk
the operator which multiplies /by the characteristic function of the set {0, 1, - -+, K}.
We call My a “time limiting” operator. Similarly, denote by P, the operator which
projects f onto the span of the functions {po, p;, ****, pr}. Pr is a “band limiting”
operator. The self-adjoint composition MxP; M we call a “time-band limiting” operator.

These operators are analogues of the finite convolution operator T:L? — L? given
by

A o _
7re9= [ D,

which was subject to intensive study in the celebrated series of papers by Slepian, Landau
and Pollak [S1], [S2], [S3], [S4], [S5]. The analysis of this operator was facilitated by a
fortunate ‘““accident™: the existence of a commuting, self-adjoint, second order differential
operator.

In the case of our (matrix) operator MyxP; My, we could similarly hope for the
existence of a commuting tridiagonal matrix. Perlstadt, motivated by the work of Grun-
baum in [G1] and [G2], has shown that such a commuting tridiagonal matrix does
indeed exist if the polynomial family { p;(x)} is of classical type: Poisson-Charlier, Meix-
ner, Krawtchouk and Hahn (see [P1]). This result was generalized in [P2] to include the
g-Racah polynomials of Askey and Wilson [A1], which include the classical families as
special cases.

The proofs in [P1] and [P2] are strongly patterned after the proof given in [G2]. In
particular, the properties that the g-Racah polynomials enjoy that appear in the proof
are

(i) The p;’s are eigenfunctions of a second order difference operator;
(ii) Existence of a Christoffel-Darboux formula (equivalent to a three-term recursion
relation);

(iii) Existence of a first order difference formula for p; in terms of p; and p; _ ;.

The proof in [P2] is combinatorial and rather involved. This is due to the fact that
the g-Racah polynomials appear in the calculations explicitly; and formulas involving
the g-Racah polynomials tend toward the baroque, to say the least. It came as a pleasant
surprise, therefore, when we discovered a simple, direct, constructive proof of the existence
of a commuting tridiagonal matrix for the time-band limiting operator whenever the
orthogonal family { p;(x)} satisfies properties (i) and (ii). At first glance, this result might

* Received by the editors March 3, 1986; accepted for publication June 4, 1986.
+ Department of Mathematics and Computer Science, Drexel University, Philadelphia, Pennsylvania 19104.
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seem more general than that of [P2]; but according to [L1], any orthogonal family with
these properties is in fact of g-Racah type.

2. The proof. First we establish some notation, and state our hypotheses in a manner
that facilitates the proof of our theorem. As stated in the introduction, let { p;(x)} be our
family of linearly independent discrete functions, orthogonal with respect to the weight
w(x). We assume that

(i) D(p:)(x) = Mi)p;(x); the functions {p;} are eigenfunctions for some second
order difference operator D, self-adjoint with respect to the weight w;

(ii) There exists a discrete function O(x) that satisfies a three-recursion relation
with respect to the functions { p;(x)}:

O(X)pi(x) = a;pi + 1(x) + bipi(x) + ¢;pi - 1(x).

Because we assume that the index i has the finite range 0 = i = N, we impose the
conditions that ay = 0, ¢ = 0.

For example, the Hahn polynomials 4;(x) (see [A2]) are defined by

hi(x) = F\(—i,—x,i+a+B+1;—N,a+1;1), a,f>1, x,i=0,1,---,N,
where ,F; is the generalized hypergeometric function. If we use C(n, k) to denote the
standard binomial coefficient, the weight associated with the family {4;} is
_Ca+x,x)C(B+N—-x,N—Xx)

C(N+a+B+1,N)

w(x)
The Hahn polynomials satisfy
(i) Second order difference equation
(1/wO)A[—w(x— D)@+ x)N+ 1 = X)A_hi(x)] = ()i + .+ B+ Dhi(x),
where

Avf()=f(x+1)— f(x), A fx)=f(x)—f(x—1)

(ii) Three term recursion relation: if p; = A;/||4;||, then the normalized p; satisfy
xpi(x) = a;p; + ((x) + bipi(x) + ¢;pi - 1(x); where a; - = ¢;, and

_ (G D)+ 1400+ a+B+N+2)i+a+B+1)i+at+ DN\

QRi+a+B+2)Ri+a+B+3)Ri+a+p+1)Ri+a+B+2) ’

i

this is just a reformulation of the Christoffel-Darboux formula.

Returning to our main discussion: by replacing p;(x) by pi(x)W(x) and D by
VwD I/W (note that this is operator conjugation), we may assume without loss of gen-
erality that w(x) = 1. It is also convenient to assume that the functions { p;} are normalized,
so that they are orthonormal. With these assumptions, we note that ¢; = a; _ ;.

Introduce a second basis
1, x=1i,
0 otherwise.

di(x)= {

Note that, for any function f, we have
f=2{fdiydi= 2 f(dd;.

Conditions (i) and (ii) can be reformulated as follows:
(i) The linear transformation D is symmetric tridiagonal with respect to the
d-basis B; = {dy, d\, d», - -+, dy}; it is diagonal with respect to the p-basis
B, = {po, p1, -~ ,PN}-
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(ii) The linear transformation O:f(x) = O(x)f(x) is diagonal with respect to B;
it is symmetric tridiagonal with respect to B,.
As in the introduction, let M denote projection onto the span of {dy, d;, - - , dx}
and let P; denote projection onto {po, p1, *** , Pr}.
THEOREM. There exists a symmetric tridiagonal matrix commuting with MgPrMk.
Proof. Consider the operator

(©D+DO)—(O(K+1)+O(K)D—(ML+ 1)+ NL)O=T(K,L)=T=
@ - (I - (I10).

The matrix representation of T with respect to B, is symmetric tridiagonal. In fact, its
matrix representation looks like

©0) L) (L+1)
* * |
* * * :
* |
I
]
L T S
0 | = o
"
]
|
[}

To see this, note that terms (I), (II), and (III) are all symmetric tridiagonal with respect
to B,, so T is also. In fact, (II) is diagonal with respect to B,. Now consider the difference
(I)-(I1I). It is easy to see that the (L, L + 1) entry of (OD + DO) is just (\(L + 1) + (L))
times the (L, L + 1) entry of O; but this shows that the (L, L + 1) entry of (I)-(III) is
zero, resulting in the matrix given above.

Similarly, the representation of T with respect to B, looks like

0) (&) (K+1)
*  * H
x %k '
* |
*
*
0 |
|
)
1
!
!

T commutes with P; ; this follows immediately from the matrix representation of
T with respect to B, given above, and the fact that the representation of P, with respect
to B, is just

© (L) L+

p—

(=}
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Similarly, T commutes with M, which can be seen by considering their represen-
tations with respect to B;. Thus T commutes with MgP; M. The same type of argument
shows that 7T is symmetric tridiagonal with respect to B; and commutes with
P MgP;. O

3. Remarks. One might ask how the commuting tridiagonal matrices generated
here compare with those found in [P1] and [P2]. We report that a case-by-case check of
the known circumstances under which commuting tridiagonal matrices (or the continuous
analogues in [G2]) exist shows that our method produces the same commuting operator
(F. A. Grunbaum and M. Reach, private communication).

Finally, since the motivation for finding the commuting tridiagonal matrix is to
facilitate the spectral analysis of the operator MxP; Mk, it is desirable to have conditions
which insure that the matrix T has simple spectrum. We state some simple sufficient
conditions:

(i) The off-diagonal elements in the three-term recursion relation for © are nonzero;

(ii) The eigenvalues of the difference operator D satisfy

ML+ D+ML)=MK+ 1)+ MK)—>L=K.

These conditions are satisfied for the classical orthogonal polynomials. We leave
the proof that these conditions imply simple spectrum as an exercise for the interested
reader.
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AN EXTENSION OF PLACKETT’S DIFFERENTIAL EQUATION FOR
THE MULTIVARIATE NORMAL DENSITY*

SIMEON M. BERMANY

Abstract. Let f(x, y; B), with x, y in R™, and B a nonsingular real m X m matrix, be a function of the
form

S=Qn)™?|det B|"'2 exp (—4 xB'y).

It is shown that f'satisfies a partial differential equation which represents a generalization of Plackett’s equation
in the case where B is positive definite, that is, where f'is a normal density in m dimensions.

Key words. nonsingular matrix, positive definite matrix, multivariate normal density, partial differential
equation, Gaussian process

AMS(MOS) subject classifications. 62HO0S5, 60E99, 15A24, 60G15

1. Introduction and summary. Let f(x;, - -, X,; (b;)) be the m-variable normal
density function with mean vector 0 and positive definite covariance matrix (b;). Ex-
tending a known result in the case m = 2, Plackett [5] discovered the general relation
o _ ¥
ab,, 6x,~<'9xj’
His proof is based on the inversion formula for the characteristic function

12 fos =@ [~ [T e (i Sx5-5 3 b Tas,
o Jow j=1 j

Jhk=1

(1.1) i#]j.

The result (1.1) follows by taking the appropriate derivatives under the integral in (1.2).
While the differentiation with respect to x; is justified by basic properties of the integral,
I found that the argument for differentiation with respect to b; required much more.
Indeed, for 2 > 0, consider the difference quotient of increment 4 leading to 3f/db;.
It is obtained from the integral in (1.2) by multiplying the integrand by the factor
h7'(1 — exp (—}hz;z;)). There is no obvious dominating function for this factor in the
region where z;z; < 0, and so the dominated convergence theorem cannot be applied
without more delicate estimates of the remaining part of the integrand. These require
some of the deeper properties of positive definite forms.

A complete proof of (1.1) has apparently never been published. In view of its im-
portance in the theory of extremes of stationary Gaussian processes (see Berman [1],
Galambos [2], Leadbetter, Lindgren and Rootzen [4]), such a proof should be available
in the literature. The inequality which has become known as “Slepian’s inequality” [6]
is also based on (1.1).

It is the purpose of this note to present a simple algebraic proof of a more general
version of (1.1). In the place of the multivariate normal density f, we consider the more
general function

_ 1 Z
(1.3) fCxrs 3 Xms V15 * 5